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ABSTRACT

Treating the problem of interleaving in ocean fronts, a linear stability analysis is 
applied to a thermohaline, baroclinic front in which the vertical diffusivity for 
mass and momentum is determined by both the double diffusion and 
turbulence. If the mass and momentum diffusivity is controlled by double 
diffusion solely, interleaving in baroclinic fronts is possible at any value of the 
geostrophic Richardson number Ri. However, it is shown that turbulent mixing 
always works to suppress double-diffusive interleaving. Due to turbulent 
mixing, at some range of the input parameters there is a range of Ri where the 

maximum growth rate of interleaving, ω′max, vanishes. Several asymptotic 

criteria governing the Ri dependence of ω′max are found. These criteria fit well 

the results of numerical calculations of ω′max(Ri). One of the criteria has been 

applied to describe intrusions observed in the Azores Front of the North 
Atlantic.

1. Introduction  

It is known that in an inviscid adiabatic fluid the instability of a geostrophically 
balanced baroclinic 2D front with respect to lateral intrusive-like motion cannot 

occur unless the geostrophic Richardson number Ri = (f/Nγ
ρ
)2 is less than one 

(McIntyre 1970). Here, f  is the Coriolis parameter, N is the Brunt–Väisälä 
frequency, and γ

ρ
 is the slope of isopycnals with respect to the horizontal. 

According to McIntyre (1970), this instability is referred as the symmetric classical instability. The same criterion for 
instability, Ri < 1, is valid for the case of viscous fluid provided that Pr = 1, where Pr is the Prandtl number, that is, the ratio 
of momentum to mass transfer coefficients. However, if Pr  1 the viscous/diffusive destabilization of the flow is possible 

(McIntyre 1970), and the criterion for monotonic instability generalizes to Ri < Ri*M, where Ri*M = (1 + Pr)2/4 Pr. Since 

Ri*M > 1 both for Pr < 1 and Pr > 1, the viscous/diffusive destabilization of geostrophic flow at 1 < Ri < Ri*M is referred as 

the McIntyre instability.

In the case of interleaving at baroclinic fronts in the ocean, the vertical mass and momentum transfer may be governed by 
double diffusion and Ri-dependent turbulent mixing. Therefore, one may expect some changes in the above criteria for 
instability.
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Since the pioneering work by Stern (1967), several models of double-diffusively driven interleaving have been developed 
for the purely thermohaline front with no baroclinicity (Ruddick and Turner 1979; Toole and Georgi 1981; McDougall 
1985a, b; Niino 1986; Walsh and Ruddick 1995). The first model treating the effects of baroclinicity and turbulent mixing on 
double-diffusive interleaving in the framework of linear stability problem was suggested by Kuzmina and Rodionov (1992), 
hereafter referred as KR92. Further development of the KR92 model has been recently undertaken by May and Kelley 
(1997). 

Analyzing examples of numerically computed Ri dependence of ω′max taken from KR92 convinced us that the double-

diffusive destabilization of baroclinic fronts is possible even at Ri > Ri*M. In this paper, we will focus on determining new 

criteria for instability in the cases under consideration.

2. Formulation of the problem and governing equations  

In the wake of KR92, let us consider an infinitely wide, baroclinic thermohaline front with constant background gradients 
of temperature (Tx and Tz), salinity (Sx and Sz), and density (ρx = −Tx + Sx and ρz = −Tz + Sz) both in the cross frontal and 

vertical directions (the x and z axes, respectively). To simplify the notation, by T, S, and ρ we will imply the product of the 
thermal expansion coefficient α with temperature, the product of the salinity contraction coefficient β with salinity, and the 
ratio of density to the reference density ρ0, respectively. The z axis is directed upward. The x axis is directed across the 

front in such a way that Sx  0 while Tx and ρx can be both positive and negative. The background stratification is assumed 

to be hydrostatically stable (i.e., ρz < 0) and favorable for salt fingering (0 < Sz < Tz). 

The base state is the geostrophically balanced flow

 

where  is the y-component of background velocity, p is the mean pressure divided by ρ0, g is the gravitational 

acceleration, and ρ is the mean density. According to (1) and (2), the vertical shear, z, is related to horizontal density 

gradient by the thermal wind relationship,

 

According to KR92, the linearized governing equations for two dimensional perturbations are

 

where u, , w, p, S, ρ are perturbations of velocity components, pressure, salinity, and density, k is the apparent 
diffusivity for salt due to salt fingering, k* is the apparent diffusivity for salt, heat, and mass due to the small-scale 
turbulence, n = αFT/βFS is the nondimensional flux ratio for salt fingering (n < 1). Following Stern (1967), the momentum 

balance in the vertical direction is reduced to the hydrostatic relationship (5) implying that the slope of intrusions is small, 
that is, intrusive motions are quasihorizontal. The first term on the right side of (7) and (8) is the parameterization of salinity 



and mass fluxes due to salt fingering suggested by Stern (1967); the second term describes the effect of small-scale 
turbulence. Similarly, the last two terms in the right side of (3) and (4) describe the viscosity caused by salt fingering and 
wave/turbulence mixing, respectively. Note that the effect of viscosity on thermohaline intrusions was first studied by 
Stommel and Fedorov (1967) and then incorporated into the Stern’s problem by Toole and Georgi (1981). Following 
Kuzmina and Rodionov (1992), the effect of baroclinicity is presented by the terms w z in (4) and uρx in (8). 

To perform a linear stability analysis of infinitely wide, baroclinic, thermohaline fronts, we have to seek harmonic 
solutions for the Eqs. (1)–(8), namely

 = Re{ ′ exp(ωt + ilx + imz)},(9) 

where  denotes any of variables under consideration (u, , w, p, S, or ρ); ′ is the complex amplitude for  ; Re is real 
part of { · · · }; ω is the growth rate (real or complex); l and m are the cross-front and vertical wavenumbers, 
respectively.

