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ABSTRACT

A mechanism by which long planetary waves in the ocean may propagate 
significantly faster than the classical long baroclinic Rossby waves is 
investigated. The mechanism depends on the poleward thickening of 
intermediate density layers and the concomitant thinning of near-surface and 
deep layers. These features of the mass distribution are associated with the 
well-known homogenization of potential vorticity in intermediate density layers 
and with significantly elevated meridional potential vorticity gradients near the 
surface and somewhat at depth. The mechanism is explored in a simple three-
layer model, in which the middle layer has zero potential vorticity gradient and 
is sandwiched between a surface layer with large potential vorticity gradient 
and a bottom layer with modest potential vorticity gradient. The effective phase 
speed of the planetary waves is merely the sum of the phase speeds of virtual 
baroclinic Rossby waves propagating on the individual layer interfaces as 
though the other interface were not there and as though there were no mean 
vertical shear. The mechanism is also examined for a continuous model with 
zero potential vorticity gradient throughout the interior and large virtual 
potential vorticity gradients near the surface and bottom. Planetary waves in 
these models can propagate westward up to twice as fast as baroclinic Rossby 
waves would through an ocean with the same vertical stratification, but no 
mean vertical shear. This explanation of the Rossby wave speedup 
complements a recent detailed theoretical calculation of planetary-wave phase 
speeds based on geostrophic velocity profiles from archived hydrographic 
data.

1. Introduction  

Evidence is mounting for the ubiquitous occurrence of large-scale low-frequency westward-propagatingbaroclinic 
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planetary waves in low to mid latitudes (Freeland et al. 1975; White 1977, 1985 and references therein; Kessler 1990; 
Périgaud and Delecluse 1992; van Woert and Price 1993; LeTraon and Minster 1993; Aoki et al. 1995; Chelton and Schlax 
1996; Cippollini et al. 1997). Quantitative attempts to account for the propagation speed of these waves by simple baroclinic 
Rossby wave theory have had limited success. In the standard theory, which neglects the effects of a background mean 

velocity field, long first-mode baroclinic Rossby waves should propagate with speed −βλ21, that is, westward (β is the 

meridional gradient of the Coriolis parameter and λ1 is the first baroclinic Rossby radius of deformation). Emery et al. 

(1984), Houry et al. (1987), Picaut and Sombardier (1993), and Chelton et al. (1998) have published maps of the geographic 
distribution of λ1. At low latitudes (but beyond 5° of the equator, say) this simple expression for propagation speed does 

quite well [though Kessler (1990) remarks that tropical planetary waves appear to propagate more slowly than the classical 
long-wave formula predicts]. In middle latitudes, however, observed propagation speeds appear to be significantly larger in 
magnitude (White 1977; Kessler 1990; LeTraon and Minster 1993; Aoki et al. 1995; Chelton and Schlax 1996). Killworth et 
al. (1997) showed that this disparity is much reduced by taking into account the vertical shear associated with the mean 
circulation. Using historical hydrographic data to obtain the required climatological average buoyancy-frequency profiles and 
geostrophic velocity shear, they diagnostically calculated zonal phase speeds from the linearized quasigeostrophic potential 
vorticity equation. They carried out this calculation globally, for every 1° × 1° square. Dewar (1998) has computed phase 
speeds of planetary wave modes modified by mean circulation and demonstrated faster propagation than the standard theory. 
He finds that this speedup is due to the interaction of the waves with the background potential vorticity field, as modified by 
the mean circulation and the vertical shear.

Notwithstanding the success of the Killworth et al. (1997) calculations, it is difficult to sort out what features in the mean 
circulation and stratification fields are responsible for the increase of phase speed. For this purpose we consider in this paper 
simple models of planetary waves that we believe explain the speedup mechanism in the Killworth et al. model with minimal 
complexity. The first model consists of three layers, each of constant density, with differing mean zonal flows in each layer 
(section 2). The vertical shear gives different potential vorticity gradients in the three layers. A situation of particular interest 
occurs when the middle layer has zero potential vorticity gradient (section 3). Extensive geographical regions over which 
potential vorticity is remarkably uniform on a range of potential density surfaces have been identified by Keffer (1985) for 
the global ocean basins and Talley (1988) for the North Pacific. A theoretical mechanism for the homogenization of potential 
vorticity by the closed wind-driven circulation was proposed by Rhines and Young (1982). The role of such homogenized 
potential vorticity layers in determining the vertical distribution of the Sverdrup transport was discussed by Luyten et al. 
(1983) and de Szoeke (1987). Evidently, the thicknesses of such density layers increase poleward to offset the increase of 
the Coriolis parameter f  and keep the potential vorticity f ρ/ z constant in each layer (relative vorticity may be neglected), 
where ρ is density. This means that shallow density surfaces are squeezed toward the sea surface, creating near-surface 
layers in which the meridional potential vorticity gradient is very large. For the same reason, deeper layers are squeezed 
toward the bottom, though the proportionate effect is smaller, giving an elevated potential vorticity gradient near the bottom, 
as observed for instance by Talley (1988). 

