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ABSTRACT

The upper ocean response to idealized surface wind forcing that is 
representative of conditions observed during the TOGA-COARE Intensive 
Observation Period is studied by numerical simulations using a second-moment 
closure model. A set of experiments is described with a variety of squall-like 
wind stress distributions and linear initial stratification in the ocean. Several 
physical regimes of turbulent mixing and decay during and after wind forcing 
are described. Differences in the structure of the upper and lower parts of the 
mixing layer are analyzed. The results indicate an exponential decay of turbulent 
kinetic energy (TKE) with time after surface forcing is removed, and TKE 
source terms continue to play an important role.

The velocity and density structure after the squall are found to be universal, 
with a nearly constant Richardson number throughout the mixing layer. It is 
demonstrated that this implies that the mixed layer depth is determined by the 
initial buoyancy frequency and total momentum input from the wind stress in 
the same manner as in the bulk mixed layer models. It does not depend 
essentially on the squall duration or the time evolution of the wind stress during 
the squall.

1. Introduction  

Squalls are a ubiquitous source of very strong winds in the COARE domain 
(Webster and Lukas 1992) and mechanically drive strong mixing in the upper ocean. However, the large rainfall associated 
with these squalls tends to suppress the wind-induced mixing. Although these squalls are intense meteorological features, 
they are small (horizontal scales of several kilometers) and short-lived (lifetimes of several hours). Thus, it is not known 
whether they have a profound net effect on the mixed layer dynamics. Since mixing is an irreversible process, it is important 
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to understand the influence of squalls on the mixed layer dynamics of the warm pool.

There have been numerous studies that have attempted to simulate the oceanic mixed layer response to atmospheric 
forcing. In general, three different modeling approaches have been employed: 1) bulk models, in which the integrated 
properties over the entire mixed layer are considered, assuming temperature and velocity profiles a priori (e.g., Kraus and 
Turner 1967; Pollard et al. 1973; Niiler and Kraus 1977; Kraus 1988); 2) eddy coefficient models, in which turbulence terms 
such as Reynolds stresses are parameterized via eddy diffusivity coefficients that are generally variable in space and time and 
are calculated using some sort of turbulence closure scheme (e.g., Munk and Anderson 1948;Mellor and Durbin 1975; 
Kundu 1980; Klein and Coantic 1981; Andre and Lacarrere 1985; Martin 1985); and 3) combinations of the previous two 
(e.g., Price et al. 1986; Chen et al. 1994). However, the main purpose of these studies has been to examine the deepening of 
the mixed layer resulting from increases in wind stress or surface cooling without consideration of the decay of turbulence 
after the surface forcing is shut off.

The decay of turbulence in the absence of sources has been a central topic in turbulence research for many decades. For 
isotropic turbulence in homogeneous fluids, the classical result from laboratory tests is that the turbulence kinetic energy 

decays as t−1 and the turbulence energy dissipation rate decays as t−2 (Batchelor and Townsend 1948). Much less is known 

about decaying turbulence in a stably stratified ocean, where the stratification (N−1, where N is the buoyancy frequency) 
provides a natural timescale. While Caldwell (1983) and Gregg (1987) have argued that, in the absence of an energy source, 

decay times are comparable to N−1, others (e.g. Gibson 1982) have presented the case for long-lived source-free turbulence. 
Dillon (1982), Crawford (1986), and Moum (1996) have employed different approaches to arrive at a common conclusion: 

the timescale for viscous dissipation of stratified turbulence is significantly less than N−1. 

The decay of oceanic turbulence after a wind forcing event has been the subject of recent observational work (Smyth et 
al. 1996). In particular, the authors note that their microstructure observations of the decay of turbulence after a squall 
reveal an exponential decay of TKE with time. Furthermore, they argue that this decay is slower than would be expected if 
the TKE dissipation term were the only important contributor in the total evolution of the TKE. This leads them to conclude 
that TKE source terms remain important, even after the effects of surface wind forcing have been dramatically reduced by 
the presence of a stable freshwater cap at the ocean surface.

In the present work we want to identify the main regimes of wind induced mixing and subsequent turbulence decay in a 
simple scenario without surface heating/cooling or rainfall. Here the removal of the effects of wind forcing is simply 
accomplished by turning off the wind.