The problem (1)–(9) is just the same considered in KR92 and is two-dimensional. Being applied to the thermohaline front 
with no baroclinicity, all the above-mentioned models except (Niino 1986) treated the 3D interleaving, that is, intrusions were 
allowed to have a nonzero along-front tilt. When considering 3D interleaving in baroclinic fronts one has to add into the Eqs. 
(3)–(8) the background advection terms, that is, u/ y, etc. Since  = 0 + zz, where 0 is the mean velocity at z = 0, the 

perturbation equations for 3D problem in the baroclinic front are no longer autonomous. That is, the simple harmonic form 
of solution [ exp(ωt + ilxx + ilyy + ilzz)] is no longer valid, and, in general, we have to solve a complex, eigen function 

problem. For this reason, dealing with the baroclinic front we focus on a relatively simple, 2D problem.

3. Instability models  

Substituting (9) into (3)–(8) gives a system of linear, homogeneous, algebraic equations. Therefore, a solution of the form 
(9) exists only if the determinant of this system vanishes. This yields the following quartic relationship in ω between the 
growth rate and wavenumbers:

ω4 + C3ω
3 + C2ω

2 + C1ω + C0 = 0,(10)

 

where



 

where  = k*/k is the ratio of turbulent to salt fingering vertical diffusivities, z = (1 − n)/(R
ρ
 − 1) is a nondimensional 

measure of contribution of the mean salinity gradient to the vertical density gradient scaled by the efficiency of density 
diffusion by salt fingering introduced by Toole and Georgi (1981), R

ρ
 = Tz/Sz is the density ratio (R

ρ
 > 1 when the 

stratification is favorable for salt fingering), N2 = −gρz is the squared Brunt–Väisälä frequency. 

Introducing the following nondimensional variables and parameters

 

where L and H are typical horizontal and vertical scales of intrusion, we rewrite (10)–(14) in a nondimensional form

 
(Click the equation graphic to enlarge/reduce size)

where Q0 = C0H8/k4, Q1 = C1H6/k3, Q2 = C2H4/k2, Q3 = C3H2/k are nondimensional coefficients of (10′), γS = − Sx/Sz is 

the cross-front slope of isohalines.

If Q0 < 0, we are assured of at least one real root for which ω is greater than zero (e.g., Stern 1967), and a growing, 

nonoscillating intrusion exists. Since we are going to find out new criteria for monotonic instability, we have to examine 
when the condition Q0 < 0 being sufficient is necessary as well. In general, the number of positive real roots of a polynomial 

with real coefficients Qn, Qn−1, . . . , Q0 either is equal to the number Na of sign changes in the sequence Qn, Qn−1, . . .

, Q0 of coefficients, or it is less than Na by a positive even integer (so-called Descartes rule of signs; Korn and Korn 1968). 

It means that at least one positive root does exist if the number of sign changes in the sequence of coefficients is an odd 
positive integer. Because in our quartic polynomial (10′) Q4 = 1 and Q3 > 0 at any Pr > 0, the Descartes rule yields the 

following sufficient conditions for instability

1. Q0 < 0, Q1 > 0, Q2 > 0;
 

2. Q0 < 0, Q1 < 0, Q2 > 0;
 

3. Q0 < 0, Q1 > 0, Q2 < 0;
 



4. Q0 < 0, Q1 < 0, Q2 < 0.
 

Therefore, the above four cases can be reduced to the single sufficient condition for monotonic instability, namely, Q0 < 

0. Moreover, if Q0 < 0, Q1 > 0, Q2 > 0, we are assured of one and only one positive root while if Q0 > 0, Q1 > 0, Q2 > 0, 

we are assured of no one positive root. Therefore, Q0 < 0 is the criterion for instability—a necessary and sufficient 

condition, provided that Q1 > 0, Q2 > 0. One more sufficient condition for instability and respective criterion will be 

introduced in section 3e. In the following, we will consider these conditions and criteria in more detail. 

To start with, let us consider the case of no turbulent mixing. With  = 0, (11′)–(14′) reduces to a simpler form:

 

The right side of (11") consists of four terms. Two of them, the second and the fourth, can be negative, so two types 
(mechanisms) of instability do exist. The second term is responsible for thermohaline, double-diffusive instability which was 
discovered by Stern (1967). The fourth term is responsible for another type of instability which can exist only in baroclinic 
fronts. The last type of instability has been already described by Kuzmina and Rodionov (1992), and a question arises 
whether this instability is really a new one or is a modification of the McIntyre instability.

According to (11"), when χ Ri−1/2  1, χ Ri−1/2  1, and χ Ri−1/2  1 the instability is determined by thermohaline, 

baroclinic, and both factors, respectively. Therefore, being first introduced in KR92, the χ Ri−1/2 criterion makes it possible 
to recognize which factors, thermohaline or baroclinic, dominates in double-diffusive interleaving in an oceanic front. Note 

that in accordance with (11), one can write the following expression for χ Ri−1/2:

χ Ri−1/2 = |γ
ρ
/γS|/ z.

 

Let us consider different limits (asymptotic) of (11") and (11′). 

a. Double-diffusive interleaving controlled by thermohaline factors  

When χ Ri−1/2  1, the last term in and (11") can be dropped, and the consideration reduces to a well-known case of 
double-diffusive interleaving in purely thermohaline fronts with no baroclinicity (Stern 1967; Toole and Georgi 1981, and 
their followers). Substituting ρx = 0,  = 0 into (11) and applying C0 < 0, we can find an instability condition in terms of 

intrusion slopes:



 

Manipulating (15), one can show that if the intrusion is tilted with the maximum slope allowed for instability (l/m)max, the 

along-intrusion density ratio ΔT/ΔS (where ΔT and ΔS are the along-intrusion gradients of temperature and salinity) will 
equal the flux ratio:

(ΔT/ΔS)|l/m=(l/m)max
 = n.(15′)

 

b. Double-diffusive interleaving controlled by both thermohaline and baroclinic factors  

If χ Ri−1/2  1, both factors, thermohaline and baroclinic, are important, and (11") yields the following expression for the 
slope of growing intrusions (May and Kelley 1997):

 

It is clear that (15) is a partial case of (16). Moreover, manipulating (16) one can show that the along-intrusion density 
ratio for the growing intrusion of the maximum slope equals the flux ratio, that is, the expression (15′) is valid even in 
baroclinic fronts. It is worth noting that the expression (15′) differs from what was written by May and Kelley (1997) who 
declared that the same is valid for the fastest-growing intrusion, that is,

 

where ωmax is the growth rate of fastest-growing intrusion. Since the maximum slope of growing intrusion is about twice 

as large as the slope of the fastest-growing intrusion,

 

(e.g., May and Kelley 1997) there is no reason to expect that observed values of the along-intrusion density ratio do equal 
the double-diffusive flux ratio. The last statement is of primary importance when dealing with observations of intrusions in 
the ocean.