In a three-layer model with zero potential vorticity gradient in the middle layer, designed to represent these features, we 
show that the effective planetary-wave phase speed, relative to the vertically averaged mean flow, is the sum of the phase 
speeds of virtual Rossby waves on the two individual layer interfaces, calculated as though the other interface were not there 
(section 3). Speedup ratios up to 2 (relative to the standard, unsheared case) can be achieved with layer-depth and density-
increment choices that are plausible representations of nature. This contrasts to the usual experience with two-layer 
reduced-gravity models of sheared mean flows that give large near-surface potential vorticity gradients. The net effect on 
the westward propagation of planetary waves is zero or slight since the vortex stretching contribution of a sloping layer 
interface to the potential vorticity is compensated by an opposing Doppler shift. This has been referred to as the “non-
Doppler effect”  (Held 1983; Chang and Philander 1989; Herrmann and Kraus 1989; Kessler 1990). The important point is 
that two-layer reduced-gravity models cannot reproduce the mechanism for Rossby wave speedup in the model considered 
here.

In section 4, we examine the three-layer results in terms of the diagnostic analysis used by Killworth et al. (1997) to 
calculate propagation speeds based on mean zonal velocity profiles derived from climatological-average hydrographic data. 
We show how their qualitative conclusion that speedups of first-mode planetary waves are due to the presence of second-
mode baroclinic structure in the mean velocity profile is related to the homogeneous potential vorticity structure of the 
interior, with enhanced effective β near the surface boundary especially. 

In section 5 we present a simple continuous model of planetary wave propagation in which the mean velocity profile is 
chosen so that there is no interior potential vorticity gradient. The wave propagation is determined by the boundary 
conditions, in particular by the slope of the mean isopycnals (proportional to vertical shear) as they intersect the surface and 
bottom boundaries. When these slopes are opposite and the isopycnal slope is larger in magnitude at the bottom than at the 
surface, considerable speedups are achieved, of the order of 2, compared to simple Rossby wave propagation through 
unsheared water.

2. The layered model  



A schematic diagram of the three-layer model is shown in Fig. 1 . The mean thicknesses of the layers are D1, D2, D3; 

the densities are ρ1, ρ2, ρ3; and the mean zonal velocities are u1, u2, u3; f  is Coriolis parameter at a central latitude, β is the 

meridional gradient of Coriolis parameter, g is acceleration due to gravity, and ρ0 is a representative water density. In the 

following, reduced-gravity parameters will appear, defined by gn = g(ρn+1 − ρn)/ρ0 for n = 1, 2. The slope of the shallow 

layer interface is

s1 = fg−1
1(u1 − u2),(2.1a)

 

shown as though positive on Fig. 1  (i.e., shoaling to the north); the slope of the deeper interface is

s2 = fg−1
2(u2 − u3),(2.1b)

 

shown as though negative on Fig. 1 . 

The linearized quasigeostrophic potential vorticity equations for the three layers are

 

(Pedlosky 1987); Pj (x − ct, y) is the long-wavelength (longer than the baroclinic Rossby radius), long-period pressure 

perturbation in layer j propagating at zonal phase speed c with space–time structure (x − ct, y). The coefficients of the 
second terms in Eqs. (2.2) are the meridional potential vorticity gradients in the respective layers, defined by

 

The schematic in Fig. 1  is motivated by meridional density sections like the one shown in Fig. 2  from the western 
Pacific. This figure shows near-surface isopycnals shoaling polewards at midlatitudes, overlying isopycnal layers thickening 
poleward in such a way that the product f ρ/ z remains constant. This is emphasized by the middepth cross-hatching in Fig. 
2 , which shows the latitudinal extent, at this longitude, of homogenized potential vorticity in density layers, as judged 
from Keffer’s (1985) maps of this quantity. This figure also shows (in the lower panel) that in the deep North Pacific, below 
3000 m and up to 45°N, isopycnals slope downward to the north.

