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ABSTRACT

The propagation of long, first mode, baroclinic planetary waves in eddy-
resolving quasigeostrophic general circulation models is studied. Recent 
TOPEX/Poseidon observations argue oceanic first-mode planetary waves move 
with speeds other than those predicted by simple theory. These data have 
prompted theoretical analyses of wave propagation in a mean flow, with the 
results suggesting mean shear can have a controlling effect on the planetary 
wave guide. Some of the predicted effects appear to be relevant to the 
observations, while others are less obvious. This, coupled with other 
explanations for the observations, motivates the calculations.

Based on these experiments, the authors suggest that the predicted effects of 
mean shear on wave propagation are consistent with those computed in a fully 
geostrophically turbulent ocean. These are that a two-layer model misses the 
dominant component of long-wave interaction with a mean flow, a three-layer 
model captures this interaction qualitatively, and the correction to wave 
propagation is in the direction opposite to the mean flow. Quantitative 
comparisons between the theory and the numerical experiments are good in the 
northern latitudes and questionable in the southern latitudes. Reasons for the 
southern discrepancy are offered.

1. Introduction  

Recently, Chelton and Schlax (1996, CS hereafter) have argued from TOPEX/Poseidon observations that 1) propagating 
sea surface height anomalies represented first-mode baroclinic waves and 2) those waves were moving at speeds 
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significantly different from the speeds predicted by the simplest linear wave theory. Higher latitude waves appeared to move 
faster than expected, while more equatorward waves were, if anything, slower. As baroclinic waves affect decadal ocean 
adjustment, their propagation is of importance to climate. Thus, the study of long baroclinic wave propagation is strongly 
motivated.

The objective of this study is to examine long, baroclinic planetary waves in the near-annual band in an eddy-resolving 
general circulation model. We test recent predictions of how these waves should be affected by mean flow. These 
predictions were derived using analytically tractable approximations to the quasigeostrophic equations. Here, numerical 
simulations using the full quasigeostrophic equations are studied.

a. Background  

The theory of planetary waves dates to Hough (1897) and was advanced by Rossby (1940). Many investigators have 
described planetary waves in in situ ocean data (Bernstein and White 1974, 1977; Emery and Magaard 1976; Kang and 
Magaard 1980; Price and Magaard 1980, 1983, 1986; Sturges and Hong 1995; Sturges et al. 1998). Kang and Magaard 
(1980) and Price and Magaard (1983) found that accounting for mean shear improved planetary wave fits to their data. 
Kessler (1990) found in North Pacific XBT data a systematic tendency for linear wave theory to underpredict the observed 
wave speeds in the extratropical thermocline. The TOPEX/Poseidon analyses of CS, LeTraon and Minster (1993), and 
Cipollini et al. (1997) are consistent with the Kessler results and extend them to all the ocean basins. Morris (1996), in a 
quasigeostrophic numerical study of the South Pacific, found that the waves in her model moved at rates other than those 
predicted by either simple linear or two-layer theory. Thus, it appears that the simplest linear theories are an inaccurate 
model of oceanic planetary wave propagation.

This has generated considerable interest among theoreticians. Killworth et al. (1997) revisited the augmented eigenvalue 
problem using the Levitus dataset (Levitus 1982) and found that interaction of long waves with mean shear could account 
for much of the observed wave speed modification. Dewar (1998) looked at a global analysis of the large-scale 
quasigeostrophic equations and arrived at a similar result. The latter study also included an analytical expression for the mean 
flow effect on wave propagation and an explanation for why such results occurred within anticyclonic gyres.

Both above studies explained the so-called “non-Doppler”  effect (Held 1983), that is, the result that long planetary waves 
in a one-layer reduced-gravity model are largely unaffected by mean flow, as due to the noninteraction of first-mode waves 
with the first mode of the mean flow. Dewar (1998) also argued that an anticyclonic stratified mean circulation should 
perturb the expected westward wave propagation cyclonically, that is, accelerate waves to the west in the northern half 
basin and slow them in the south. Liu (1999) found a similar result using ray tracing methods. The former tendency appears 
in the TOPEX/Poseidon results; the latter is much less clear.