It is interesting that double-diffusive interleaving can exist even in baroclinic fronts with no thermoclinicity, that is, when 
isopycnals, isohalines, and, consequently, isotherms have the same slope (γ

ρ
 = γS = γT, where γT = −Tx/Tz). In this case, 

(16) yields (l/m)max = ρx/ρz. 

c. Double-diffusive interleaving controlled by baroclinic factor  

If χ Ri−1/2 = |γ
ρ
/γS|/ z  1, (16) reduces to

 

In this case, the slope of growing intrusions is limited by the slope of isopycnals, and can be much greater than slopes of 
both isohalines and isotherms, in accordance with a relationship γ

ρ
 = (γT R

ρ
 − γS)/(R

ρ
 − 1). Therefore, this instability may 

be identified as a form of baroclinic instability. However, in contrast to the symmetric classical baroclinic instability that 

works only if Ri < 1, and the McIntyre instability that cannot occur unless 1 < Ri < Ri*M, the double-diffusive destabilization 

of the baroclinic front can occur with no limitation on Ri, in accordance with (11"). Therefore, at Ri > Ri*M and χ Ri−1/2  

1, the double-diffusive interleaving controlled by baroclinic factors may be considered as a new form of baroclinic 
instability.

The physical reason for the baroclinic instability effected by double diffusion to occur at any value of Ri lies in the fact 

that the case χ Ri−1/2  1 may be interpreted as a limiting case when (1 − n) vanishes. Indeed, n  1 causes χ Ri−1/2  1 
and (l/m)max  ρx/ρz. Moreover, in accordance with (8), if (1 − n) and k* vanish, the vertical diffusion of mass vanishes 

too, while the diffusion of momentum still exists [see Eqs. (3) and (4)]. That is, the ratio of momentum to mass diffusivities 
approaches infinity, and applying the McIntyre (1970) theory we conclude that the viscous/diffusive destabilization of the 

flow can occur at any (large) value of Ri because Ri*M = (1 + Pr)2/4 Pr  ∞. 



d. Interleaving in the haline front  

By haline front, we mean a thermohaline front in which the horizontal gradient of density is determined mainly by salinity 
rather than temperature, that is, |R

ρx| < 1, where R
ρx = Tx/Sx is the cross-front density ratio. The relationship between 

isopycnal and isohaline slopes can be written as

 

The relationship (18) implies that in the haline front with the stratification favorable for salt fingering (i.e., R
ρ
 > 1) the 

isopycnal slope opposes the isohaline slope:sign(γ
ρ
 γS) = − 1. Therefore, the second and fourth terms of (11") responsible 

for thermohaline and baroclinic factors of instability, respectively, are opposite in sign. In this case, thermohaline and 
baroclinic wedges of instability do not overlap (May and Kelley 1997). It can be shown from (16) that if (1 − n)|Sx/ρx| > 1, 

the maximum interleaving slope lies between zero and the isohaline slope, that is, the growing intrusions fall into the 
thermohaline wedge of instability. If (1 − n)|Sx/ρx| < 1, the maximum interleaving slope lies between zero and the isopycnal 

slope, that is, growing intrusions fall into the baroclinic wedge of instability.

Note, that if (1 − n)|Sx/ ρx| = 1 and sign(γ
ρ
 γS) = −1, thermohaline and baroclinic factors will cancel each other; the term 

independent of ω is not allowed to be negative, and double-diffusive interleaving controlled by both thermohaline and 
baroclinic factors does not exist. Therefore, the growth rates of fastest-growing intrusions in the haline front are expected to 
be less than those in a thermal front provided that other parameters of these fronts are the same. Moreover, assuming that 
larger growth rates yield larger steady state amplitudes of intrusions we may expect the intensity of intrusions to be generally 
higher in thermal fronts rather then haline fronts in the ocean.

It is worth noting that, in accordance with (18), sign(γ
ρ
 γS) = −1 is valid also for a thermal front provided that R

ρx < −1, 

that is, when mean horizontal gradients of temperature and salinity are of opposite sign. However, fronts with R
ρx < −1 

being possible are not typical for the open ocean (Fedorov 1986). 

e. Instability at low Richardson numbers  

In addition to Q0 < 0, there is one more sufficient condition for instability, namely, Q2 < 0, which is valid for our 

particular polynomial (10)–(10′). To prove it, let us present (10′) in a form

 

where qi, i = 0, 1, 2, 3, are some functions of l′/m′ and the governing parameters Pr, χ, , etc., O(η) is a function of the 

order of η  when η  vanishes, that is, lim
η 0 [O(η)/η] = const  0. It is important to note that sign(qi) = sign(Qi). To 

prove our “theorem”  it is enough to find some pairs (m′
0, ω′0) and (m′

1, ω′1), ω′0, ω′1 > 0, for which (m′
0, ω′0) < 0 and 

(m′
1, ω′1) > 0 provided that q2 < 0. If we consider a partial case m′ = ω′, ω′   1 (10") reduces to

 

It is clear from (10") and (10′′′) that

 

The latter limits offer a straightforward way to find the pairs (m′
0, ω′0) and (m′

1, ω′1) we need.

 

In accordance with the above proof and the Descartes’  rule, if Q2 < 0, Q1 > 0, Q0 > 0, we are assured of two and only 

two positive roots in (10′), while if Q2 > 0, Q1 > 0, Q0 > 0, we are assured of no one positive root. Therefore, Q2 < 0 is the 

criterion for instability (a necessary and sufficient condition) provided that Q1 > 0, Q0 > 0. 