Multiplying Eq. (2.2) by D1, D2, D3 and adding, one obtains

β(D1P1 + D2P2 + D3P3) = 0.(2.4)
 

This relation does not involve the zonal phase speed c. It means that the solutions of (2.2) have no barotropic component. 
(The barotropic mode, in the long-wave limit for a rigid lid as considered here, has infinite westward phase speed.) 

By making the substitutions



 

an analog is obtained of Killworth et al.’s (1997) equation for vertical velocity in the continuous case. Equation (2.4) is 
automatically satisfied and the number of independent variables is reduced to two. The dimensional vertical velocities at the 

interfaces between the layers are given by β(f2ρ0)−1Wj / x. Equations (2.2a) and (2.2c) become

 

Equation (2.2b) is the difference between these two equations. 

a. Standard theory  

Before examining the case of homogeneous potential vorticity in the middle layer, we shall consider the case of no 
background mean flow, u1 = u2 = u3 = 0. We call this the standard theory. In this case, Eqs. (2.6) may be written

 

where di = Di/H are the scaled mean layer thicknesses, H = D1 + D2 + D3 being the total water depth,

 

is the ratio of the density differences (or reduced gravities) at the two layer interfaces, and c0 = βg1H/f2 is a Rossby wave 

propagation speed scale. The second equality of (2.7) gives a quadratic equation for c, whose solutions are

 

Both solutions for c are negative (i.e., westward). The larger in magnitude, given by the plus sign in (2.9), represents the 
first baroclinic Rossby wave mode; the other represents the second baroclinic mode.



For later reference, we rewrite the results of (2.9) in altered forms designed to bring out their relation to various two-layer 
systems and to introduce parameters that embody their symmetries and will become useful in the following sections. The 
two values of c given by (2.9) may be written as

ci = −βλ2i, i = 1, 2,(2.10)

 

where the λi are the baroclinic Rossby radii of deformation for the three-layer system. They can be written in either of the 

forms

 

In this formula

 

are the Rossby radii in the two-layer systems consisting, respectively, of layers 1 and 2 only and layers 2 and 3 only. The 
parameter p is

 

that is, the ratio of the Rossby wave phase speeds−βλ21* and −βλ22* in the virtual two-layer systems just mentioned. It 

may also be written as

 

where 1 and 2 are the Rossby wave phase speeds in another pair of virtual two-layer systems obtained, respectively, by 

merging layers 2 and 3 (i.e., setting ρ2 = ρ3) and by merging layers 1 and 2 (ρ1 = ρ2):

 

The parameter δ is

 

This is the product of the ratio of the surface layer thickness to the rest of the water column and the ratio of the bottom 
layer thickness to the rest. Parameter δ is a coupling coefficient between the layer interfaces in the following sense. In the 
limit as the thickness of either the top layer or the bottom layer vanishes, δ  0, while g1d1 (or g3d3) remains finite (so that 

parameter p remains finite and nonzero), Eq. (2.11) gives λ21 = λ21* and λ22 = λ22* (assuming the former is larger). In this 

limit the phase speeds (2.10) of the two baroclinic modes are −βλ21* and −βλ22*, as though the upper and lower 

thermocline were decoupled.

The parameters p and δ are written as functions of d1, d3, r. They exhibit the following symmetries:



 

These symmetries show that the disturbances in an ocean with the order of density jumps and layer thicknesses reversed 
propagate with identical phase speed.

b. Examples: Standard case  

For three sets of choices of scaled depths d1, d2, d3 and reduced-gravity ratio r, we have calculated the p and δ 

parameters, the first and second baroclinic Rossby radii of deformation, and the corresponding standard Rossby wave-mode 
phase speeds. These are shown in Table 1  and will be used later to contrast the effects of vertical shear on planetary-
wave propagation speed. The most symmetric distribution of density, example (i), furnishes the fastest Rossby wave phase 
speeds. The more realistic distributions, examples (ii) and (iii), skewed toward the surface and with large density ratios, 
furnish slower phase speeds. Figure 3  shows the vertical profiles of the first (a) and second (b) pressure modes (in 
arbitrary units) for the three examples; it also shows the vertical velocity at the first interface, W1, relative to W2 at the 

second interface (assumed = 1). The first mode is always sinuous in its vertical structure; the second mode is varicose.

