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ABSTRACT

A coarse resolution, three-dimensional numerical model is used to study 
how external parameters control the existence and strength of equatorially 
asymmetric thermohaline overturning in a large-scale, rotating ocean basin. 
Initially, the meridional surface density gradient is directly set to be larger in 
a “dominant”  hemisphere than in a “subordinate”  hemisphere. The two-
hemisphere system has a broader thermocline and weaker upwelling than 
the same model with the dominant hemisphere only. This behavior is in 
accord with classical scaling arguments, providing that the continuity 
equation is employed, rather than the linear vorticity equation.

The dominant overturning cell, analogous to North Atlantic Deep Water 
formation, is primarily controlled by the surface density contrast in the 
dominant hemisphere, which in turn is largely set by temperature. 
Consequently, in experiments with mixed boundary conditions, the 
dominant cell strength is relatively insensitive to the magnitude QS of the 

salinity forcing. However, QS strongly influences subordinate hemisphere 

properties, including the volume transport of a shallow overturning cell and 
the meridional extent of a tongue of low-salinity intermediate water 
reminiscent of Antarctic Intermediate Water.

The minimum QS is identified for which the steady, asymmetric flow is 

stable; below this value, a steady, equatorially symmetric, temperature-
dominated overturning occurs. For high salt flux, the asymmetric 
circulation becomes oscillatory and eventually gives way to an unsteady, 
symmetric, salt-dominated overturning. For given boundary conditions, it is possible to have at least three different 
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asymmetric states, with significantly different large-scale properties. An expression for the meridional salt transport 
allows one to roughly predict the surface salinity and density profile and stability of the asymmetric state as a 
function of QS and other external parameters. 

1. Introduction  

Though the earth’s global thermohaline circulation is dominated by temperature (the deepest water is generally the 
coldest), salinity variations play a crucial role in determining the location of deep-water formation. The surface temperature 
distribution is roughly symmetric about the equator, but surface salinity has notable north–south asymmetries [e.g., cf. Figs. 
8.8 and 8.10 in Peixoto and Oort (1992)], with winter northern North Atlantic water roughly 0.5 psu saltier than austral 
winter Weddell Sea water (Levitus and Boyer 1994). As a result, deep-water formation is equatorially asymmetrical within 
the World Ocean, with substantial transports of North Atlantic Deep Water crossing the equator and flowing into the 
Southern Hemisphere [Speer and McCartney (1991); Warren (1981) for a review of earlier work]. This asymmetry is 
interesting for purely oceanographic reasons as well as for its influence on climate. For example, the heat transport in the 
South Atlantic is equatorward rather than poleward (e.g., Macdonald 1993). 

As Rooth (1982) and Bryan (1986) have shown, using a box model and a general circulation model, respectively, such an 
asymmetry in salinity and meridional overturning can occur even when the boundary conditions are equatorially symmetric. 
Surface boundary conditions form a relatively tight constraint on surface temperature but can be thought of as equivalent to 
specifying a flux of salinity rather than the salinity itself. Because of these “mixed boundary conditions,”  more than one 
circulation state can exist given such a set of boundary conditions (Stommel 1961). In a single ocean basin spanning the 
equator, it is possible to have either equatorially symmetric temperature-dominated (T-dom) sinking near the poles, 
equatorially symmetric salinity-dominated (S-dom) sinking near the equator, or equatorially asymmetric deep-water 
formation at one pole only (Welander 1986). 

How overturning strength depends on external parameters has received relatively thorough scrutiny in single-basin 
systems driven by temperature-only boundary conditions (Bryan 1986; Colin de Verdiere 1988; Winton 1996; Marotzke 
1997) or freshwater-only boundary conditions (Huang and Chou 1994). The two-hemisphere, mixed-boundary-condition 
case has been explored with two-dimensional models by Marotzke et al. (1988), Thual and McWilliams (1992), Quon and 
Ghil (1992, 1995), Cessi and Young (1992), Schmidt and Mysak (1996), Vellinga (1996), and Dijkstra and Molemaker 
(1997). When salinity forcing is sufficiently stronger than temperature forcing, only the S-dom state exists, and when 
temperature forcing is sufficiently stronger than salinity forcing, only the T-dom state exists. It is only when both 
temperature and salinity forcing are in some sense at intermediate strengths that the equatorially symmetric states and the 
asymmetric state can all exist [see Thual and McWilliams (1992) Fig. 3]. These two-dimensional studies did not relate the 
flow strength and regime boundaries to parameters that could be readily applied to three-dimensional basins in which basin 
width, planetary rotation, and planetary radius play a role. There has been no three-dimensional study of this system in 
which forcing parameters were systematically varied, though Weaver and Sarachik (1991) used such a model to study the 
time evolution of transitions from state to state.

The thermohaline circulation is a global system in which the flow in each basin is influenced by that in the other basins 
(Warren 1983; Gordon 1986; Rintoul 1991; Marotzke and Willebrand 1991; Stocker and Wright 1991; England 1993; 
Macdonald and Wunsch 1996). This system has an extremely complicated dependence on a multiplicity of parameters, 
including basin geometry (Hughes and Weaver 1994), atmospheric freshwater transports between basins (Marotzke and 
Willebrand 1991; Stocker et al. 1992), and the coupling to the atmosphere (e.g., Mikolajewicz and Maier-Reimer 1994; 
Rahmstorf and Willebrand 1995; Weber 1998). Therefore, it is useful to understand the less complicated, single-basin cell as 
a stepping stone to understanding the more complete system.

The basic question of this paper is: How do the external parameters in a two-hemisphere, mixed-boundary-condition 
system determine the temperature, salinity, and overturning in the equatorially asymmetric state? We subdivide this into two 
smaller problems. In the asymmetric state, one hemisphere will possess the densest surface water in the basin. Peterson 
(1979) and Cox (1989) have shown that this water must dominate the bottom of the entire basin (when the equation of state 
is linear), but the resulting state has not been carefully studied. Thus, given such an asymmetric surface density distribution, 
what is the resulting overturning strength and pycnocline structure? This will be examined in section 3, which discusses 
experiments in which the surface density is restored to a reference profile. Then the full question can be answered if, for a 
given mixed boundary condition, we can predict the resulting surface density. We consider this question via mixed-
boundary-condition experiments in section 4. 