These theories therefore appear to be relevant to the ocean, although questions remain. One possible explanation for the 
theory/observation mismatches is that the analyses are based in large-scale equations and miss some of the dynamics 
affecting wave propagation. Given this, the presence of different explanations for the CS observations [White et al. (1998) 
suggest air–sea coupling and Qiu et al. (1997) wind forcing, dissipation, and spatial resonance] and that the wave speed 
signals themselves are questioned (Zhang and Wunsch 1999), we feel it is useful to examine wave propagation in the 
presence of more complete physics. Testing the unobserved but predicted slowdown of waves in the south is also important 
for, if it is robust, the reason it is not observed becomes of interest.

We here test the above wave–mean flow theories using an eddy resolving quasigeostrophic (QG) general circulation 
model. Accordingly, we find the analytical model generally yields accurate qualitative predictions. A two-layer model yields a 
different wave propagation character than a three-layer model. Further, the Dewar (1998) estimates of enhanced long-wave 
propagation in the northern half of the subtropical gyre are quantitatively accurate. In the southern gyre half, where waves 
are predicted to slow, the full QG model yields relatively slow waves (although the predicted and computed speeds do not 
compare well). A many-layer model does not differ significantly from the three-layer model in wave propagation, arguing 
that a three-layer model is adequate for process studies. Propagation in inertial recirculations is not well captured by the 
theory.

The theory of long wave–mean flow interaction using large-scale quasi-geostrophic theory is briefly reviewed in the next 
section. Section 3 describes our numerical design and the results of our experiments. A discussion section concludes the 
paper.

2. Long wave–mean flow interaction theory  

The inviscid QG potential vorticity equations for a three-layer system are



 

where β is the north–south gradient of the Coriolis parameter, f  = fo + βy, qi denotes the potential vorticity of layer i, i 

the streamfunction for layer i, hi the interface perturbation for the interface between layers i and i + 1, and we is the Ekman 

pumping at the surface. Interface perturbations are related to streamfunctions via

 

where  is the reduced-gravity parameter of interface i. A schematic of the model appears in Fig. 1 . 

The large-scale QG (LSQG) equations are obtained from (1) by neglecting relative vorticity, which reduces potential 
vorticity to contributions from β and vortex tube stretching. The analysis in Dewar (1998) can be replicated by linearizing 
the LSQG about a mean flow, the structure of which is straightforward to extract from the steady LSQG. These linearized 
equations can be rewritten in terms of the linear normal modes, h±, denoting the first and second baroclinic modes of the 

system. We will make three further, nonessential but algebraically convenient, assumptions: first, the third layer is assumed 

very deep and thus has negligible velocities; second, H1 = H2; and third, .
 

The resulting first-mode wave equation is

 

where  denotes the time dependent part of wind forcing and

 

where α± is an eigenvalue. The quantities β± denote the first- and second-mode wave speed and ho± the projections of the 

mean state onto the first and second baroclinic normal modes.



Comparing first- and second-mode speeds in (4) reveals that the second mode is typically slower than the first mode. 
(This is characteristic of oceanic stratifications.) Therefore, near-annual frequencies in forcing, like those studied by CS, 
generate short second-mode waves relative to the first-mode waves. Dewar (1998) argued by spatial averaging that the 
underlined Jacobian on the right-hand side of (3) can be ignored, even though the ratio of the wave lengths is not very small 
( 1/6). The result is a closed equation for the first baroclinic long-wave mode propagating in the presence of a mean flow. 
In view of the uncomfortably weak scale separation, however, the equation can be criticized.

It is seen from (3) that the second mode of the general circulation, ho−, affects the first-mode wave propagation. This is 

the appearance in this problem of the “non-Doppler”  effect. Had this same analysis been conducted in a “1½”  layer model, 
ho− in (3) would not appear and the first-mode wave would propagate as if no mean flow were present. 

If the third layer is finite, the upper two layers have arbitrary thicknesses, and the  are not identical, as will characterize 
the numerical solutions discussed later, (3) generalizes to

 

where

 

λ = H2/H1, and . The quantity  in (5) denotes the presence of the barotropic mode. This augments h+ 

propagation by a Doppler shift and also affects the local h+ production. 

Generalizations to continuous stratification suggest higher mean field modes guide first-mode waves as in (5) but weaken 
in effect with increasing mode number. Equation (5) constitutes the approximate theory we test in the next section. 