3. Middepth homogeneous potential vorticity  

In midlatitudes, shallow and intermediate density layers exhibit remarkable homogenization of potential vorticity. In Fig. 2 
 the regions of homogenization identified from Keffer’s (1985) map have been indicated by crosshatching. This motivates 

the choice of setting to zero the meridional potential vorticity gradient of the middle layer of the model in section 2; that is, 
q2y = 0. [If, further, interface slopes have the sense shown in Fig. 1 , then potential vorticity gradients in the top and 

bottom layers are the same so that the Charney–Stern necessary condition for baroclinic instability is not fulfilled (Pedlosky 
1987); all disturbances are neutrally stable.] Equations (2.2) simplify considerably. In the first place, the coefficient in the 
second term in (2.2b) vanishes so that, excluding the possibility that c = u2,

P2 − P1 = r(P3 − P2).(3.1)
 

Using (3.1) and (2.4) to eliminate in favor of P3 in (2.2c), one obtains

 

[Parameter c0 was defined above, after Eq. (2.18).]
 

The potential vorticity gradients (2.3) may be written as

 

where

 



are the scaled interface slopes. The condition that q2y = 0 relates the two slopes by

s′2 = s′1 − d2,(3.6)

 

and the potential vorticity gradient in the third layer becomes

 

Substituting this into (3.2), and using

u3 = u − c0{d1s′1 + r−1(1 − d3)(s′1 − d2)},

 

where u = d1u1 + d2u2 + d3u3 is the mean barotropic velocity, one obtains

 

The interpretation of this result is strikingly simple. Using (3.3), Eq. (3.8) may be written

 

The right side is simply 1 + 2, given by (2.13). This is the sum of the phase speeds of long internal Rossby waves 

travelling on the respective interfaces as though the other interface were not there and as though there were no mean sheared 
motion. When D1  D2, D3 and r  1, which resembles the typical oceanic situation, the phase speed c1 in the standard 

case of no mean flow (i.e., for the same stratification but with no internal isopycnal slope) is rather close to 1. Hence, the 

extra term in (3.8) or (3.9) represents a speedup of the standard case. 

More precisely, (c − u)/c1 can be written as a function of d1, d3, r [recall that c1 is given by (2.10), (2.11)], which can be 

expressed in terms of the two parameters p, δ given by (2.12d), (2.14). The result is

 

[The positive branch of the square root in (3.10) should always be taken.] We shall call Γ the speedup ratio. It satisfies the 
symmetry relation

Γ(p−1, δ) = Γ(p, δ).(3.11)

 

The parameter p is the ratio 1/ 2 of the speeds of undisturbed virtual Rossby waves on the upper- and lower-layer 

interfaces [Eq. (2.12d)]. 

The speedup ratio Γ is contoured as a function of p and δ in Fig. 4 . For δ < 0.1 and p in the range 0.5 < p < 2.0, 
values of Γ greater than 1.5 can be obtained. The maximum value of Γ for fixed δ occurs at p = 1, when the undisturbed 

phase speeds on the individual interfaces are matched, so that Γ = 2/(1 + δ1/2), which approaches 2 for small δ. For d1  

d3  O(1), typical of the real ocean, the parameters given by (2.12d), (2.14) are approximately p  rd1/d3(1 − d3) and δ  



d1d3/(1 − d3)  1. Attaining a large speedup ratio Γ, approaching 2, in the real ocean requires a large density ratio r  d3(1 

− d3)/d1. Note that Γ = 1 at p = 0 and p = ∞. These special cases represent, respectively, the removal of the upper or lower 

interfaces by setting ρ1 = ρ2 or ρ2 = ρ3: in other words, a two-layer situation for which no speedup can be achieved. 