We use a one-dimensional second-moment closure model to study the upper-ocean response to idealized surface forcing 
representative of conditions observed during the TOGA COARE Intensive Observation Period. We focus on one-dimensional 
processes because the short timescale of the forcing and the near-equatorial regime make a number of three-dimensional 
processes, such as inertial oscillations, less relevant here than they would be in a midlatitude context [e.g., the Ocean Storms 
experiment (D’Asaro 1985)]. Second-moment closure models remain among the most computationally efficient and accurate 
tools for practical applications. The Mellor–Yamada level 2.5 turbulence closure model (MY2.5) that we employ is based on 
prognostic equations for turbulence energy and macroscale and has been widely used for a range geophysical studies.

2. Mathematical formulation  

a. Basic equations  

We use a one-dimensional version of the MY2.5 model, that is, horizontal variations are neglected and therefore the mean 
vertical velocity is zero. The equations for the ensemble-mean horizontal velocity V = (Vx, Vy), potential temperature Θ, 

salinity S, and turbulent kinetic energy E = ‹u2 + 2 + w2›/2 can be written as



 

Here we use the Cartesian coordinate system with the z axis directed downward from the sea surface and f  is the Coriolis 
frequency. Uppercase letters represent ensemble mean variables, while lowercase letters are the fluctuating, turbulent 
variables. Angle brackets represent ensemble means of turbulent variables. It should perhaps be noted that the model does 
not solve for w explicitly, but rather solves for the angle-bracketed turbulent flux terms, in which w is implicit. Besides the 
turbulence kinetic energy dissipation rate , the terms on the rhs of (4) are:the vertical flux of turbulent energy

 

the production by mean velocity shear

 

and the decay or production by buoyancy flux

 

which is computed according to a linearized equation of state. The coefficients α
θ
 and β are assumed to be constants 

typical of the upper tropical ocean, g is the gravitational acceleration, and ρ0 is the reference density. 

In the Mellor–Yamada level 2.5 turbulence closure model, the vertical fluxes are given by

 

where q = (2E )½ is the rms velocity of turbulence and N is the buoyancy frequency,

 

The turbulence macroscale l is introduced according to the Kolmogorov hypothesis of local, small-scale isotropy

 

while the stability function SH and the turbulent Prandtl number σ are related to the parameters

 

by the following algebra:



 

with the empirical constants (A1, A2, B1, B2, C1) = (0.92, 0.74, 16.6, 10.1, 0.08) (Mellor and Yamada 1982) determined 

from laboratory data.

It is useful to express SH and σ in terms of the ratio of production to dissipation rates (Ps + Pb)/  and the flux Richardson 

number Rf;

 

so that, from Eqs. (12)–(13)

 

where the coefficients αi linearly depend on (Ps + Pb)/  as

 

It can be seen from Eq. (8) that the momentum and buoyancy fluxes go to zero if SH  0. It follows from Eq. (15) that 

this occurs when Rf  α1/α2. This “critical”  Richardson number decreases when (Ps + Pb)/  grows, and it goes to zero 

when (Ps + Pb)/   3 as seen from (16)–(17). 

In the so-called “boundary layer approximation,”  where the time derivative and turbulence transport terms in (4) are 
neglected, (Ps + Pb)/  = 1. The coefficients that then result from Eqs. (16)–(19) will give a value of the critical flux 



Richardson number Rf = α1/α2 = 0.19. The critical gradient Richardson number is quite close to the critical Rf and is given 

by Ric = σ(Rf )Rf = 0.17. Note that the value of the critical gradient Richardson number at a given time will depend 

sensitively on the nature of the turbulent mixing at that time—in particular, on the relative values of Ps + Pb and . We will 

see in the coming discussion that the ratio (Ps + Pb)/  in our simulations varies from being quite close to 1 to as low as 0.6, 

with a corresponding impact on the flux Richardson number implied by Eqs. (16)–(17). 

Finally, in order to determine the macroscale l, Mellor and Yamada (1982) used an empirical equation that is related to the 
integral of the two-point correlation functions

 

where (Sq, E1, E2) = (0.2, 1.8, 1.33) and κ = 0.4 is the von Kármán constant. Equation (20) behaves correctly in the case 

of grid-generated, decaying turbulence and seems to provide a reasonable length scale in the case of neutral or stratified 
boundary layers, the latter of which is the subject of this study.