3. Numerical experiments  

a. Numerical model  

We employ the Holland (1978) quasi-geostrophic model in a rectangular, flat bottom 3000 km by 2000 km basin. The grid 
resolution is 10 km in both directions and the total depth of the fluid is 5000 m. We have experimented with a variety of 

stratifications. Our main runs used a three-layer model with  = 0.035 m s−2,  = 0.025 m s−2, H1 = 300 m, H2 = 700 

m, and H3 = 4000 m, resulting in first and second deformation radii of 52.3 km and 26.8 km. The first mode is relatively 

well resolved, while the second mode is poorly resolved, but present. We have also run two-layer and six-layer experiments. 

In the former,  = 0.024 m s−2 and H1 = 1000 m were used to match the first baroclinic deformation radius from the 

three-layer experiment. This assured that the simplest first baroclinic wave speeds were identical in these experiments. For 
the six-layer experiment, we matched the first and second deformation radii. This was deemed necessary as the previous 
theory emphasized the role of the second mean flow mode in modifying first-mode planetary wave speeds. Clearly, the 



parameters meeting this condition are not unique. The six-layer experiment used reduced gravity paramaters of 0.025, 0.025, 

0.0141, 0.0036, and 0.005 84 m s−2 and thicknesses of 250 m, 250 m, 250 m, 250 m, 2000 m, and 2000 m. These yielded 
first and second deformation radii identical to the three-layer run to four digits. 

In all experiments, fo = 0.93 × 10−4 s−1 and β = 2 × 10−11(m s)−1. Laplacian viscosity was used with coefficient 300 m2 

s−1. No-slip boundary conditions were employed to keep inertial recirculations from becoming larger than desired. 

We focus on subtropical gyres as the relevant CS results come mostly from subtropical latitudes. We therefore forced the 
model with the time-dependent subtropical gyre Ekman pumping

 

where L is the meridional basin length. We have studied mostly annual and biannual forcings. 

It was found that the amplitude of the waves generated by the Holland model were 10 times larger than those predicted by 
our theory. The reason for this is that the streamfunction values on the boundaries must be computed for the 
quasigeostrophic equations (McWilliams 1977). This gives the full QG equations a way to generate waves that has no analog 
in (5). Fortunately, this does not impact our comparisons because we are interested in the propagation within the domain. 
We do note, however, that the “large”  first-mode waves in the Holland model test the viability of (5) well into the 
quasigeostrophic nonlinear regime.

All runs were spun up for approximately 40 years using the mean wind profile only. The model by then exhibited at most 
weak trends, so the variable part of the Ekman pumping was engaged, and the models were run for an additional 20 years. 
Here, we show results of the model averaged over the last several years.

b. Three-layer runs  

In Figs. 2a,b , we show the mean first- and second-layer streamfunctions averaged over the last 12 years of our 
standard three-layer run. The structure of the mean flow consists of a western boundary current, a Sverdrup interior, and an 

inertial recirculation confined in the northwestern basin corner. The interior transport is roughly 20 Sv (Sv  106 m3 s−1) 
and the recirculation is about 50 Sv. The former number is representative, if a bit weak, of the North Atlantic and Pacific 
interior transports; the latter is somewhat weaker than the observed inertial recirculations. Figure 2c  shows the 
distribution of the upper layer eddy kinetic energy averaged over the last 12 years of our run. Maximum eddy kinetic 
energies occur in the vicinity of the western boundary current eastward extension with a secondary maximum located in the 

western return flow of the gyre. Typical rms eddy velocities in the upper layer are on the order of 0.3–0.5 m s−1. In all, the 
circulation is a useful idealization of the real ocean.

1) BASINWIDE COMPARISONS 

In Fig. 3 , we show four snapshots of the first baroclinic mode amplitude from the three-layer model. This plot was 
generated by first subtracting mean fields, shown in Figs. 2a,b , from archived output fields. The residuals were then 
projected onto the first mode according to h+ = h1 − α+h2, with α+ defined by (8). The four snapshots in Fig. 3  come at 

quarter cycles of the forcing: Fig. 3a  is at the maximum wind amplitude, Fig. 3b  three months later, Fig. 3c  at the 
minimum wind amplitude, and Fig. 3d  three months later. Results at these fixed phases from 12 years of model output 
were averaged to reduce the eddy noise. Note the tendency for the wave fronts to tilt cyclonically as one moves from the 
eastern boundary toward the western basin edge.