Hughes and Weaver (1994) showed in an idealized global GCM under mixed boundary conditions that Atlantic overturning 
strength is linearly related to the basinwide meridional gradient in zonally and vertically averaged steric height (i.e., a double 
vertical integral of zonally averaged density). Rahmstorf (1996) found in his global GCM coupled to a diffusive atmospheric 



energy balance model that Atlantic overturning is proportional to the zonally averaged middepth density difference between 
northern and southern Atlantic boundaries. In contrast to these studies, we want to relate the strength of the thermohaline 
circulation directly to external parameters; to clarify the relation we use simpler geometry and forcing. Wang et al. (1999a,b) 
used an idealized, global, hybrid coupled GCM and Scott et al. (1999) uncoupled and coupled box models to study 
interhemispheric thermohaline flow and its interaction with the atmosphere, in particular the effects of equatorially 
asymmetric atmospheric water vapor transports. Here, we leave out asymmetries in forcing (except in restoring-boundary-
condition experiments) and detailed considerations of ocean–atmosphere interactions, to focus on the rotating fluid dynamics 
of the interhemispheric thermohaline circulation. The impact of wind, nonlinearities in the equation of state, and north–south 
asymmetries in the forcing are all important factors that deserve careful treatment, and we defer these to a later paper. For 
simplicity we use a relatively idealized system here.

2. Numerical model  

All experiments are conducted with MOM-2, the Modular Ocean Model version of the GFDL Model (Pacanowski 1996; 
Cox 1984), a B-grid (Arakawa and Lamb 1977) finite-difference discretization of the primitive equations that computes 
solutions by stepping forward in time. The domain is a sector of a sphere with zonal and meridional boundaries and a flat 
bottom. Default parameters are shown in Table 1 ; experiments with any of these parameters changed are noted in the 
text in section 4. The model is run at coarse, uniform horizontal resolution with vertical grid spacing increasing from 50 m at 
the surface to 500 m at the bottom. All advective terms are retained in the temperature, salinity and momentum equations, 
and density ρ is related to temperature T and salinity S by

ρ = ρ0 + βS − αT,(1)
 

where α and β are the thermal and haline expansion coefficients, respectively. The values chosen correspond to a 
linearization of the equation of state at surface pressure and a temperature of about 13°C (see Table 1 ). Though Gargett 
and Holloway (1992) argue that diffusivities of T and S should be different, the parameterization of Zhang et al. (1998) 
shows this to be a relatively small effect; here we use the same diffusivity for both fields (see Table 1 ). 

All walls and the bottom are insulating in both T and S. Temperature is forced by restoring the surface layer to a zonally 
uniform reference profile. The reference profile as a function of latitude  in either hemisphere is given by

 

where − p    p, Te is the restoring surface temperature at the equator, and ΔT is the restoring surface 

temperature difference between the equator and the polar boundary (in restoring boundary condition experiments, this is 
ΔTN in the northern hemisphere and ΔTS in the southern hemisphere). Thus as we move northward from the southern 

boundary, the restoring temperature smoothly increases from a low of Te − ΔTS to a high of Te and then decreases back to a 

low of Te − ΔTN. 

In the restoring-boundary-condition runs (section 3), salinity is constant and hence no salinity forcing is necessary. In the 
mixed-boundary-condition runs (section 4), the reference temperature is symmetric about the equator (ΔTN = ΔTS). The 

salinity is driven by setting a zonally uniform surface salinity flux to represent the effects of freshwater fluxes produced by 
evaporation, precipitation, and runoff. The dependence on latitude for forcing strength QS is given by

qS = QS cos(π / p)/cos( ).(3)
 

This form represents the generally negative evaporation minus precipitation (E − P) at high latitudes and positive E − P at 
low latitudes found on the real earth. The real earth also has a narrow region of negative E − P near the equator, which we 
ignore here under the assumption that the resulting shallow equatorial salinity minimum has a relatively small effect on the 
large-scale thermohaline circulation. The cosine factor in the denominator is used so that the zonal integral of qS would be a 

simple cosine in latitude, with no net salt added to or removed from the basin.

Experiments are started with initial conditions of either a resting, isothermal, isohaline (35 psu) ocean, or a previous 
experiment. Each run is integrated until a nearly steady state is reached, unless noted otherwise. The usual criteria for steady 
state being reached is that the drift in meridional volume transport exponentially decreases over the last several centuries of 

the integration and is no more than 0.0025 Sv per century (Sv  106 m3 s−1) at the end. Spot checks on selected runs 
show that, when these criteria are met, other measures such as temperature and salinity are also nearly steady. In order to 



satisfy the Courant–Friedrichs–Levy criterion at the lowest computational cost, a shorter time step is used for the 
momentum equations than the tracer equations (Bryan 1984). Each experiment generally takes from 1000 to 5000 tracer 
years to reach steady state, which takes on the order of 1 day of cpu time on a DEC AlphaStation 250 4/266 workstation.

Most of the experiments are conducted using horizontal diffusion of properties to parameterize mixing induced by 
geostrophic eddies. Some runs with restoring boundary conditions are also repeated with the “Gent–McWilliams”  
parameterization, which supplements isopycnal diffusion of T and S with additional advection by a tracer velocity 
representing the untilting of isopycnals by baroclinic instability (Gent and McWilliams 1990; Gent et al. 1995). This 
parameterization has a stronger dynamical justification than horizontal diffusion, and allows numerical models to better 
represent the relatively thin thermocline and small deep-water formation regions of the real ocean and to eliminate spurious 
diapycnal diffusion in regions of strong horizontal gradients such as western boundary currents (Veronis 1975; Böning et al. 
1995; Danabasoglu et al. 1994). The Gent–McWilliams runs are conducted with a flux-corrected transport scheme added to 
MOM-2 by Weaver and Eby (1997). Flux-corrected transport is a finite difference scheme that attempts to retain the 
accuracy of centered-difference schemes while also suppressing nonphysical overshoots of temperature and salinity (a 
property shared by the less accurate upstream differencing scheme).