As one proceeds downward from the shear-driven, active turbulence region to the stratification-dominated region below, 
the present model invariably yields q  0 while l  constant, and therefore GH  ∞ at the lower edge of the turbulent 

boundary layer. However, experimental and observational studies of shear-free and grid-generated turbulent flows developing 
in a stably stratified environment generally indicate that GH is limited by a value smaller than unity (for a review, see 

Hopfinger 1987). Dickey and Mellor (1980) in their experiments on decaying turbulence in stably stratified fluids found GH 

 0.36 at the late stages of the decay. Andre et al. (1978), Hassid and Galperin (1983), and Galperin et al. (1988) used the 
constraint

GH  0.28(21)
 

in their simulations of turbulent entrainment into a stably stratified environment. Note that this constraint also implies   
N in stably stratified flows in agreement with recent estimations of  from direct measurements of small-scale shear in the 
upper ocean (Gargett and Osborn 1981; Leuck et al. 1983). In practice, the limitation is imposed as a restriction on l, where 
q and N are determined prognostically and l is then determined according to Eq. (21) (Galperin et al. 1989). We shall see 
below that the limitation (21) results in exponential decay of turbulence energy, as observed by Smyth et al. (1996). 

b. Initial and boundary conditions  

The initial velocity V and turbulent energy E are zero, and vertical profiles of temperature and salinity are chosen to 
provide a constant buoyancy frequency N0. The boundary conditions for (1)–(4), (20) at the sea surface, z = 0, are

 

where (τx, τy) is the surface wind stress vector, and τ is the magnitude of that vector. In this study, the heat flux and 

surface freshwater mass flux are taken to be zero.

At the lower boundary, the momentum and buoyancy fluxes, turbulence energy, and macroscale tend to zero;



 

The lower boundary conditions could be applied at any depth below the maximum depth of penetration of turbulence; we 
choose to apply them at z = 200 m. Two types of wind stress evolution were explored: a steplike, impulsively applied 
constant wind stress acting with a squall duration time ts:

τx = ρ0u2 , 0 < t < ts,(24)

 

where u  is the frictional velocity; and a ramplike wind stress that increases linearly with time up to a peak value 2ρ0u2  

and then decreases down to zero,

 

The set of equations (1)–(4) and (20) were integrated forward in time, utilizing various values for u , N0, and ts and the 

two types of wind stress profiles, (24) and (25). 

c. Integral budgets and bulk models  

The vertically integrated momentum is defined by the surface wind stress from Eq. (1),

 

where h is the depth of penetration of the mixing. Equation (26) assumes that the Coriolis force can be neglected for 
typical squall durations on the order of one hour, when fts  1. Thus, the total momentum input by the wind,

s  (ts) = u2 ts,(27)

 

will be the same for both steplike (24) and ramplike (25) cases. 

The vertically integrated turbulence energy budget from Eq. (4) can be written in the form

 

where the 0 subscript denotes values at the sea surface;

 

while total shear production

 

and buoyancy flux



 

are expressed through the time evolution of mean kinetic energy, KE, and potential energy, PE, defined as

 

Thus, the rate of change of the total energy, KE + PE + TE, can be shown to be the sum of the surface wind stress work 
V0‹wv›0 and the surface turbulent flux F0, less the integrated dissipation rate, DIS. 

In the bulk model of Pollard et al. (1973), the eddy coefficients in the mixed layer are assumed so large that the velocity 

and density profiles are 1: Vx = /h and N = Δbδ(z − h), where Δb = 0.5N2
0h is the buoyancy jump at the base of mixed 

layer. In this case

 

and the shear production is expressed from Eq. (30), using the integrated momentum balance (26), in the form

 

Thus, the turbulence energy budget (28) becomes

 

Assuming that the rhs of (35) is equal to CDSP, where CD is a proportionality constant, Pollard et al. (1973) transformed 

(35) into

 

Thus, in their model, the mixed layer depth is determined by the initial buoyancy frequency and the total momentum input 
by the wind

 

where the coefficient CB = [2(1 − CD)]1/4  1. This bulk mixing depth hB(t) will be compared with the depth of 

penetration of turbulence calculated from the MY2.5 model.

3. Results and discussion  

a. Dimensionless formulation  

When the initial turbulent energy is zero, the depth of penetration of turbulence, h(t), remains finite in the MY2.5 model: E 
= 0 for z > h (the turbulent layer z < h will be referred to as the “mixing”  layer in all subsequent discussion). Thus, for 
constant initial buoyancy frequency, all dynamical quantities can be represented by dimensionless functions of N0t and z/h 

after normalizing by specially chosen scales,



 

Here, the mean velocity scale is defined by the vertically integrated momentum

 

the turbulence energy scale is related to the bulk dissipation rate in Eq. (29)

E  = (DIS)2/3,(40)

 

and it is assumed that the macroscale can be normalized by the mixing depth h. The scales, which may depend on time, 
are chosen in such a way that the dimensionless functions U, Q, L, G are all of order one. 