In Fig. 4 , we show the solution of (5), the simplified first-mode propagation equation including the mean flow, for the 
same wind forcing as was used to generate Fig. 3 . Here we have used the mean fields shown in Fig. 2  to determine 
the mean-shear contribution to the wave propagation. The solution computed using (5) contains no eddies and is much more 
spatially regular. The overall pattern of the wave amplitude computed from the simplified theory, however, qualitatively 
matches that of the full QG model in Fig. 3  quite well. 

2) TIME–LONGITUDE PLOTS: STRENGTHS AND WEAKNESSES 



Figures 5  and 6  show time–longitude plots of the first baroclinic mode amplitudes. These plots correspond to 
latitudes 500 km and 1400 km north of the southern basin boundary and only the eastern 2200 km are shown to avoid the 
western boundary current. The data were zonally averaged and the average removed to emphasize the propagating waves 
relative to the stationary effect of the pumping. Results at fixed phases from 12 years of model output were averaged to 
remove noise.

In the upper plot in Fig. 5a , we compare propagation from the full QG model with a mean flow (solid lines) to 
propagation from the full QG model forced only by the variable part of the Ekman pumping (dashed lines). Thus, the latter 
waves move in the absence of a mean flow and exhibit simple nondispersive propagation, as seen from the nearly straight 
contours (dashed lines). (The waviness in these contours is due to time dependent barotropic Doppler shifting.) Relative to 
these almost straight lines, the waves from the fully forced model begin in the east as simple waves, but by midbasin are 
accelerating relative to the background speed. This is in qualitative agreement with our theoretical expectations. The same 
information appears in Fig. 5b , except results from the simple analytical model in (5) appear as dashed lines in place of 
those from full QG model. The solid lines are still from the Holland QG model without a mean flow. Note that this plot is 
quite similar to Fig. 5a , suggesting that the qualitative character of wave propagation in the general circulation has been 
captured by the simple analytical theory. Fig. 5c  shows the quantitative comparison is also favorable, as we directly 
compare results from (5), contoured in dashed lines, to results from the fully forced QG model (solid lines). Comparable 
westward acceleration of the pattern propagation with increasing distance from the eastern boundary is clear in all three 
plots.

Figure 6  compares the same three models at the more southerly latitude Y = 500 km. The presentation is as in Fig. 5 
. The quantitative comparison at this latitude between the various models is not as good as at Y = 1400 km. In the 

southern part of the domain, the wave–mean flow effect is expected to retard wave propagation. This appears in the lagging 
of the solid-line contours (QG with mean flow) relative to the dashed-line contours (QG no mean flow) noted in midbasin in 
Fig. 6a . This comparison is consistent with the theoretically expected tendency. However, the comparison in Fig. 6b  
of the analytical predictions (dashed) against the full numerical model without a mean flow (solid) reveals at best a weak 
effect. There is a slight lagging of the analytical contours relative to the computed contours in midbasin, but the difference is 
considerably less than appears in Fig. 6a . Comparisons of the full QG model results (solid) to those generated by (5) 
(dashed) at Y = 500 km are in Fig. 6c . As expected from Fig. 6b , (5) is less successful as a quantitative model of 
wave propagation.

The reasons for this are not clear, but possibly involve wave dispersion. Note in Fig. 4  that this latitude is 
characterized by the appearance of relatively small scales in the wave pattern. Some of these reflect smaller scales in the 
mean circulation, some the slant in wave amplitudes caused by wave speed variations and some the slower wave phase 
speeds themselves. Dispersion should slow down a wave according to full quasigeostrophic theory, and this is in keeping 
with the comparison between the analytically expected result and the full result. It is also possible that the smaller scales 
appearing in the south elevate the underlined Jacobian in (3) in magnitude. This would weaken the quantitative skill of the 
theory although it is not clear that the Jacobian should have the observed effect. It is still true that the qualitative slowing of 
the waves in the south, appearing in the full QG solutions, is captured by the approximate equation in (5). 