3. Restoring boundary conditions  

a. Experiments  

We conduct two-hemisphere experiments, which are forced only by restoring to a temperature profile that is asymmetric 
about the equator. We wish to understand how the maximum meridional overturning volume transport and the pycnocline 
structure of a double-hemisphere overturning cell differ from the case of a single-hemisphere system. As section 4 will 
show, the surface density given by (2), with different values of ΔT in the northern and southern hemispheres, is a 
reasonable approximation to the shape of the surface density profiles produced by mixed-boundary-condition experiments. 

In all the experiments, the southern hemisphere is made the “dominant”  hemisphere by giving it the densest surface water. 
Thus the dominant deep water, analogous to North Atlantic Deep Water in the Atlantic Ocean, is formed in the southern 
hemisphere in our experiments. We chose the southern hemisphere because it happened to be the dominant hemisphere in 
the mixed-condition experiments (section 4); since our experiments have completely equatorially symmetric geometry (unlike 
the real ocean), the choice of dominant hemisphere is arbitrary. The weaker and deeper flow of Antarctic Bottom Water 
does not appear in these experiments because the equation of state is linear and there is no circumpolar channel 
corresponding to the Southern Ocean.

The relationship between the behavior in one-hemisphere (“1H”) and two-hemisphere (“2H”) basins is demonstrated by 
runs with ΔTS set to 30°, 6°, and 1°C. In each of these experiments, we set ΔTN = 0, thus exploring the case of most 

extreme equatorial asymmetry first. For each 2H experiment, a 1H experiment is run with forcing identical to the dominant 
hemisphere of the corresponding 2H run. Outside of section 3b, “1H experiment”  refers to an experiment with equatorial 
symmetry rather than an actual wall at the equator. These two variations are nearly identical (11.86 Sv overturning with the 
wall and 11.84 Sv with symmetry).

In another series of experiments, ΔTS is fixed while ΔTN is varied. We are especially interested in the situation in which 

ΔTN is almost as large as ΔTS. In this case, the degree of asymmetry between the hemispheres is small, yet the circulation 

must be qualitatively different from a symmetric experiment because deep water is required to spread from the dominant 
hemisphere to fill the deepest region of the other “subordinate”  hemisphere. In this series of experiments, ΔTS = 30°C, while 

ΔTP  ΔTN − ΔTS is set to 15°, 6°, 3°, 1.5°, 0.6°, and 0°C. 

b. Dependence on dominant hemisphere temperature gradient  

The zonally integrated thermohaline circulation is characterized by small, relatively intense downwelling regions associated 
with deep convection and large areas of weak, diffusively driven upwelling (Fig. 1 ). In runs with ΔTN = 0, the presence 

of the nonconvecting hemisphere means that a strong thermocline covers about two times the area that it does in a single-
hemisphere run.

The classical scaling for upwelling velocity W, thermocline depth D, and horizontal velocity V in large-scale, buoyancy-
driven circulation (Bryan and Cox 1967; Bryan 1987; Colin de Verdiere 1988) is based on the vertical advective–diffusive 
balance,

wbz = κbzz,(4)
 



and thermal wind,

f z = −bx,(5)
 

where f  is the Coriolis parameter,  and w are meridional and vertical velocities, and b = −gρ/ρ0 is the buoyancy (g is the 

gravitational acceleration, 9.8 m2 s−1). These equations yield the scale relations

 

where Δb is the imposed meridional surface buoyancy range and M is the basin zonal length scale. One might ask whether 
the zonal buoyancy difference in (5) must scale like Δb, but Marotzke (1997) demonstrates that this is actually a reasonable 
assumption, and we show below that it holds fairly well in our numerical experiments. Another weakness of the classical 
scaling employed here (and indeed of the vertical mixing parameterization in the model) is that vertical or diapycnal mixing in 
the ocean is known not to be uniform but concentrated near the margins (e.g., Munk 1966; Wunsch 1970; Armi 1978; 
Ledwell and Bratkovich 1995; Toole et al. 1997). Again, Marotzke (1997) has shown that some scaling and numerical results 
are reasonably insensitive to assumptions about how localized the mixing is.

One more scale relation must be included in order to close the system and find W, D, and V. Often this is done using the 
linear vorticity relation (see Bryan 1987;Colin de Verdiere 1988),

β0  = fwz,(7)
 

where β0 is the meridional gradient of f. However, this equation does not apply to the western boundary current, an 

important contributor to the zonal average of . When κ or Δb is varied, this inapplicability does not matter, because the 
western boundary current strength has the same sensitivity to κ and Δb as the interior flow. However, the relationship 
between the western boundary and the interior currents changes when the geometry of the flow changes. Thinking of the 
deep flow as a homogeneous layer driven by a point source and a distributed sink (Stommel et al. 1958; Stommel and Arons 
1960), we see that, if the sink area is changed but upwelling speed w remains the same, the interior flow is unaffected but 
the western boundary current must change to satisfy continuity. In order to compare 2H flows to 1H, it is therefore more 
appropriate to use the continuity equation (see Marotzke 1997; Winton 1996). 

Assuming that the volume transport into the region of deep-water formation equals the upwelling over almost the entire 
basin, we have

MDV = MLW,(8) 

where L is the meridional length of the basin. Equations (6) and (8) yield the scale relations

 

where  is the meridional overturning streamfunction. If linear vorticity (7) were used instead of continuity (8), then (9) 
would be the same except that L would be replaced with the radius of the earth, R. In one hemisphere, L  R, and the two 
assumptions about the vertical velocity scale would yield the same result. In two hemispheres with one of them 
nonconvecting, however, L  2R, and thus the scaling containing the continuity equation predicts that the two-hemisphere 



case will have a broader thermocline and weaker vertical velocity, whereas scaling containing the linear vorticity equation 
predicts that the thermocline and vertical velocity will be the same in the two cases.

We test the above scaling relationships with 2H (ΔTN = 0) and 1H experiments. In the 1H experiments, D  Δb−1/3 and 

w  Δb1/3, as expected. Here, D is taken to be the integral length scale of the zonal average temperature at the equator,

 

In each run, water with temperature in the bottom 1% of the temperature range for the water column is considered 
“subthermocline”  and is excluded from the calculation. Here W is found by taking the maximum zonal average vertical 
velocity at each latitude and averaging this from latitudes 2° to 30°S, which is much of the region dominated by upwelling 
but excludes recirculation close to the convection region. The total volume transport of the meridional overturning cell is also 

roughly proportional to Δb1/3, though this scaling law is closer to Δb1/2 for small Δb because the upwelling area decreases 
somewhat for smaller Δb. 