Figure 1  shows the results of four experiments in which the wind stress was held constant for a dimensionless time of 
N0t = 288 and then removed. For the remainder of this paper, the period during the wind forcing will be referred to as the 

“squall”  regime and the subsequent period with no wind will be referred to as the “decay”  regime. The four experiments 
consist of the possible combinations of two different values of both N0 and u . The vertical resolution Δz was 12.5 cm for 

all experiments. The excellent agreement in the dimensionless velocity and buoyancy profiles among the various experiments 
demonstrates that the model is robust and that the solution responds to variations in the external parameters according to 
(38)–(40). 

For any combination of u  and N0, given the same dimensionless squall duration N0ts, and squall type, the results in 

dimensionless representation (38) should be identical, as was the case for the first suite of experiments. From here on, our 
experiments will consist of variations of only the squall duration and type.

b. Squall stage  

Turning our attention to the details of the model evolution, two different physical regimes can be detected during the 
squall period. We will refer to these regimes as the transition stage and the asymptotic stage, respectively. At the very initial 
stage of squall forcing (when N0t  1), the effect of stratification is negligible and h grows linearly with time, the velocity 

scale stays proportional to u , and the turbulent energy scale is proportional to u2 , as shown by Mellor and Strub (1980). 

As N0t grows, we see a transition period toward an asymptotic stage characterized by self-similar vertical profiles for N0t 

 ∞

 

As shown by Kundu (1981) and Sutyrin (1984), the assumption of self-similarity implies that the turbulence penetration 
depth is proportional to the bulk mixing depth:



 

where Ca is a constant. The mean velocity scale grows as

 

because the integrated momentum  = u2 t, and the turbulence energy scale grows as

E  = CEu2 (tN0)1/3,(44)

 

as follows from Eq. (28), where the bulk dissipation is expected to be proportional to the surface wind work. 

The transition of the model solution from initial linear growth with time to the asymptotic power law (42) is demonstrated 

in Fig. 2a  where the ratio h/hB indicates that Ca  1. The ratio E /u2 (tN0)1/3 decreases during the transition period 

and CE approaches 1 (Fig. 2b ). An approach to the self-similar asymptotic state is also seen in the dimensionless profiles 

of velocity V/V  and buoyancy frequency N/N0, which are nearly the same for N0t = 144 and N0t = 288 (Fig. 3 ). 

From these simulations we see that the mixed layer can be divided into two sublayers where different physical processes 
dominate. This two-layer structure is typical of a wind-deepening mixed layer. In the upper sublayer, the macroscale grows 
almost linearly with depth and reaches a maximum at z = h1 (Fig. 4a ). During the squall h1  0.8 h. After the transtion 

stage, the turbulence energy also displays a maximum in its vertical profile, at nearly the same depth as that for l (Fig. 4b 
). In the lower sublayer, both the macroscale and turbulence energy rapidly decrease with depth, going to zero just below 

the mixing layer. In the upper sublayer, the Richardson number is well below the critical value, indicating strong mixing due 
to turbulent fluxes, and N becomes smaller than N0. In the smaller, lower sublayer, however, the buoyancy frequency is 

larger than N0 and the Richardson number approaches a value Ric = 0.17 (Fig. 5 ). This is close to the critical value 

mentioned in section 2 for nearly stationary mixing, that is, when Ps + Pb   and dE/dt  0. The simulated values of these 

parameters reveal us to be in just such a regime in the lower sublayer.

c. Decay stage  

During the decay phase, there is a transition period when the large vertical shear in the surface layer disappears (Fig. 1b 
), and subsequently, there is almost no change in either the velocity or buoyancy frequency profiles. After this transition 

period, the turbulence energy decays substantially while the Richardson number tends toward a constant in the mixing layer, 
which, it will be shown, has important implications for the rest of the analysis.