The theoretical maximum speedup ratio of Γ = 2 can be qualitatively understood from (3.8). Clearly, c − u must be less 
than twice the largest of the two terms on the right side of (3.8). Furthermore, the phase speed c1 of the first mode in the 

standard case can be no larger than the largest of these two terms. It follows that c − u must be less than 2c1. It should be 

stressed that this bound on the speedup has been established only for the present case of zero middle-layer potential 
vorticity. Killworth et al. (1997) report speedup ratios higher than 2, calculated both numerically and by approximate 
analytical methods. In the latter, arbitrary speedups can be accomplished by adding sufficient baroclinic mode-2 structure to 
the mean velocity profile (see section 4). Yet the global calculation of local phase speeds done by the Killworth et al. 
numerical methods furnishes very few instances of speedup ratios larger than 2 (Fig. 5 ). 

Three examples of mean flow profiles are shown in panels (c) of Fig. 3 . These are constructed to give zero flow in 
the third layer and scaled so that meridional potential vorticity gradient in the middle layer is zero. The resulting scaled 
interface slopes, (3.5a,b), are shown in Table 1 . The potential vorticity gradients of layers 1 and 2 in example (i), the 
most symmetric, are only modestly elevated above β. The potential vorticity gradients of layer 1 in example (ii), and 
especially example (iii), are highly elevated over β. Table 1  shows the speedup ratio Γ for the three examples modified by 
the shear profiles of Fig. 3c  and the shear-modified phase speed c = Γc1. For the symmetric example, (i), the modified 

pressure mode is identical with the standard first-mode pressure wavefunction. For the skewed density distributions, the 
modified wavefunctions differ from the standard first-mode wavefunction. A good measure of this is the interface 
displacement ratio W1/W2: this is exactly one for example (i), 0.911 for example (ii), and even smaller, 0.677, for example 

(iii). The speedup ratio increases successively in the three examples, from 1.33 to 1.46 to 1.66, principally because δ, largely 
reflecting the scaled upper-layer thickness d1, successively decreases (0.25, 0.11, 0.042). The parameter p is fairly close to 

unity for all three examples.

4. The general case of vertical shear  

The special case of solutions for a mean zonal velocity profile constrained so that the potential vorticity gradient vanishes 
in the middle layer was considered in section 3. The solutions for a general mean zonal velocity profile can readily be 
obtained for the three-layer model by solving (2.6). For larger numbers of layers, or for the continuous limit, this becomes a 
tractable numerical problem, although insight can become obscured by complexity. A useful diagnostic is obtained by 
multiplying (2.6a) by W1, (2.6b) by W2, and adding. A counterpart of this diagnostic is available for an arbitrary number of 

layers, or for the continuous case (Killworth et al. 1997). The result is

c = B + S + V,(4.1a) 

where

 

with wi = Wi/D
1/2, where



 

These terms are called respectively the beta term, the steering term, and the internal vortex stretching term.

The combination S + V can be written

 

If the mean zonal velocity profile reflects the shape of a baroclinic mode, that is, ui is proportional to Pi given by (2.5), 

then S + V = 0. Hence, any amount of mean velocity having the same vertical profile as a baroclinic mode does not alter that 
particular mode.

From calculated solutions of the continuous quasigeostrophic potential vorticity equation, Killworth et al. noticed that the 
first-mode vertical-velocity wave function W(z), modified by mean shear, usually differed little from the standard first-mode 

wave-function W(1)(z). This suggests that a first-order approximation of (4.1) can be obtained by substituting W(1)
j for the 

first mode. Note that only the ratio W(1)
1/W(1)

2, given by Eq. (2.7), matters in the expression (4.1b) for B. Then

B = −βλ21 = c1,(4.3)

 

where c1 is the phase speed of the first mode for the standard theory. The most general mean flow that can be envisaged 

is

ui = a(1)P(1)
i + a(2)P(2)

i + u,(4.4)

 

where the P(k)
i are obtained from W(k)

j by (2.5). (The only effect of the vertical mean u is to Doppler-shift c by the same 

amount.) As noted above, the first-mode part of (4.4) has no effect on (4.1). Only the second-mode part contributes to the 
shear flow alteration of the mode-1 propagation speed. This contribution may be readily calculated from (2.10), (2.11) 
(choosing the negative sign option), and (4.1). In Fig. 3  the first and second pressure modes in panels (a) and (b) for all 

three examples have been so scaled that, with the ratio a(1)/a(2) = 1, Eq. (4.4) gives zero velocity in layer 3, u3 = 0. 