The maximum buoyancy difference between the eastern and western boundaries is approximately bE − bW = 0.25Δb for 

all 1H and 2H runs, confirming the theoretical result of Marotzke (1997) and the hypothesis that the zonal buoyancy 
difference scales like Δb. The zonal buoyancy difference has a weak dependence on L (2H runs have about a 20% smaller 
proportionality constant). All these minor factors can be ignored in (9).

The factors of L1/3 in (9) imply that, since 21/3 = 1.3, each 2H run should have a 30% broader thermocline and 30% 
weaker upwelling than the corresponding 1H run. We measure the thermocline depth at the equator as before, and average 
the maximum zonal average w from 30°S to 62°N. The numerical experiments display the relationship between 2H and 1H D 
and W predicted by the scaling. 

The combination of a somewhat weaker W and a larger area of upwelling cause the total overturning volume transport of 

the 2H experiments to be somewhat less than double that of the 1H experiments: the scaling predicts a factor of 22/3 = 1.6, 
whereas actual values are slightly higher (Table 2 ). Roughly equal amounts of upwelling occur in both hemispheres. For 
ΔTS of 30°C and 6°C, the convecting hemisphere has somewhat greater upwelling than the nonconvecting hemisphere. The 

western boundary current is stronger in this hemisphere (see Fig. 1 ) so that horizontal mixing there brings additional 
diapycnal mixing and enhances upwelling (Veronis 1975; Böning et al. 1995). In the ΔTS = 1°C run, the smaller upwelling 

area in the convecting hemisphere makes this hemisphere’s fraction of total upwelling smaller. Ignoring these details, 
however, the striking feature of these experiments is the simplicity of the relationship between flow magnitudes in the 2H 
and 1H cases. As the experiments show, the same relationship between 2H and 1H cases persist for ΔTS varied by a factor 

of 30 and corresponding thermocline depths ranging from a narrow surface region to nearly the entire water column.

Hughes and Weaver (1994) found a linear relationship between overturning strength  and the pole-to-pole difference in 
vertically integrated steric height, . We show now that this is consistent with the scaling (9) above. Since  is the double 

vertical integral of meridional buoyancy difference,   ΔbD2. Substituting (9a) for D, we have

  (Δbκ2)1/3,(11)

 

and combining this with (9d), we predict that  should indeed be proportional to . 

c. Dependence on subordinate hemisphere temperature gradient  

For 0 < ΔTP < ΔTS, the southern-sinking cell still dominates the circulation, but a weaker subordinate cell now forms in 

the near-surface water of the northern basin (Fig. 2 ). We assume that the ΔTP = ΔTS case can provide a crude estimate 

of how deep the northern cell extends. The minimum temperature of water sinking in the northern hemisphere is ΔTP 

(actually a little less, due to the restoring boundary condition). Thus, for ΔTP = 3°C, for example, the northern sinking 

should not penetrate the 3°C isotherm. Since the vertical temperature gradients are small below the top kilometer, the 
southern cell will dominate almost the entire northern hemisphere water column unless ΔTP is nearly zero. However, as Fig. 

2  and Table 3  show, the maximum depth of the northern overturning cell actually reaches much deeper than either 
the ΔTP isotherm or the northern mixed layer. In sum, the penetration depth of the subordinate cell is clearly related to the 



mixed layer depth but, since the meridional overturning is proportional to a double vertical integral of the density difference 
between eastern and western walls, one cannot expect a simple correspondence [see Marotzke (1997) for a detailed 
discussion].

The abrupt change between the symmetrical forcing and asymmetrical forcing is perhaps most strongly reflected in the 
cross-equatorial transport (Fig. 3a ), which is zero for the symmetric forcing and about 7 Sv for all other runs with ΔTS 

= 30°C (for comparison, the 1H overturning is 11.8 Sv). The strength of the southern sinking region also jumps, going from 
about 12 Sv to about 20 Sv as ΔTP increases from 0, and the northern sinking overturning decreases abruptly. These values 

are given approximately by

± = 0[1 ± (ΔTP/ΔTS)1/6],(12)

 

where 0 is the volume transport for the 1H experiment, and +, 
−

 are the volume transports of the strong, deep 

(“dominant”) southern cell and the weak, shallow (“subordinate”) northern cell, respectively. The origin of the exponent is 
not clear. The sum of the volume transports of the two cells is nearly independent of ΔTP, perhaps because the total 

upwelling is a function of the overall thermocline structure, which is not strongly sensitive to ΔTP. As ΔTP is decreased, the 

tropical and midlatitude thermocline gets narrower (see previous subsection), thus promoting stronger upwelling, but the 
northern thermocline is eroded, thus decreasing the area of upwelling.

Asymmetrical overturning carries heat across the equator from the subordinate hemisphere to the dominant hemisphere. 
Although the cross-equatorial volume transport is not strongly dependent on the degree of asymmetry between northern and 

southern hemisphere surface density, the cross-equatorial heat transport is roughly proportional to (ΔbP/ΔbS )½ (Fig. 4 ), 

where again the subscripts P and S stand for pole-to-pole and southern hemisphere differences, respectively. We plot heat 
transport as a function of Δb rather than ΔT in order to facilitate comparison with mixed-boundary-condition runs in the 
next section. As ΔbP goes to zero, the top of the dominant cell gets pushed down below the thermocline in the subordinate 

hemisphere. Thus, at the equator, the shallower limb of the dominant cell approaches the temperature of the deeper limb 
(Fig. 2 ). Overturning streamlines are not pushed down as far in the southern hemisphere so that the maximum 
southward heat transport (which occurs in the southern hemisphere) is only somewhat more sensitive to ΔbP/ΔbS than the 

dominant cell volume transport. In the northern hemisphere, heat transport is all directed southward for sufficiently weak 
subordinate cell strength (ΔbP/ΔbS  0.5). For smaller ΔbP, the peak northward heat transport is roughly proportional to the 

subordinate cell volume transport.