The present simulations provide a useful context to examine the conclusions in the observational work by Smyth et al. 
(1996). Figure 6  shows the model evolution of the various terms in the turbulence energy balance (4) at depths z = 0.2h 
and z = 0.8h during the decay phase, normalized by the TKE dissipation rate . Several features deserve emphasis. First one 
notes that, after the transition phase immediately following the removal of the wind, all terms, Ps/ , Pb/ , dF/dz and (dE/dt)/

, approach constant values. Moreover, the values of these terms are nearly the same in the upper and lower parts of mixing 
layer, so that (Ps + Pb)/   0.6 < 1 during the asymptotic decay stage. Thus, the Richardson number can reach a higher 

value of Ric  0.3, as follows from Eqs. (16)–(17). 

The other point to note about the decay is that the shear production and buoyancy production terms represent a significant 
fraction of the overall TKE balance (Fig. 6 ). Most notably, the magnitude of the shear production source term is nearly 
80% of the dissipation term even in the absence of wind forcing. This, too, supports the observational analysis of Smyth et 
al. (1996), who hypothesized that such a source term should be present to explain the observed rate of TKE decay. 

After the transition period, the decay rate, characterized by E−1dE/dt  0.04N0, does not vary essentially, indicating that 

the turbulence decay is nearly exponential, as found in the observations by Brainerd and Gregg (1993) and Smyth et al. 
(1996). This is, perhaps, no surprise given the nature of the model formulation, as will be described in what follows. With 

the dissipation term   q3/l, it can readily be shown that   q2 if the macroscale follows the Ozmidov scale LO:



 

where Cl is a proportionality constant. Let us assume for the moment that this is the case. Since, for all but the initial 

portion of the decay phase, all terms in Eq. (4) are proportional to , the decay of all terms will be exponential. This 
argument ignores the time evolution of N, but our results indicate the N profile is remarkably static during the decay phase. 

In our experiments, l was limited by the condition (21). When the equality in this expression holds, as was the case for 
most of the mixed layer during the asymptotic decay phase, it can easily be seen that l  4LO. The exponential decay we 

observe, then, is a logical consequence of the restriction (21), provided that l becomes large enough (or q/N becomes small 
enough) that the restriction comes into play. That this is in fact the case is demonstrated by Fig. 7 , which shows the 
vertical profile of GH for several different times. One sees GH is at its limiting value over an increasingly large fraction of the 

mixing layer as time progresses. It should perhaps be noted that this limitation does not significantly affect any of the other 
conclusions of this work. In particular, the universality during the decay stage discussed in the following section is observed 
regardless of whether or not a limitation on GH is imposed. 

d. Universality of the final stage  

In this section, we demonstrate that the model solutions for a variety of forcing scenarios can be characterized by a 
simple universal form. Assuming the gradient Richardson number is nearly constant in the asymptotic decay regime, one can 
rearrange the definition of this number and integrate vertically to find

 

where η  = z/h is normalized depth. Thus the mixed layer depth should be proportional to the bulk mixed layer depth (37)

 

The coefficient CR depends on the vertical profile of the buoyancy frequency and the value of Ri in the asymptotic decay 

regime.

Equation (47) provides a simple relationship between the final mixed layer depth and the total momentum input s, 

provided that the coefficient CR is not highly sensitive to the forcing history. To explore this question, we performed a series 

of experiments in which the wind profile and squall duration were varied. The first of these consisted of a comparison 
between cases in which the wind forcing was either ramplike or steplike, as described earlier. For a given squall duration, ts, 

the total momentum input was the same for the two cases. The results demonstrate that, though the evolution of the model 
state was indicative of the steplike or ramplike nature of the forcing during the squall period, the asymptotic decay state was 
nearly identical for the two different forcing histories. Figure 8  shows a comparison of h for the two cases when N0ts = 

72 (ts = 2 h for the N0 used here). One can see discrepencies reflective of the fact that the wind was ramped up and down 

in one case and held constant in the other for times prior to and immediately following N0ts. Of particular note is the 

transition regime that immediately follows the squall. Up to N0t = 100, shear at the base of the mixed layer is still producing 

significant additional deepening of h. Discrepancies between the two forcing profiles are still apparent in this period. After 
this point, when the terms in the TKE balance achieve their constant relative values and the deepening of h ceases, the two 
forcing cases are nearly indistinguishable.