Consider the examples shown in Fig. 3  and Table 1 . For example (i), because the shear-modified wavefunction is 
identical to the standard first mode, the approximation described above gives an exact result. For example (ii), the disturbed 

wavefunction amplitudes Pi are not identical to the undisturbed P(1)
i, though they are qualitatively similar. The standard 

displacement ratio W(1)
1/W(1)

2 = 0.846 is quite close to the mean-shear-modified value W1/W2 = 0.911. As a consequence, 

the approximate enhanced phase speed B(1) + S(1) + V(1) = −3.65 cm s−1, based on the latter, is very similar to the exact 

value c = −3.59 cm s−1. For example (iii), even though the mean-shear-modified wave-mode amplitudes Pi are similar to the 

standard case, the enhancement of the approximate wave speed B(1) + S(1) + V(1) gives rather too large an estimate, −2.35 

cm s−1, than the true value, −2.02 cm s−1. Close inspection shows that the modified vertical displacement ratio W1/W2 = 

0.677 is quite different from the standard ratio W(1)
1/W(1)

2 = 0.335, on which the B(1) + S(1) + V(1) calculation is based. 

5. A continuous model  

In this section, we examine a simple model with continuous stratification and mean shear flow, the latter chosen so that 
the interior potential vorticity gradient is exactly zero. It is again shown that the phase speed of disturbances, relative to the 
barotropic mean flow, is significantly larger than the first-mode baroclinic phase speed in the standard model with the same 
stratification, but without a mean shear flow. Some qualitative links with the layered model of section 3 are described. 

The special mean shear–stratification combination considered here is one of a wide class of combinations that can give qy 



= 0. Williams (1974) considered the subset of this class for the case β = 0, which he called the generalized Eady problem. 
Lindzen (1994) and Swanson and Pierrehumbert (1995) also considered examples of the generalized Eady problem for β  0 
and stability and shear profiles that give qy = 0. These authors concerned themselves mainly with modification of the 

baroclinic instability mechanism by homogenized interior potential vorticity.

The continuous linearized quasigeostrophic potential vorticity equation for long waves is

 

where

qy = β − (f2uz/N
2)z.(5.2)

 

The boundary conditions are

 

In the limit of small layer thickness, Eq. (2.2b) becomes (5.1). Similarly, Eqs. (2.2a) and (2.2c) resemble the two 
boundary conditions (5.3) in the limit D1, D3  0. Bretherton (1966) showed that the boundary conditions (5.3) may be 

replaced by the simpler Pz = 0 at z = 0, −H if the potential vorticity gradient is replaced by the form

 

and the limit η   0 is taken; here qy is the interior potential vorticity gradient given by (5.2). This interpretation shows 

that the coefficients of the delta functions are the effective mean potential vorticity gradients due to the intersection of mean 
isopycnals with the surface and bottom, respectively.

We shall solve the system (5.1)–(5.3) for

 

that is, zero interior potential-vorticity gradient and an exponential buoyancy-frequency profile. This is similar to choosing 
the middle layer’s potential vorticity gradient zero in section 3. To ensure qy = 0, the mean isopycnal slope at any level, 

proportional to the mean velocity shear, must satisfy

 

The constant s1 is the slope at which isopycnals intersect the surface. The isopycnal slopes at the surface and bottom, s1 

and s2 = s1 − βH/f, are the counterparts of the interface slopes s1, s2 in the three-layer model, which appear in q1y and q3y in 

Eqs. (2.3a) and (2.3b). The Charney–Stern criterion, a necessary condition forbaroclinic instability, requires that s1 and s2 

have the same sign. The hydrographic section exhibited in Fig. 2  shows that in the western North Pacific between 10° 
and 45°N these parameters in fact have opposite signs.

On integrating (5.5),



 

where u(−H) has been chosen to be zero and  = e−αH. The vertically averaged mean current is then

 

where s′1 = s1f/βH [cf. (3.5a)]. The phase speed c to be obtained below will be expressed relative to u so that the choice 

of u(−H) is immaterial. 