d. Gent–McWilliams runs  

The experiments with ΔTS = 30°C and ΔTP = 0°, 0.6°, 3°, and 30°C are repeated with the Gent–McWilliams 

parameterization. These runs display the known features of isopycnal mixing: thinner thermocline and upper limb of 
overturning circulation, more compact downwelling region, and reduction of midlatitude upwelling. However, the key 
features described in the subsections above remain in these runs. The experiment with ΔTP = ΔTS has a broader thermocline 

and weaker w than the ΔTP = 0 run (because of the imposed symmetry, the latter is essentially a 1H run). In runs with a 

subordinate cell, the cell reaches deeper than would be predicted by looking at the northern mixed layer or the ΔTP = 0 

stratification. Thus neither of these features can be attributed to the deficiencies of horizontal mixing. The volume transports 
in each cell and across the equator are somewhat less sensitive to ΔTP for weak asymmetries and more sensitive for strong 

asymmetries, compared to the horizontal mixing runs [equivalent to a larger exponent in (12)], but the magnitudes are still 
quite similar (Fig. 3 ). Why we find an apparently much reduced sensitivity to the eddy stirring parameterization than 
Weaver and Eby (1997) is not clear. Their Gent–McWilliams experiment had an overturning strength consistent with our 1H 
Gent–McWilliams run, but their horizontal-mixing experiment had much stronger overturning than ours. 

4. Mixed boundary conditions  

a. Temperature-dominated, salinity-dominated, and asymmetric states  

The previous section took the surface density distribution as an almost prescribed external parameter. In reality, however, 
it is a function of salinity whose distribution is influenced by the ocean circulation more strongly than is temperature. Hence, 
we now turn to a model driven by mixed boundary conditions, where we still restore surface temperature as before but 
apply a fixed surface freshwater flux. Apart from showing the model’s response to large variations in the latter, we will, 
through scaling arguments, link the strength of the salt forcing to pole-to-equator and pole-to-pole salinity and density 



difference, at which point the results from the previous section apply.

We now consider the two-hemisphere system with surface temperature restored to the reference profile given by (2) and 
with surface salt flux given by (3). According to the work of Thual and McWilliams (1992) and others, one would expect 
that given the imposed temperature difference ΔT, if the salt flux QS is sufficiently small, the only possible circulation is a 

symmetric T-dom overturning. Similarly, for sufficiently high QS, the only solution should be a symmetric S-dom 

overturning. It is only at intermediate values of QS that the asymmetric mixed state occurs. Numerical experiments are 

conducted for ΔT = 30°C and 3°C using many values of QS and for ΔT = 10°C using a few values of QS. The unrealistically 

small temperature differences (3°C and 10°C) are used in order to better understand how circulation depends on ΔT. To 
isolate the importance of the diffusion term in the salt transport equation below, additional ΔT = 30°C experiments are 
performed with κH five times the default value. Large κH is not realistic for the ocean, but salt transport box models can use 

horizontal diffusion to mimic the effect of wind-driven gyres (Thual and McWilliams 1992), which is crucial for the stability 
of the thermohaline circulation under mixed boundary conditions (Marotzke 1990). Hence, it is interesting to establish 
diffusive behavior for comparison with future wind-driven experiments. Other ΔT = 30°C experiments are conducted with 
weaker restoring to the reference temperature (a timescale of τ = 300 d rather than the default 30 d timescale). This 
complicates the relationship between surface density and surface salinity, but may be more realistic for the large spatial 
scales considered here (e.g., Rahmstorf and Willebrand 1995; Marotzke and Pierce 1997). 

Figure 5  shows a broad brush picture of where in the (ΔT, QS) parameter space asymmetric states exist (see also 

Table 4 ). For comparison, typical large-scale surface freshwater flux in the ocean is around 50 cm yr−1 (Schmitt et al. 

1989; Wijffels et al. 1992). For a surface salinity of 35 psu, a freshwater flux of 1 cm yr−1 is equivalent to salt flux of about 

10−6 psu cm s−1. For convenient comparisons, all QS values will be stated in units of 10−6 psu cm s−1 unless noted 

otherwise.

For most of the runs, the solution eventually approaches steady state based on the criteria described in section 2. These 
states generally have overturning cells and pycnocline structures qualitatively similar to the restoring boundary condition 
experiments of section 3. Typical surface salinity has a broad equatorial maximum, a weak southern polar minimum, and a 
strong northern polar minimum (Fig. 6a ). Southern polar salinities are nearly identical between the experiments because 
most of the model volume is filled with this water. This means that southern polar salinity is near the globally averaged 
salinity, which is the same for all experiments. The freshness of the northern surface water makes the surface density 
profile asymmetric (Fig. 6b ), as assumed in section 3. The surface density range in the dominant hemisphere is only 
modestly affected by the strength of the salinity forcing, whereas QS is a dominant influence on the density range in 

subordinate hemisphere. The surface temperature range is greater in the subordinate hemisphere than in the dominant 
hemisphere because the residence time of high-latitude surface water is somewhat longer in the subordinate hemisphere, 
giving the water more time to cool to the restoring temperature. In experiments with strong surface restoring, the surface 
temperature range in the two hemispheres is the same to within a few percent. However, in the weak restoring experiments, 
the temperature range is about 20% less in the dominant hemisphere, where the coldest surface water is around 5°C.

For large QS, no steady states are found. One such run (default κH, ΔT = 30°C, QS = 110) has an asymmetric 

overturning in which the dominant cell oscillates from a relatively weak, shallow overturning to a deeper, stronger 
overturning; the period is roughly 300 yr. A counterrotating high-latitude cell also appears at irregular periods. In the S-dom 
runs, the meridional overturning is usually confined to the top kilometer or so of the water column, with “flushes”  of strong, 
deep equatorially asymmetric overturning occuring now and then. The shift from steady to oscillating states as salinity 
forcing is increased has also been seen in single-hemisphere systems (Weaver et al. 1991, 1993; Winton and Sarachik 1993; 
Huang 1994); thermohaline oscillations in two-hemisphere basins have been reported by Weaver and Sarachik (1991). 