Rewriting (13′) in a form

 

we find that Q2 < 0 can be satisfied only if

Ri < 1. 

Therefore, growing modes which result from these two roots may be attributed to the symmetric classical baroclinic 
instability. In addition, according to (13[fy4,1]-), if Q2 < 0, the following expression is valid:

(  − 1)2 + Ri − 1 < 0,(19)

 

where  = (l/m)/(ρx/ρz) is the ratio of intrusion to isopycnal slopes. Equation 19 implies that the maximum slope of 

growing intrusions is twice as large as the isopycnal slope (because   2 when Ri  0). This is an important difference 
between the symmetric classical baroclinic instability and baroclinicity controlled double-diffusive interleaving when the 
slope of growing intrusions is restricted by the isopycnal slope [cf. (17)]. 

Since Q1 > 0 is necessary for the sufficient conditions Q2 < 0 and Q0 < 0 to be the criteria for instability, let us consider 

asymptotics of (12′) at small and large :

 

In accordance with (12′.1) and (12′.2), the following conditions are sufficient for Q1 to be positive:



 

If  = 0 (the case of no turbulence), the sufficient condition for instability Ri < 1 (i.e., Q2 < 0) is not a criterion for 

instability, because, in accordance with (11"), Q0 is allowed to be negative at any Ri < 1, except a case sign(γS γ
ρ
) = −1, χ 

Ri−1/2 = 1 when Q0 = 0. All the same, if   1 and Pr  1, the condition Ri < 1 is not the criteria for instability in view of 

(20.3) [see also section 3f(3)]. If   1 and Pr = 1, the condition Ri < 1 is the criteria for instability, because in this very 
special case all the coefficients Q0, Q1, Q2 are negative (for some values of wavenumbers) at Ri < 1 and positive at Ri > 1 

for any wavenumbers [concerning Q0, see section 3f(3)]. Finally, if   1 (the case of weak turbulence), in accordance 

with (20.1), (20.2), and considerations in sections 3f(1) and (2), it is possible that Ri < 1 is the criteria for instability at some 
values of governing parameters Pr, χ, , z. The last case is just presented in Figs. 4  and 5  (for details see the 

description of these figures in section 5). 

f. Effect of turbulent mixing on the instability  

In accordance with (10′)–(14′), for given input parameters Pr, χ, z, , and Ri the growth rate ω′ is a function of the 

cross-front slope (−l′/m′) and vertical wavenumber (m′). Maximizing ω′ on (−l′/m′, m′)-plane numerically, Kuzmina and 
Rodionov (1992) showed that the turbulent mixing works to suppress the double-diffusive interleaving, that is, to decrease 

the maximum growth rate ω′max. In some cases, ω′max was found to vanish due to the turbulence. Here, we will examine 

this issue analytically.

In general, , the ratio of turbulent to double-diffusive salt diffusivities, may be assumed to be a monotonically decreasing 
function of the Richardson number based on a superposition of internal-wave shear and geostrophic current shear. Physical 
reasons for the Ri dependence of  are (i) increasing probability for generation of turbulence by shear instability at low Ri 
and (ii) the decrease of salt finger fluxes due to vertical shear tilting over the fingers (Kunze 1994). In most oceanic 
situations near-inertial-internal-wave shear is larger than that of geostrophic current, so that  will be mainly a function of 
the internal-wave Richardson number which, in its turn, is governed by the Brunt–Väisälä frequency N. However, in this 
study we focus on the baroclinicity dependence of maximum growth rate, that is, the geostrophic Richardson number 

dependence of ω′max provided that N = constant. For this reason, we will assume that  is a decreasing function of the 

geostrophic Richardson number instead of the real internal-wave-influenced Richardson number. We will use for this (Ri) a 
simple power formula

 = A Ri−σ,(21)

 

where A > 0 and σ  0 are some constants. Let us consider different limits of (11′) with (21): 

1) Χ RI−1/2  1,   1

 

In this limit, (11′) reduces to

 

The first and second items in the right part of (22) describe the double-diffusive instability controlled by thermohaline 
factors, do not depend on Ri, and their sum is negative in the case of instability. The last item in the right side of (22) 
describes the effect of turbulent mixing, is positive and decreases with Ri. Therefore, due to the effect of turbulent mixing, 
the maximum growth rate of double-diffusive intrusions controlled by thermohaline factors is expected to fall with the 
decrease of Ri, in accordance with the numerical calculations by KR92.

Applying Q0 < 0 to (22), we find the following sufficient conditions for instability:



 

The conditions (23) do not allow this type of instability to exist at low Ri when σ > 0 and high A when σ = 0, that is, 
when the turbulence is high enough to suppress the double-diffusive interleaving controlled by thermohaline factors. 

Sufficient condition (23.1) becomes the criterion for instability provided that Ri*1 > 1 and (20.1)–(20.2) is satisfied at Ri = 

Ri*1: 

2) Χ RI−1/2  1,   1

 

In this case, (11′) reduces to

 

Depending of the value of σ, (24) yields the following sufficient conditions for instability:

 

Sufficient conditions (25.1) and (25.3) become the criteria for instability provided that Ri*2 > 1 and Ri*3 > 1, and (20.1)–

(20.2) are satisfied at Ri = Ri*2 and Ri = Ri*3, respectively. 

If 0  σ < 1, the turbulent mixing decreases with Ri slowly, and there is a top Ri limit for the double-diffusive 
interleaving controlled by baroclinic factors to exist [formula (25.1)]. If σ = 1 the instability can exist with any value of Ri, 
provided that A is not too large. Finally, if σ > 1, the turbulent mixing decreases with Ri rapidly establishing a bottom Ri limit 
for the instability.