The predictions from (5) also lose accuracy as the waves move into the inertial recirculations, suggesting that the simple 
theory does not work well there. The limitations on the size and strength of the inertial recirculations in these runs has 
prevented us from studying this area more fully; further work is necessary.

c. Two-layer runs  

Figure 7  shows essentially the same plan view as Fig. 3 ; however the output comes from a two layer QG model. 
Aside from this, the runs use the same grid resolution, viscosity, wind forcing, etc., as the three-layer model. It is 
nonetheless clear that the propagating wave crests behave very differently. The cyclonic tendency seen in Fig. 3  for the 
wave crests is replaced by an anticyclonic correction. The latter is due to the Doppler shift caused by the depth integrated 
Sverdrup flow, which for a subtropical gyre is anticyclonic. Dewar (1998) argues this effect is inversely proportional to the 
total depth of the water column. Thus, this term is absent in (3) because of the very deep third layer, but appears in (5). The 

numerical run shown in Fig. 7  has a finite total depth of 5000 m, yielding a measurable Doppler shift of 1 cm s−1. 
This agrees with the results in Fig. 7  and also with differences between integrations of (3) and (5) (not shown). 

The comparison between Figs. 3  and 7  supports the prediction that a two-layer model misses leading order wave–
mean shear interaction physics. This interaction dominates the Doppler shift, as supported by the net cyclonic correction in 
Fig. 3 . Recall that that experiment also had a depth of 5000 m, so the anticyclonic Doppler effect was the same strength 
as in Fig. 7 . 

d. Six-layer runs  



We show in Fig. 8  the results of a six-layer experiment. The purpose here was to test the prediction that a three-layer 
model captures the dynamics of wave–mean flow interaction both qualitatively and quantitatively. The same format as Fig. 3 

 is used. Note that the plot is considerably noisier. This reflects the enhanced eddy activity typical of more highly 
stratified layered model experiments. Aside from that, the correspondence in plan view of the wave crests is quite good. The 
overall correction to the crest structure is cyclonic and of approximately the same amplitude as that in the three-layer 
experiment. The propagation speed of the first-mode waves is also roughly the same in both figures, as is evidenced by the 
positioning of the wave crests relative to the eastern basin boundary at the various phases of the forcing cycle.

This correspondence is emphasized in Fig. 9 , which compares time–longitude plots from the three- (solid) and six- 
(dashed) layer runs at the latitudes of Y = 1400 km and 500 km. Here again the zonal average of the data has been removed 
to accentuate signal propagation. We expect acceleration of the wave signal in the northern transect and deceleration in the 
southern. Both signals are observed and, further, the comparison of the first-mode propagations is surprisingly good, 
supporting the quantitative accuracy of the three-layer model. 

It is key here that both the first and second baroclinic deformation radii have been matched. In other experiments (not 
shown here), the quantitative behavior of the first-mode propagation was captured when only the first deformation radius 
was matched, but the quantitative comparison was degraded. This reflects that the mean flow effect on the waves depends 
on the second general circulation mode.

4. Discussion  

An eddy resolving quasigeostrophic numerical model was used to study first-mode long planetary wave propagation in the 
presence of mean flow. Previous theoretical studies have argued that long-wave propagation in a flat bottom ocean is due to 
β (which generates simple westward propagation), a Doppler shift by the barotropic flow, and an interaction with the mean 
shear profile. The latter has been argued to be insensitive to the representation of stratification in a model; the minimal 
requirements are that the first two internal deformation radii be accurately represented. All of the above points are supported 
in this study.

Relative to observations, such as those in CS, wave crests are accelerated in their westward propagation in the northern 
part of the subtropical gyre and decelerated in the southern part. The northern model tendency appears in CS. While tropical 
latitudes yielded different wave behaviors (the waves moved slower than expected), comparison with CS is less satisfactory. 
On the other hand, detailed comparison between the observations and the model is ambiguous in the near-equatorial regions. 
The equatorial mean flow field is not captured by our subtropical gyre model. Further, QG dynamics ignore the explicit 
variation of the Coriolis parameter, thus neglecting the phase speed growth of long waves in the equatorial zone. In our 
opinion, these QG shortcomings recommend caution when applying this theory to the equatorial ocean regime and call for a 
closer examination of long-wave propagation using planetary geostrophic equations. The latter supercede QG and include the 
explicit variation of the Coriolis parameter.