Dijkstra and Molemaker (1997) showed that for a two-dimensional model, the temperature restoring timescale and the 
exact form of qS( ) can change qualitative aspects of the equilibrium curves of +(QS). If qS( ) has maxima at the polar 

boundaries [as in our experiments and in Thual and McWilliams (1992)] the system can have a subcritical pitchfork 
bifurcation, which allows stable equilibria to coexist in some range of QS [Fig. 7a ; see also Dijkstra and Molemaker 

(1997) Figs. 15 and 16]. However, if the qS( ) maxima are equatorward of the polar boundaries (as in Marotzke et al. 1988; 

Vellinga 1996), the system has a supercritical pitchfork bifurcation, in which the symmetric state is unstable when the 
asymmetric state is stable [Fig. 7b ; also Dijkstra and Molemaker (1997, Fig. 4)]. 

We explored the multiple equilibria of the system by varying the initial condition for given parameters (Fig. 8 ). The 
behavior of the asymmetric state in our experiments is consistent with a subcritical bifurcation. All three series of 
experiments shown in Fig. 8  have both symmetric ( + = 

−
) and asymmetric ( +  

−
) circulations for overlapping 



ranges of QS. In a supercritical bifurcation, as QS is lowered, the dominant and subordinate transports converge until they 

become equal at a critical QS. In our experiments, no such transition region is evident; a small decrease in QS pushes a 

strongly asymmetric system into a T-dom state (see, e.g., Fig. 8b , 8 < QS < 9). In several experiments, we vary QS 

continuously over the course of a few thousand years. For the ΔT = 30°C, default κH series, these confirm the abrupt 

transition to the T-dom state and shows that the T-dom state is stable for QS < 26, above which the equatorial asymmetry 

begins to grow. We further test the stability of the T-dom state by imposing a pole-to-pole surface salinity difference of 0.2 
psu for ten years on one high-QS symmetric state (ΔT = 30, default κH, QS = 10). This produces a small asymmetry in the 

overturning, which virtually disappears within 1000 yr.

The series of experiments with ΔT = 30°C (Figs. 8a,b ) exhibit the states displayed in two-dimensional experiments: a 
T-dom, S-dom (not shown), and asymmetric state. The ΔT = 3°C case is more complicated (Fig. 8c ). For overlapping 
ranges of QS, there are at least three asymmetric states, a “very”  asymmetric state in which the dominant state cell is much 

stronger than the subordinate cell (Fig. 9a ), an “intermediate”  asymmetric state (Fig. 9b ), and a “slightly”  asymmetric 
state in which the dominant and subordinate cells are nearly equal in strength (Fig. 9c ). 

The streamfunction disturbance in the equatorial deep ocean in Fig. 9c  may be due to the numerical instability 
identified by Weaver and Sarachik (1990). We attempted to eliminate this disturbance both by increasing the vertical 

viscosity from 1 cm2 s−1 to 10 cm2 s−1 and by roughly doubling the vertical resolution. Neither method worked; however, 
the higher resolution runs helped us discover the intermediate asymmetric state, which we were then able to maintain with 
the default vertical resolution.

Which state a given experiment falls into depends on the initial condition for the experiment. Starting at the very 
asymmetric state with QS = 3, when QS is decreased in small increments, the solution remains in a very asymmetric state 

for QS  1.2. Starting with the same QS = 3 initial condition, but immediately lowering QS to 1, the system moves into the 

slightly asymmetric state, which it maintains as QS is increased to 1.6. When the slightly asymmetric run with QS = 1 is 

used as an initial condition for a high vertical resolution run with the same QS, the system falls into the intermediate 

asymmetric state. This state persists when QS is raised to 1.2 and when this QS = 1.2 run is continued at the default (low) 

vertical resolution. These pathways between various states indicate that relatively small perturbations in the initial state can 
change the final state of the system. It is not clear how many more asymmetric states exist in this parameter range. Various 
ΔT = 30°C experiments with different initial conditions do not reveal any multiple asymmetric states. 

b. Properties of asymmetric states  

1) SALT TRANSPORT AND SURFACE SALINITY RANGE 

The meridional salt transport is imposed by the surface salt flux QS, but the manner in which this constraint is satisfied is 

determined by the flow field. Given some knowledge about the behavior of the flow field, we can predict the meridional 
surface salinity gradient in the subordinate hemisphere as a function of QS. 

We start by the standard decomposition of meridional transports into the overturning component (proportional to the 
vertical correlation of zonally averaged velocity and property), gyre component (correlations between the deviations from the 
zonal means of velocity and property), and diffusive components. In our numerical experiments with an asymmetric 
circulation, the gyre component is small in the midlatitude subordinate hemisphere (figure not shown). Therefore we neglect 
the gyre component and obtain an approximate balance between the surface flux [Eq. (3)] integrated over half the 
hemisphere and the midlatitude meridional transport:

[a /4 + (M/L)κHΔz]ΔS = LMQS/π,(13)
 

where  is the overturning volume transport, ΔS is the surface salinity range in the subordinate hemisphere, Δz is the 
depth of the halocline, L and M are the meridional and zonal (at the equator) lengths of a hemisphere, and a is the fraction of 
total overturning that occurs in the polar half of the nonconvecting basin. The  term is divided by a factor of 2 because S 
varies smoothly with depth, and by another factor of 2 because the salinity difference between the midlatitude surface and 
the deep water is approximately ΔS/2. 

The volume transport  is not an external parameter. According to the experiments of the previous section, it should be 
about twice the size of the overturning in a symmetric QS = 0 system. This overturning can be related to external parameters 



by Eq. (9d). We assume that about one-quarter of the upwelling occurs in the northern quarter of the basin, so a = ¼. We 
also assume that Δz is approximately the pycnocline depth [obtainable from Eq. (9a)]. 