The above results [sections 3f(1) and 3f(2)] seem to be new findings and are worth to be discussed. First, we found that 
turbulent mixing is able to destroy the double-diffusive interleaving controlled by baroclinic factors, and this is an obvious 
difference between this instability and the McIntyre instability. Second, there is a simple physical explanation for the 
destructive effect of turbulence on the double-diffusive interleaving. Namely, following Zhurbas et al. (1988), we may 
suggest that the value of salt fingering flux ratio, n, has to be increased due to the turbulent mixing. If the intensity of 
turbulent mixing is sufficiently high, the flux ratio can become greater than unity. That is, the buoyancy flux changes sign, 
and the energy source to support interleaving vanishes.

3)   1 

Treating the case when the turbulent diffusivity is much greater than the salt finger diffusivity, we consider a limit   

∞, m′2  = const or, in dimensional variables, k  0, k* = const > 0. In this limit, (11′) yields



 

Substituting (26) into Q0 < 0, we get

 

Note that (27) coincides well-known McIntyre criterion, in accordance with the physical reason. However, we may not 

consider the sufficient condition (27) as the criterion for instability unless we are assured of two items: 1) our Ri*M is not 

less than one, and 2) (20.3) is satisfied at Ri = Ri*M. Manipulating these items it can be easily shown that (27) is the true 

criterion for instability at any Pr > 0.

4. Numerical examples  

To illustrate the above theory, using (10′)–(14′), and (21) we calculate numerically the maximum growth rate of 

intrusions, ω′max, versus Ri for different sets of input parameters Pr, χ, z, A, σ. Following KR92, we will use the 

geostrophic Froude number δ  Ri−1/2 instead of Ri. Being proportional to the isopycnal slope γ
ρ
, this δ is referred as the 

baroclinicity parameter (Zhurbas et al. 1988). Calculating δ-dependencies of ω′max has been done only for δ  1 (or Ri  

1) to avoid treating the case of symmetric classical instability which dominates at Ri < 1. The problem has too many 
nondimensional parameters and instability criteria, and we are not able to demonstrate all the possibilities in the framework of 
a single paper. For this reason we restrict our consideration to the case z = 0.5, χ  1, Pr  1. 

Figure 1  is ω′max versus δ for the following input parameters: Pr = 1, χ = 10, A = 0, z = 0.5. Two curves in Fig. 1 

 have the only difference in parameters, namely sign(γ
ρ
γS) = 1 (the top curve) and sign(γ

ρ
γS) = −1 (the bottom curve). If 

isohaline and isopycnal slopes are of the same sign and the turbulence is not considered, ω′max approaches some positive 

constant when δ  0 (double-diffusive interleaving controlled by thermohaline factors) and increases monotonically with δ 

due to the baroclinicity. If the isohaline slope opposes the isopycnal slope, ω′max approaches the same value at δ  0, 

decreases with δ as long as it vanishes at χδ = 1 [second and fourth terms of (11") cancel out], and then increases with δ at 
χδ > 1. This case has been considered in detail by May and Kelley (1997). 

Figure 2  demonstrates the effect of turbulence on double-diffusive interleaving provided that the turbulent diffusivity 

k* does not depend on Ri. Here, δ-dependence of ω′max is shown both for the cases of turbulence (A = 0.1, σ = 0, solid 

curves) and no turbulence (A = 0, dashed curves). Comparing respective solid and dashed curves, we conclude that 

turbulent mixing reduces ω′max in the whole range of δ, that is, the turbulence suppresses for double-diffusive interleaving 

controlled by both thermohaline and baroclinic factors, as follows from (22) and (24). To explain ω′max(δ) curves in detail 

we can use the sufficient condition (23.2) and (25.1)/(20.1) criterion. 

For the thin solid curve, A = 0.1 < A1 = 0.167 [see (23.2)], and interleaving controlled by thermohaline factors is allowed 

at χδ < 1, and, therefore, at the whole range of δ < 1 (because χ = 1). However, for a bold solid curve in Fig. 2 , A = 0.1 

> A1 = 1.67 × 10−3, and interleaving controlled by thermohaline factors (at χδ < 1, or δ < 0.1) does not exist. Moreover, in 

the last case χ Ri*−1/2
2 = 7.7  1, and in accordance with (25.1) the baroclinicity controlled, double-diffusive interleaving is 

allowed only at δ > δ2  Ri*−1/2
2 = 0.77. The latter is the criterion for instability because (20.1) is satisfied at Ri = Ri*2. 

That is why the bold solid curve in Fig. 2  vanishes at δ  0.59 which is not far from δ2 = 0.77 [the criterion (25.1)/

(20.1) is an asymptotic one!] and does not exist at lower δ. 

Figure 3  shows the effect of turbulence on double-diffusive interleaving provided that the turbulent diffusivity k* is 

weakly dependent on Ri, namely when σ = 0.5 and A = 0.25 are applied to (21). In this case, ω′max(δ) curves are governed 

by (23.1)/(20.1), and (25.1)/(20.1) criteria. The (23.1)/(20.1) criterion predicts interleaving at δ < δ1  Ri*−1/2
1 provided 

that χδ1  1 and (20.1) is satisfied at Ri = Ri*1, while (25.1)/(20.1) does the same at δ > δ2 provided that χδ2  1 and 

(20.1) is satisfied at Ri = Ri*2. Therefore, if δ1  δ2 one may expect that there is no interleaving in a range of δ1 < δ < δ2. 

For a bold solid curve in Fig. 3 , δ1 = 6.7 × 10−4, χδ1 = 6.7 × 10−2, δ2 = 0.15, χδ2 = 15, and (20.1) is satisfied at Ri = 

Ri*1 and Ri = Ri*2; the numerical calculations show that there is no positive ω′max at 7.0 × 10−4 < δ < 0.12, which is in 

good correspondence with the theoretically predicted range of no interleaving. For the bold dashed curve in Fig. 3  δ1 = 



7.4 × 10−3, χδ1 = 0.22, δ2 = 0.15, χδ2 = 4.5, and (20.1) is satisfied at Ri = Ri*1 and Ri = Ri*2; the numerically calculated 

range of no interleaving (0.016 < δ < 0.065) becomes narrower than the theoretically predicted one (7.4 × 10−3 < δ < 0.15). 