The dependence of the final stage on squall duration was also explored for both squall types. Experiments were performed 
with squall durations of N0ts = 18, 36, 72, and 144. The value of CR, defined by Eq. (47), is plotted versus N0ts for both 



wind forcing cases in Fig. 9 . It can readily be seen that CR is essentially a constant 1.07, regardless of squall duration 

or forcing type. This apparent universality of CR, and hence the dependence h on only the initial stratification and total 

momentum input, can be shown to be a logical consequence of Eq. (46) provided that two things are true: the gradient 
Richardson number is a constant nearly independent of depth, forcing profile, or forcing duration and the final normalized N 
profile has a universal form. Figure 10  shows profiles of Richardson number and N/N0 at the final stage for two different 

squall durations and the two forcing profiles. It is apparent that the present model solution meets both of the conditions for 
universality of CR. As is evident from Eqs (16)–(17), the tendency toward a constant Richardson number is a consequence 

of the MY2.5 model formulation. However, the universality of the N profile is not obvious and remains a topic for further 
inquiry.

4. Summary  

A one-dimensional turbulence closure model was used to explore tropical ocean mixed layer turbulent response to squall-
like forcing and the subsequent decay of that turbulence. Experiments were performed in which an initially quiescent, 
uniformly stratified ocean was forced with squalls of various durations and wind evolution profiles. Several physical regimes 
of turbulent mixing and decay during and after wind forcing were described.

While the wind forcing was being applied, we observed a tendency toward a regime in which vertical profiles of various 
quantities were self-similar. The mixing depth h approached the bulk value hB and the turbulent energy scale E  approached 

u2 (tN0)1/3. Proceeding down the water column, the mixed layer tended to behave as two sublayers, separated by maxima 

in l and q2, where the stratification switches from being less than N0 to being greater than N0 and the Richardson number 

changes from being supercritical to near critical.

After the wind was shut off, the turbulent kinetic energy was shown to decay nearly exponentially with time and TKE 
source terms such as shear production were demonstrated to play an important role. The decay period was seen to be 
characterized by universal forms for the velocity and density profiles and the Richardson number was observed to be nearly 
independent of depth and forcing history. This enabled a description of the depth of maximum penetration of turbulence as a 
function of only the total time-integrated momentum input and the initial density profile in a manner analogous to bulk 
models.
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Fig. 1. Normalized velocity and buoyancy frequency profiles during and after the squall. The wind was removed at N0t = 288. 

Each plot shows the results of four experiments. The solid line is for N0 = 0.01 s−1 and u  = 0.01 m s−1, the dashed line is for N0 

= 0.01 s−1 and u  = 0.02 m s−1, the open circles are for N0 = 0.005 s−1 and u  = 0.01 m s−1, and the pluses are for N0 = 0.005 s−1 

and u  = 0.02 m s−1. 
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Fig. 2. Evolution of the scales for (a) mixing depth and (b) turbulent kinetic energy during the squall.
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Fig. 3. Evolution of (a) normalized velocity and (b) buoyancy frequency profiles. The solid line is for N0t = 72, the dashed line 

is for N0t = 144, and the dotted line is for N0t = 288. In this experiment, N0 = 0.01 s−1 and u  = 0.02 m s−1. 
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Fig. 4. (a) Turbulence macroscale and (b) turbulent energy profiles for times N0t = 72 (solid), N0t = 144 (dashed), and N0t = 288 

(dotted) during the squall.
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Fig. 5. Ri profiles for times N0t = 72 (solid), N0t = 144 (dashed), and N0t = 288 (dotted) during the squall.
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Fig. 6. Evolution of TKE terms at (a) 0.2h and (b) 0.8h. The plots show the shear production term (dashed), the buoyancy 
production/loss term (dotted), the vertical turbulent energy flux term (dot-dash), and dE/dt (solid), all normalized by the TKE 
dissipation rate . 
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Fig. 7. GH profiles for times N0t = 324 (solid), N0t = 360 (dashed), N0t = 396 (dotted), and N0t = 432 (dot–dash) after the squall. 

The wind forcing ended at N0t = 288. 
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Fig. 8. Turbulence penetration depth evolution for stepped (dashed) and ramped (solid) wind cases when N0ts = 72.
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Fig. 9. CR for four different squall shut-off times, ts. Ramped wind results are indicated with circles, stepped wind results with 

pluses.

 
Click on thumbnail for full-sized image. 

Fig. 10. Profiles of (a) Ri and (b) N/N0 at N0t = N0ts + 72. The results for four experiments are shown in each plot. N0ts = 36 for 

the ramped (solid) and stepped (circles) cases, and N0ts = 72 for the ramped (dashed) and stepped (pluses) cases. 
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