A useful parameter to consider is the dimensionless salinity gradient s = βΔS/αΔT, the relative contribution to density of 
salinity and temperature. Regardless of the actual values of ΔT and ΔS, two systems with the same s should have about the 
same degree of density asymmetry and the same relative strengths of dominant and subordinate cells. For a given s, the 
relationship between ΔT and QS can be made clear by combining (13) with the scaling laws discussed in section 3. From 

(9), we have  = r(ΔT/ΔTr)
1/3 and Δz = Δzr(ΔT/ΔTr)

−1/3, where r and Δzr are reference values for  and Δz at some 

reference temperature range ΔTr. Then (13) can be written

 

where the relative strength of the diffusivity term is represented by

 

and the normalization for QS is given by

Q0 = (π/4)a rΔTr(α/β)/LM.(16)
 

As Fig. 10  shows, (14) gives a roughly correct characterization of s versus QS/Q0, with predicted values of s about  

of actual values. Therefore, most of the variation in ΔS, which spans nearly two orders of magnitude in the experiments, can 
be explained by (14). The estimates in Fig. 10  use ΔTr = 30°C, for which we use the default κH, symmetric state to give 

us r = 23.6 Sv (total overturning) and Δzr = 190 m (integral depth scale of equatorial pycnocline). The diffusive term k

(ΔT/ΔTr)
2/3 is only 0.12 for ΔT = 30°C (default κH) but is about 0.6 for high κH and for ΔT = 3°C. 

The actual ranges of s for the asymmetric state are shown in Table 4 . Whereas asymmetric states exist for quite 
different ranges in QS for ΔT = 3°C and ΔT = 30°C, the ranges in s are quite similar. Similarly, curves of QS(ΔT) for s 

constant are nearly parallel to the regime boundaries of the asymmetric state (see Fig. 5 ). It is also interesting that the 
two series of experiments with a strong diffusive term in (14) have nearly identical ranges of s. 

2) SURFACE DENSITY AND OVERTURNING STRENGTH 

We now link the salinity to the buoyancy and from there to the overturning strength via the results of section 3. The key 
buoyancy variable that is affected by salinity is ΔbP, the difference between the northern and southern surface buoyancy 

maxima. Overturning strength is sensitive to ΔbS as well, but ΔbS does not vary much for a wide range of QS largely 

because surface salinity in the deep-water formation region does not vary much. Moreover, surface temperature is strongly 
controlled by the boundary condition and not greatly affected by QS, so ΔbP should be related to the salinity field by

 

For most runs with default (30 day) temperature restoring strength, this is indeed a good approximation, with the estimate 
generally 70%–90% of the actual value. There are actually two significant corrections to (17), but the corrections tend to 
cancel each other out. The subordinate hemisphere maximum surface buoyancy does not occur at the polar boundary; the 
salinity is too low there, so the buoyancy maximum is pushed equatorward where the water is saltier (raising ΔbP) and 

warmer (lowering ΔbP). 

The northern hemisphere salinity range, ΔSN, is estimated in the preceding section. There is a relatively large gyre 

contribution to the meridional salt transport in the southern hemisphere (figure not shown), which makes it difficult to 
estimate ΔSS, the southern hemisphere range. However, because ΔSS is small, a very rough estimate may be good enough, 



so we ignore all but the overturning component in (13). The meridional volume transport at 32°S is fed by three times the 

upwelling area that feeds the transport at 32°N, so (13) implies that ΔSS  ( )ΔSN. This prediction is approximately true 

for all the experiments except for the slightly asymmetric state runs. Thus ΔbP can be predicted from first principles. 

Section 3 showed that for a density profile similar to the mixed boundary condition experiments, ±/ 0 is given by (12), 

with 0  Δb1/3
S. When modeled zonal-mean buoyancy differences are used, this rule is followed very closely by the ΔT 

= 30°C experiments but only roughly by the high κH and ΔT = 3°C experiments (Fig. 11 ). We were not able to 

determine why the prediction is better for ΔT = 30°C than for the other experiments. Profiles of surface zonal average 
buoyancy for ΔT = 30°C series do not look more like the temperature-only profiles than the other series. Section 3b showed 
that the relationship between 2H and 1H experiments should be the same for a wide variety of ΔbS, so the ΔT = 3°C 

experiments should be no different than the ΔT = 30°C experiments. 

The heat transport in the mixed-boundary-condition experiments is quite similar to that in the temperature-only 
experiments (Fig. 4 ). The temperature-only experiments impose a strong asymmetry between northern and southern 
hemisphere temperatures, whereas the temperature in mixed-boundary-condition experiments is approximately symmetrical 
about the equator. However, the thermocline in the dominant hemisphere and in much of the subordinate hemisphere does 
look similar in temperature-only and mixed-boundary-condition experiments. Thus the more idealized experiments capture 
the behavior of the more complicated experiments. The mixed-boundary-condition runs have somewhat smaller heat 
transports at the equator and in the dominant hemisphere because they have a larger gyre component opposing the 
overturning component.

3) LOW SALINITY TONGUE 

In the asymmetric state, a subsurface tongue of low salinity water extends southward of its surface source (Fig. 12 ); 
in some cases the subsurface minimum extends for thousand of kilometers. This fresh tongue is reminiscent of the salinity 
signal associated with Antarctic Intermediate Water in the South Atlantic.

The low salinity tongue appears to be governed by a balance between southward advection of deep, low salinity from the 
northern boundary and downward diffusion of high salinity from the surface. The low salinity signal is injected below the 
surface by convection in the downward limb of the subordinate cell. This can be seen by comparing the maximum depth of 
the northern mixed layer and the mean depth of the fresh tongue in Fig. 12 ;the salinity signal reaches somewhat deeper 
than the mixed layer depth due to diffusion. When the subordinate-cell maximum density is nearly as great as the dominant-
cell maximum density, the low salinity anomaly is relatively deep. In this case, it can travel for a relatively long distance 
before it is eroded by high salinity diffusing from above (Fig. 12a ). Progressively shallower salinity injection results in 
progressively less prominant fresh tongues (Figs. 12b,c ). These ideas are demonstrated by Fig. 13 : the fresh tongue 
reaches farther as the density difference between the two polar boundaries decreases. The length of the tongue is defined 
here as the latitude range over which there is a subsurface minimum in the zonal average salinity. The buoyancy ranges are 
defined in terms of zonal average surface values; ΔbP is the difference between the southern hemisphere and northern 

hemisphere maxima, whereas ΔbS is the difference between the southern hemisphere maximum and the basin-wide 

minimum.