For the rest of curves in Fig. 3  (solid, dashed and dotted), δ1/χδ1 are 1.67 × 10−2/0.33, 6.7 × 10−2/0.67, 0.74/2.2, 

respectively. Therefore, δ1 is no longer much less than δ2 = 0.15 (for the dotted curve, δ1 is even greater than δ2), and ω′

max becomes positive for the whole range of δ. 

Figure 4  shows the effect of turbulence on double-diffusive interleaving for a stronger Ri dependence of turbulent 

diffusivity than in Fig. 3 , namely for σ = 1. In this case, ω′max(δ) curves are governed by the (23.1)/(20.1) criterion and 

the sufficient condition (25.2). For a bold curve, δ1 = 0.041, χδ1 = 0.41, A2 = 0.167, and (20.1) is satisfied at Ri = Ri*1. 

That is, the interleaving controlled by thermohaline factors is possible approximately at δ < δ1 = 0.041 (actually the bold 

curve vanishes at δ = 0.067), while baroclinicity controlled interleaving disappears because A = 1 is much greater than A2 = 

0.167. There is no interleaving when δ is approaching unity from below and (20.1) is satisfied at Ri = 1, that is, this is just 
the case discussed in section 3e when the criterion for classical instability Ri < 1 (Q2 < 0, Q1 > 0, Q0 > 0) does work. 

The thin solid curve in Fig. 4  is ω′max(δ) for the same input parameters as those of the bold line but A is a factor 10 

smaller. In this case, δ1 = 0.13, χδ1 = 1.3 (i.e., the (23.1)/(20.1) criterion does not work), A = 0.1 < A2 = 0.167 [the 

sufficient condition (25.2) is satisfied], and, therefore, ω′max(δ) is positive in the whole range of δ. 

The dashed line in Fig. 4  is ω′max(δ) for the same input parameters as those of the bold curve but Pr is twice greater. 

In this case, δ1 = 0.058, χδ1 = 0.58, and (20.1) is satisfied at Ri = Ri*1. Therefore, in accordance with (23.1)/(20.1), δ < 

δ1, or Ri > Ri*1 is the criterion for instability (actually, ω′max vanishes at δ =0.137). Then, A = 1 > A2 = 0.33, that is, 

baroclinicity controlled interleaving does not exist. However, ω′max regains the positive value at δ  0.79. Since Q0 > 0 and 

Q2 > 0 at 0.79  δ < 1 (or 1 < Ri  1.60), in order to explain the existence of instability in this range we have to suggest 

that Q1 < 0. Indeed, in accordance with (20.1) Q1 < 0 at δ > 0.91 or Ri < 1.21. Some discrepancy between the numerically 

computed and predicted by (20.1) ranges of instability is due to asymptotic nature of (20.1): it implies that   1 while A = 
1 in the case under consideration [see (21)]. 

Figure 5  shows the effect of turbulence on double-diffusive interleaving for a strong Ri dependence of turbulent 

diffusivity, namely for σ = 2. In this case, ω′max(δ) curves are governed by (23.1)/(20.1), and (25.3)/(20.1) criteria. For 

bold solid, bold dashed, solid, and dashed curves in Fig. 5 , χδ1 is 6.4, 2.0, 1.1, and 0.64, respectively, that is, the 

condition χδ1  1 is not satisfied, and (23.1)/(20.1) criterion does not work. The only criterion which can explain the ω′max
(δ) curves in Fig. 5  is the (25.3)/(20.1) criterion. In accordance with (25.3), interleaving is possible at δ < δ3  

Ri*−1/2
3 provided that χδ3  1. In the case of Fig. 5 , δ3 = 0.41, and χδ3 = 41, 4.1, 1.2, 0.41 for the bold solid, bold 

dashed, solid, and dashed curves, respectively. That is, for the bold solid and bold dashed curves, (25.3)/(20.1) predicts ω′

max to be positive at δ < δ3 while vanishing with δ  δ3. Actually ω′max vanishes at δ = 0.44 and δ = 0.53 for the bold solid 

and bold dashed curves, respectively, which is in a good agreement with the above asymptotic theory. Note that in these 
two cases (20.1) is satisfied at any δ  1, so that Ri < 1 (Q2 < 0) is one more criterion for instability. 

5. Comparison with ocean data  

Using closely spaced CTD data taken from ocean fronts, one can introduce a measure of intrusion intensity, σT, and 

calculate an empirical dependence of this σT upon δ at constant values of the input parameters z and χ. Assuming that 

larger growth rates yield larger steady state amplitudes of intrusions we may expect a correspondence between empirical 

dependencies σT(δ) and respective theoretical dependencies ω′max(δ). Therefore, it would be reasonable to compare 

empirical dependencies of σT(δ) and theoretical dependencies of ω′max(δ) provided that they have the same values of z and 

χ. Despite of our inability to estimate the rest of the input parameters (Pr, A, σ) directly from CTD data, such a comparison 
seems useful. This approach has been applied by Kuzmina (1998), and here we consider an example of the kind. 

In this example, we use the data of closely spaced CTD survey of a fragment of the Azores Front (Zhurbas et al. 1993; 
Kuzmina 1997). To extract the mean and finestructure fluctuations from vertical profiles of temperature and salinity, a 
running cosine filter with a 20-m half-window was used. The intrusion intensity was estimated as the root mean square 
amplitude of temperature fluctuations, σT, for 100-m layers. Subsequent layers had a depth overlap of 80 m. Values N and 

R
ρ
 were estimated as the mean values over a layer under consideration. To estimate locally averaged slopes γ

ρ
 and γS (or 



horizontal gradients ρx and Sx), the central differences of respective mean values on the base of two stations closest to the 

present one were computed for each layer of every station. We only left for consideration empirical points with nearly 

constant values of N = (4 ± 0.5) × 10−3. 

Since the empirical estimates of z are in a narrow range from 0.4 to 0.5 (provided that n = 0.56; Turner 1973) while χ 

and δ do vary in a much wider range, at least from 1 to 300 and from 0.003 to 1, respectively, we will consider a 
dependence of σT on χ and δ, suggesting that all the data may be characterized by some constant values of z and Pr. It is 

worth noting that in our case all variations of δ  |γ
ρ
|N/f  and χ  f/N z|γS| are controlled by slopes γ

ρ
 and γS only. 