We have also noted tendencies for the theory to be inaccurate in the inertial recirculation zones of the model and for the 
quantitative fidelity of the theory to degrade in the southern half of the domain. In a sense, the former is not a surprise, as 
the LSQG equations do not capture the dynamics of the recirculation. A more thorough study of long-wave propagation in 
the presence of an inertial recirculation is called for. The latter possibly reflects dispersion.

In closing, three further points deserve explicit mention. First, ours is an ocean-only model; yet, we predict modifications 
to wave propagation consistent with the CS observations. The coupled dynamics shown recently by White et al. (1998) to 
cause westward wave acceleration may occur in the real ocean, but our calculations show other dynamics internal to the 
ocean may play a comparable role.

Second, Qiu et al. (1997) show how the phase speed doubling, first noticed by White (1977), is made more apparent in 
the off-equatorial bands by dissipation. Specifically, pattern speed doubling is accompanied by intervals of vanishing pattern 
propagation due to interference between local and propagating effects. Dissipation damps the propagating part, allowing the 
locally forced, faster component to dominate in the interior. Shorter waves, naturally occurring at higher latitudes, are more 
efficiently damped, generating a signal like that in CS. Our eddy-resolving runs, in principle, explicitly model the dissipative 
mechanisms parameterized by Qiu et al. (1997) and wavelengths of our generated waves are like those noted by CS in the 
extratropical zones. Our results thus suggest eddy-resolving models do not necessarily strongly damp propagative waves. 
Our averaging procedure also removes the spatially fixed part of the solution, thereby emphasizing the propagative wave. 
The computed acceleration of the motion is thus a property of wave–mean flow interaction, and not of spatial resonance. 
We feel wave–mean flow interaction should not be discounted relative to the mechanics suggested by Qiu et al. (1997). 

Third, these results comment on the minimal model required to study climate and climate variability, and there is good 
news and bad news. Oceanic adjustment on the largest scales is undoubtedly mediated via first-mode baroclinic waves. 
Further, the climate is complex, so it is rational to construct minimal models to gain insight. The bad news is that to capture 



the basic mechanics by which the ocean adjusts to variability requires at least three layers, rather than the computationally 
less demanding two-layer system. The good news is that for process climate ocean modeling, more than three layers may 
well be “gilding the lily.” 
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Figures  
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Fig. 1. A three-layer configuration is shown. The model is flat bottomed, forced by a variable wind, and on a β plane. Notation 
is standard
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Fig. 2. Mean state circulation: (a) upper-layer streamfunction averaged over the last 12 years of our three-layer experiment 

(units are 103 m2 s−1); (b) second-layer streamfunction, so averaged (units are 103 m2 s−1); (c) eddy kinetic energy from the 

upper layer, so averaged (units are m2 s−2) 
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Fig. 3. First baroclinic mode wave propagation at fixed phases, and averaged over the last 12 years of our three-layer 



experiment: (a) at the point of maximum Ekman pumping, (b) three months later than (a), (c) at the point of minimum Ekman 
pumping, and (d) three months later than (c)
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Fig. 4. As in Fig. 3  but using the asymptotic theory in (5) 
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Fig. 5. Time–longitude plots: (a) wave propagation in the presence of mean flow (solid) is compared to propagation in the 
absence of mean flow (dashed). Both were computed using the full QG model. Y = 1400 km. (b) Wave propagation from the 
analytical theory (dashed) compared to propagation from the full QG model without mean flow (solid); Y = 1400 km. (c) Wave 
propagation from the analytical theory (dashed) compared to propagation from the full QG model with mean flow (solid); Y = 1400 
km. The zonal average of the data has been removed in all cases
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Fig. 6. As in Fig. 5  but at Y = 500 km 
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Fig. 7. As in Fig. 3  but using a two-layer QG model 
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Fig. 8. As in Fig. 3  but using a six-layer QG model 
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Fig. 9. Time–longitude plots comparing the three-layer model (solid) to the six-layer model (dashed): (a) Y = 500 km and (b) Y = 
1400 km. The zonal average of the data has been removed
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