The solution of (5.1), given (5.4), is particularly simple. It is

P = A1e2αz + A2,(5.8)

 

where A1 and A2 are arbitrary constants. Substituting this into the boundary conditions (5.3) and eliminating A1 and A2, 

one obtains

 

Substituting for u(0) from (5.6), this becomes, relative to u given by (5.7),

 

In general, the set of eigensolutions of (5.1) is severely truncated when there is a background mean vertical shear of the 
zonal velocity (Killworth and Anderson 1977). The solution given by (5.8), (5.9) is the only baroclinic mode that exists for 
the circumstances under which (5.4) pertains.

a. Standard case  

For comparison, the solution of (5.1)–(5.3) for u(z)  0, and N(z) = N0eαz, can be readily determined analytically 

(Killworth et al. 1997). It is given in terms of first-order oscillatory Bessel functions of an argument proportional to eαz 
(Abramowitz and Stegun 1964). The boundary conditions (5.3) require these solutions to be discrete normal modes with 
dispersion relations given by

 

for i = 1, 2, · · · . These are the phase speeds of the baroclinic Rossby-wave modes, possessing i half-cycles of 

oscillation between the surface and bottom. For the choice of α−1 = 0.294H for the e-folding scale of the buoyancy 
frequency profile, giving  = 1/30 (suggested by Garrett and Munk 1972), the first two modes have eigenvalues

μ1 = 2.971, μ2 = 6.272.
 



The ratio of (5.9) to c1, given by (5.10), is

 

For  = 1/30 the numerical value of this ratio is Γ = 1.56. 

A qualitative link between this continuous model and the three-layer model of section 3 may be made as follows. Identify 

rd3/d1 = (g1/d1)(g2/d3)−1 in the three-layer model with the ratio N2
0/N2(−H) = e2αH in the continuous model. Select d1 = 

1/60, d3 = 0.5 for the layered model. (Notice that d3 is not especially small.) For eαH = −1 = 30, we should select r = 30, 

and hence δ = 0.034, p = 1.93, from Eqs. (2.14) and (2.12e). From Fig. 2  or Eq. (3.10) we then obtain Γ   1.5, which 
is fairly close to the value of 1.56 calculated from (5.11). 

This continuous, though highly idealized, model of the vertical stratification and shear structure reinforces the conclusion 
of the three-layer model that homogeneous internal potential vorticity layers and the concomitant hyper-β layers near the 
surface and, to some extent, the bottom can cause a significant speedup of westward planetary waves.

b. Topography  

If there is a meridional gradient of bottom topography, then the boundary condition (5.3) has an additional term −sTP on 

the left side (sT is the bottom slope, reckoned negative if shoaling northward). The consequence of this extra term is that Eq. 

(5.9) for c − u acquires an additional contribution

 

where s′1 = fs1/βH and s′T = fsT/βH. Hence, Eq. (5.11) must be replaced by

 

If topography shoals northward, that is, s′T < 0, the extra term in (5.12) enhances the speedup of the baroclinic planetary 

waves; if topography deepens northward, the speedup is diminished.

6. Summary  

A mechanism has been described whereby long planetary waves may attain westward propagation speeds significantly 
larger than long first-mode baroclinic Rossby waves propagating through a still ocean. The mechanism depends on taking 
account of the effect of mean vertical shear in the potential vorticity balance of the waves. The vertical shear is directly 
related, through geostrophy, to the internal topography of density surfaces. The configuration of density surfaces in the 
ocean is such as to produce vertical ranges of density in which mean potential vorticity is very nearly homogeneous over 
horizontal regions encompassing significant fractions of entire ocean basins (Keffer 1985; Talley 1988). The vertical spacing 
of density surfaces increases poleward to offset the increase of the Coriolis parameter. Near the surface and bottom, 
however, lighter and denser layers are squeezed between the expanding midrange density layers and the respective boundary 
to produce layers with enhanced meridional potential vorticity gradient. This enhancement may be quite large near the 



surface (perhaps as much as ten times the planetary vorticity gradient, β), more modest at the bottom (perhaps twice β). 

In the three-layer model, with zero potential vorticity gradient in the middle layer, the planetary-wave phase speed is the 
sum of the vertically averaged mean flow and the phase speeds of the long baroclinic Rossby waves that would ride on the 
individual layer interfaces as though the other interface were absent, and as though there were no mean shear. Theoretical 
speedup ratios (compared to classical baroclinic modes with no mean shear) up to a value of two are possible. For plausible 
choices of oceanic parameters, speedup ratios of 1.5 and larger are readily conceivable.