In Fig. 6 , the empirical dependencies σT versus δ are shown for some four χ intervals: (a) 1  χ < 2, (b) 5  χ < 

10, (c) 15  χ < 20, and (d) 25  χ < 30, provided that χδ < 2 (the last inequality is to select the thermoclinicity controlled 
part of the dependencies only). One can see some resemblance between empirical dependencies σT(δ) in Fig. 6  and the 

sharply descending branches of theoretical curves ω′max(δ) (e.g., the bold curves in Figs. 3  and 4 ). Moreover, a 

remarkable feature of these empirical σT(δ) is that a value of δ at which σT vanishes, decreases with the increase of χ. Note 

that such a behavior of empirical σT(δ) is in accordance with (23.1)/(20.1) criterion. 

Figure 7  is a map of lgσT versus lgχ and lgδ drawn using our data. In this map, the lowest values of σT appear to be 

aligned to some line close to χδ = 1, while at χδ  1 and χδ  1 the intrusion intensity is higher. We believe that such a 
behavior of σT(χ, δ) is in accordance with the above theory of thermoclinicity and baroclinicity controlled interleaving at χδ 

 1 and χδ  1, respectively, implying that relatively low values of σT at χδ  1 are due to the suppression of interleaving 

by turbulence. In principle, similar behavior of σT(χ, δ) (i.e., minimum of σT at χδ = 1) may be expected in the haline front 

of no turbulence (see section 3d and Fig. 1 ). However, this is not the case because the Azores Front is a typical 
temperature front in which sign(γ

ρ
γS) = 1. 

A trough of low σT at χδ  1 in Fig. 7  resembles qualitatively theoretical curves ω′max(δ) in Fig. 3 . However, in 

contrast to theoretical curves, the observations do not display clearly an area of no interleaving because (a) there is a noise in 
σT estimates, and (b) the real value of Prandtl number is not expected to be constant so that no threshold is evident (cf. Fig. 

4 ). 

To estimate quantitatively the slope  of a region of low σT, we pick up pairs (χ, δ) for which lgσT < −1.8, and calculate 

a slope of the major principal axis of respective cluster of points (lgχ, lgδ). In Fig. 8 , these points are surrounded by 
circles. We get  = −1.05, and the difference of this value from −1 is not statistically significant. 

It may be seen from Figs. 7  and 8  that the region of low σT displays a tendency to widen with χ so that the bottom 

boundary of this region, adjacent to χδ  1, has a slope 1 <  (i.e., | 1| > | |). To estimate 1, we pick up pairs (χ, δ) 

for which lgσT < −1.8 and χδ < 2, and apply an approach we used to estimate . We got 1 = −1.10, but the difference of 

this value from −1 was not statistically significant either.

It seems promising to identify the bottom boundary of the trough of low σT with a line where interleaving vanishes in 

accordance with (23.1),

 

and estimate σ, the power of Ri dependence of the turbulent mixing coefficient (21), at σ = −1/ 1  0.90. Recall that, 

strictly speaking, (23.1) is valid when χ Ri−1/2  1 and   1, while the bottom boundary of low σT trough lies at χ Ri−1/2 

< 1 (see Fig. 7 ), and we may expect that  < 1 because the Azores front is characterized by a rather low mean value of 
density ratio R

ρ
 = 1.9–2.0, implying relatively high level of salt finger activity. Nevertheless, we use (23.1) since a simple 

analytical criterion suitable to explain the observations cannot be derived on the basis of assumptions χ Ri−1/2 = O(1) and  = 
O(1). We do not use (25.1)–(25.3) conditions to compare with Fig. 7  because in contrast to (23.1) they do not yield an 
explicit relationship between measurable parameters χ and δ. 

Unfortunately, estimates of the slopes, 1 and , and, therefore, σ may be biased, as it was pointed out by anonymous 

reviewer. Let us consider this issue in more detail.

In general, it is possible that estimates of the slopes 1 and  are biased due to inhomogeneity of statistical distribution of 

empirical pairs (χ, δ) on χ–δ plane. Figure 8  shows clearly that the cluster of empirical (χ, δ) is stretched along a line χ 
 1/δ so that estimates of the slopes 1 and  should be biased toward a value of −1. 



In accordance with the definition of parameters χ and δ, one may suggest several reasons for the cluster of empirical (χ,
δ) to be stretched along the slope −1. 

First, because χ  f/N and δ  N/f, parameters χ and δ are not independent, and any variation in N whether it is caused 
by “instrumental”  noise (i.e., measurement errors), or “physical”  noise (e.g., changes of N due to internal waves), or truly 
related to intrusion dynamics, will stretch the cluster of empirical (χ, δ) toward the slope −1. However, we exclude this 
possibility because only the pairs with nearly constant value of N have been chosen for the analysis. 

Second, since δ  γ
ρ
 and χ  1/γS, internal waves would simultaneously add the same value of a random “physical”  

noise to both γ
ρ
 and γS, stretching the cluster of empirical (χ, δ) toward the slope −1. Moreover, the same effect could be 

produced by coherent variations of γ
ρ
 and γS in frontal meanders and mesoscale eddies. The last variations have a timescale 

larger than that of intrusion growth and may not be considered as a noise.

Unfortunately, we have no idea whether one can separate stretching of empirical (χ, δ) toward the slope −1 due to the 
noise from the “true”  stretching related to intrusion dynamics, and we cannot estimate the value of bias in 1 and σ. 

However, in Figs. 7  and 8 , we can see a tendency that at lgχ > 1 the slope of bottom boundary of low σT region, 1, 

becomes considerably less than −1 despite the possibility of bias toward a value of −1. Moreover, Figs. 7  and 8  do 
display clearly the minimum of σT at χδ  1 and larger values of σT both at χδ  1, δ  1 and χδ  1, δ  1 which is 

qualitatively in accordance with numerical calculations shown in Fig. 3 , and does not fit those of Fig. 5 . Therefore, 
we may suggest that in the case of data from the Azores Front the power of Ri dependence of turbulent mixing coefficient 
(21), σ, is less than 1. 