By contrast, two-layer reduced-gravity models with strong eastward shear, giving an enhanced meridional potential 
vorticity gradient in the surface layer, do not show such a speedup (Held 1983; Chang and Philander 1989; Herrmann and 
Kraus 1989; Kessler 1990). The tendency of the enhanced potential vorticity gradient to increase propagation speeds is 
offset by the Doppler shift of the eastward mean flow; this has been termed the “non-Doppler effect.”  The essential 
ingredient of the three-layer model is the middepth layer of homogeneous potential vorticity, which leads to the serial addition 
of the interfacial Rossby wave phase speeds. Such a feature cannot be represented in a model with fewer than three layers. 

As an alternative qualitative model, we examined a continuous model in which vertical stratification decreases 
exponentially with increasing depth, while isopycnal slope decreases linearly at such a rate that there is no internal meridional 
potential vorticity gradient; the potential vorticity gradient is concentrated in virtual layers at the surface and bottom 
boundaries. This idealized model again showed that significant speedups of planetary wave propagation were possible, 
relative to the corresponding standard model with identical internal stratification and zero internal isopycnal slopes. It was 
shown that parameters characterizing these virtual boundary layers can be identified with parameters of the finite surface 
and bottom layers of the three-layer model. When the parameters of the continuous and three-layer models were selected to 
be comparable, similar speedup ratios were obtained for the two models.

The results of this paper suggest that the speedup ratios calculated by Killworth et al. (1997) by including the effects of 
climatological-average vertical shear in the mean circulation on planetary wave propagation are at least partially a 
consequence of such homogeneous potential vorticity features as observed at middepths in the ocean by Keffer (1985) and 
Talley (1988). In support of this claim we show a histogram of the speedup ratio calculated from historical hydrographic 
data by Killworth et al.’s (1997) method for 1° × 1° squares over the global ocean (Fig. 5 ). The histogram is strongly 
peaked for ratios near 1.0, with significant occurrences of ratios near 1.5, declining to virtually no occurrences of speedup 
ratios higher than 2.0. The latter bound concurs well with the theoretical limit of 2 for the speedup ratio obtained in section 
3. 
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Tables  

Table 1. For various settings of mean layer depths and reduced gravity ratio in the three-layer model, Rossby radii of 
deformation, and Rossby wave phase speeds for the first and second baroclinic modes are shown (standard case). For the 
corresponding case modified by mean flows giving zero potential vorticity gradient in the middle layer, scaled interface slopes, 
and the resulting planetary wave speedup ratio are shown. The approximate calculation of speedup based on the method of 
section 4 is shown.
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Figures  
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Fig. 1. Schematic of the three-layer model. The slopes of the interfaces are shown for eastward mean shear near the surface and 
westward mean shear at middepth.
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Fig. 2. Potential density (σ
θ
 referenced to 0 dbar above 1500 m, σ4 referenced to 4000 dbar below 1500 m) along 179°E in the 

western Pacific. Note the northward–upward isopycnal slopes near surface; northward–downward slopes at middepth. The 
hatched region corresponds to the range over which Keffer’s (1985) maps show potential vorticity approximately homogeneous 
on isopycnal surfaces.
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Fig. 3. Features of three example calculations with the three-layer model using the parameter settings in columns (i), (ii), and (iii) 
of Table 1 . For the standard case (no shear) the first- (a) and second-mode (b) vertical profiles of pressure are shown 
(arbitrary units). The interfacial vertical velocities of the modes are indicated on these panels by arrows with accompanying 
numerical magnitudes, relative to W2 = 1. (c) Mean velocity profiles constructed from first and second modes with zero mean and 

zero bottom velocity (unit: cm s−1); and (d) associated meridional potential vorticity gradients (scaled by β). (e) The shear-
modified pressure modes for (c) and (d) (arbitrary units); interfacial vertical velocities are indicated.
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Fig. 4. The speedup ratio c/c1 for zero interior potential vorticity gradient as a function of parameters p, δ, depending on 

density difference ratio r and mean layer depths D1, D2, D3. 
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Fig. 5. A histogram of the ratio of planetary-wave phase speed calculated by the Killworth et al. (1997) method including mean 
vertical shear, to Rossby wave phase speed obtained by neglecting mean shear (Chelton et al. 1998) for 1° × 1° squares over all 
ocean basins, 10°–50°S, 10°–50°N. 
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