6. Conclusions  

In this paper, we have examined the effects of double diffusion and turbulent mixing on interleaving in baroclinic ocean 
fronts in the framework of linear stability approach. We focused on receiving the proper criteria for instability and the 
dependencies of maximum growth rate of growing intrusions upon the geostrophic Richardson number. An important result 
of this study is the conclusion that the viscous/diffusive destabilization of geostrophic flow is possible at any (large) value of 
Ri provided that the momentum/mass transfer is governed by double diffusion. This differs essentially from the case of 

nondouble-diffusive interleaving in the baroclinic front which cannot occur unless Ri < (Pr + 1)2/4 Pr (McIntyre 1970). 

In the thermohaline, baroclinic front, double-diffusive interleaving can be controlled by the thermohaline factors (i.e., the 
horizontal gradient of salinity), baroclinic factors (i.e., the horizontal gradient of density), and both, depending on the value 

of χ Ri−1/2 (Kuzmina and Rodionov 1992). At χ Ri−1/2  1, interleaving is controlled by the thermohaline factors, and the 

baroclinicity does not affect interleaving. At χ Ri−1/2  1, interleaving is controlled by the baroclinic factors, and the 

maximum growth rate of intrusions ω′max can be much greater than that of the case χ Ri−1/2  1. If isohaline and isopycnal 

slopes have the same sign (provided that the stratification is favorable for salt fingering), ω′max will increase monotonically 

with the geostrophic Froude number δ  Ri−1/2. In the case of opposing isohaline and isopycnal slopes, the terms 
describing effects of thermohaline and baroclinic factors on instability have opposite signs, that is, work against each other, 

and ω′max vanishes at χδ = 1; this case was considered in detail by May and Kelley (1997). 

The situation is complicated largely if one takes into account turbulent mixing. In general, turbulent mixing works to 
suppress the double-diffusive interleaving, whether it be controlled by the thermohaline or baroclinic factors. Namely, if we 

“switch on”  turbulent mixing, ω′max will decrease no matter what magnitudes of the input parameters were chosen. 

If the coefficient of turbulent mixing, k*, is independent of Ri, we will get to two types of the δ dependence of ω′max. At 

small k*, ω′max is positive in the whole range of δ. When k* is large enough, there are no positive values of ω′max at small δ 

 1. 

In the case of Ri-dependent coefficient of turbulent mixing, it is possible that positive values of ω′max do not occur in 

some intermediate range of δ  [a, b], a < b < 1, where a and b are some functions of the input parameters. 

We have formulated several asymptotic criteria that govern the behavior of ω′max(δ) under the effect of turbulent mixing. 

These criteria were successfully applied to explain the results of numerical calculations of ω′max(δ). 

Finally, we have applied the above theory to the ocean intrusions, namely the finestructure intrusions in the Azores 
front/current. Analyzing empirical estimates of intensity of the intrusions, σT, we found a promising resemblance in the 

behavior of empirical σT(χ, δ) and theoretical ω′max(χ, δ). This convinced us that the above theory can be used to describe 

features of interleaving in the ocean.
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APPENDIX  

7. List of Notations  
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Figures  

 
Click on thumbnail for full-sized image. 

Fig. 1. The maximum growth rate, ω′max, vs δ  Ri−1/2 at Pr = 1, χ = 10, A = 0, z = 0.5; sgn(γ
ρ
γS) = 1 (top curve) and sgn(γ

ρ
γS) = 

−1 (bottom curve)

 
Click on thumbnail for full-sized image. 

Fig. 2. The same as in Fig. 1  but for the following input parameters:Pr = 1, z = 0.5, σ = 0, sgn(γ
ρ
γS) = 1 (all the curves); χ = 

10, A = 0.1 (bold solid); χ = 10, A = 0 (bold dashed); χ = 1, A = 0.1 (solid); χ = 1, A = 0 (dashed) 

 
Click on thumbnail for full-sized image. 



Fig. 3. The same as in Fig. 1  but for the following input parameters:Pr = 10, z = 0.5, A = 0.25, σ = 0.5, sgn(γ
ρ
γS) = 1 (all the 

curves);χ = 100 (bold solid), 30 (bold dashed), 20 (solid), 10 (dashed), 3 (dotted) 

 
Click on thumbnail for full-sized image. 

Fig. 4. The same as in Fig. 1  but for the following input parameters:σ = 1, χ = 10, z = 0.5, sgn(γ
ρ
γS) = 1 (all the curves); Pr = 

1, A = 1 (bold solid); Pr = 1, A = 0.1 (solid); Pr = 2, A = 1 (dashed) 

 
Click on thumbnail for full-sized image. 

Fig. 5. The same as in Fig. 1  but for the following input parameters:A = 1, σ = 2, Pr = 1, z = 0.5, sgn(γ
ρ
γS) = 1 (all the curves), 

and χ = 100 (bold solid), 10 (bold dashed), 3 (solid), 1 (dashed) 

 
Click on thumbnail for full-sized image. 

Fig. 6. Empirical dependencies of the intensity of intrusions σT upon the baroclinicity parameter δ  Ri−1/2 in the Azores 

Front. The dependencies are drawn up only for a branch controlled by thermohaline factors (χδ < 2), and for the following ranges 
of χ: (a) 1  χ < 2, (b) 5  χ < 10, (c) 15  χ < 20, and (d) 25  χ < 30 

 
Click on thumbnail for full-sized image. 

Fig. 7. A map of intensity of intrusions lgσT vs lgχ and lgδ in the Azores Front. Gaps in the map show that the respective 

values of (χ, δ) are not observed in this particular front 

 
Click on thumbnail for full-sized image. 

Fig. 8. A cluster of empirical pairs (χ, δ) used in the analysis (dots). Dots placed inside circles are pairs (χ, δ) with low values 
of the intrusion intensity lgσT < −1.8 
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