It is interesting that for the same ΔbP/ΔbS, the fresh tongue extends about equally far for experiments with ΔT = 30°C, 

ΔT = 3°C, and high κH. For the same ΔbP/ΔbS, the salinity minimum penetrates more deeply in the ΔT = 3°C experiments 

than in the ΔT = 30° experiments. However, the vertical advective-diffusive balance is also different in the two series, so 
that high surface salinity also diffuses to a greater depth in the ΔT = 3°C experiments; apparently the two effects are equally 
strong. The result is insensitive to κH because the horizontal salinity transport is dominated by advection. 

5. Conclusions  

In a system driven by mixed boundary conditions, a hallmark of equatorially asymmetric circulation is the different roles 
played by temperature and salinity. One hemisphere, which we call the “dominant”  hemisphere, has the strongest meridional 
circulation, minimizing the exposure of surface water to the surface fluxes of salinity (or, more realistically, of freshwater) 
at any particular latitude. This hemisphere is thus dominated by temperature forcing, and contains the densest surface water, 
which then forms the deep water for the entire system. The other, subordinate hemisphere is marked by slower circulation 
and hence greater sensitivity to the salinity forcing. Here, no surface water is dense enough to penetrate to the bottom, but 
the local density maximum produces intermediate water that drives a relatively shallow overturning cell. To summarize, the 
buoyancy range of the entire system is largely controlled by the imposed temperature range ΔT, while the degree of 
asymmetry is controlled by both ΔT and the salinity flux scale QS. 



Experiments with surface buoyancy directly controlled through a restoring boundary condition show how meridional 
overturning cell transports of mass and heat depend on the surface buoyancy range in each hemisphere. Even a small 
asymmetry in surface buoyancy makes one overturning cell much stronger than the other, with a strong volume transport 
forced to cross the equator. A much greater buoyancy asymmetry does not produce a much greater circulation asymmetry. 
In the mixed boundary system, therefore, deep-water formation rate and cross-equatorial flow are primarily governed by 
ΔT. As long as QS is in the range that permits asymmetric flow, QS will have a smaller influence on the dominant cell 

strength. The subordinate cell strength 
−

 is more sensitive to ΔbP, the difference between the surface buoyancy maxima in 

the two hemispheres, so 
−

 does depend on QS. The subordinate cell is likely to be strongly influenced by wind stress, 

which is not included in this model, but the deepening of the subordinate cell with decreasing ΔbP, and hence with 

decreasing QS, should be a robust result. This deepening also deepens (and hence cools) the warm limb of the cross-

equatorial circulation so that QS has a significant influence on cross-equatorial heat transport. 

A two-hemisphere basin with strongly asymmetric circulation has a somewhat broader pycnocline, correspondingly 
weaker upwelling, and nearly double the meridional volume transport of a one-hemisphere basin with equivalent forcing. The 
differences can be accounted for by scalings based on the classical assumptions of large-scale geostrophy and vertical 
advective–diffusive balance. However, care must be taken to close the system of scale relations with the continuity equation 
rather than with the commonly applied linear vorticity relation. The latter equation does not include important contributions 
to vorticity in the western boundary current.

It is more difficult to explain quantitatively how overturning strength depends on ΔbP, but it is clear that the general 

pattern depends on the existence of a pycnocline. The total upwelling is controlled by diffusion in the pycnocline; the 
strengths of the two cells are largely determined by how they divide this fixed amount of upwelling. Even a modest ΔbP 

forces the relatively small subpycnocline range of buoyancy to be filled by the dominant cell. This gives the dominant cell 
access to at least the base of the pycnocline over most of basin so that it can grow strong at the expense of the subordinate 
cell.

The power law for overturning  found here appears to be more complicated than the linear relationships between flow 
strength and meridional density differences found in global GCMs (Hughes and Weaver 1994;Rahmstorf 1996). On closer 
inspection, however, we have shown that the Hughes and Weaver result is consistent with the classical scaling. This has 
implications in formulating box models, which for simplicity typically assume that  is proportional to Δb between boxes 

(e.g., Rooth 1982; Scott et al. 1999). The classical  power law is appropriate to surface buoyancy and the linear law is 
appropriate to a double vertical integral of density, but a box model should be based on a single vertical integral. In that case, 

the reasoning in section 3b yields   Δb1/2. 

In contrast to the Hughes and Weaver (1994) model, Rahmstorf (1996) pointed out that much of the North Atlantic Deep 
Water in his model did not upwell in the midlatitude Atlantic; hence, the Atlantic thermocline depth was unrelated to 
overturning strength. This significantly changed the scaling as expressed in (9), leading to linear dependence of overturning 
on meridional density differences. However, how global upwelling is distributed is still a somewhat open question. For 
instance, the horizontal (rather than isopycnal) eddy diffusivity commonly used in general circulation models may overstate 
the amount of upwelling in the Antarctic Circumpolar Current (Danabasoglu and McWilliams 1995). 

The approximate surface distribution of salinity, and hence of density, can be related to QS and ΔT via approximations for 

the meridional salt transport. Our approximation is fairly crude since it does not take into account the effects of QS on the 

circulation, such as the existence of the subordinate cell. It can be thought of as essentially a box model, with the attributes 
more closely attuned to the dynamics of three-dimensional circulations than in previous work, such as Rooth (1982) or 
Thual and McWilliams (1992). In the more sensitive subordinate hemisphere, the salt transport is dominated by zonal-
average (hence two-dimensional) properties such as meridional overturning. However, the strength of these processes is 
different for two- and three-dimensional systems. The degree of asymmetry of the system can be described by the relative 
salinity range s = βΔS/αΔT, where ΔS is the salinity contrast in the subordinate hemisphere and α and β are the thermal and 
haline expansion coefficients, respectively. Here, s measures the relative contribution of salinity to density variations; for the 

three-dimensional system, s is constant along curves of QS  ΔT4/3. 

The system appears to be governed by a “subcritical pitchfork bifurcation,”  in which both symmetric and asymmetric 
solutions can coexist for the same parameters. This is consistent with the two-dimensional results of Dijkstra and 
Molemaker (1997), in which the nature of the bifurcation depends on details of the surface forcing. Horizontal diffusivity 
raises the value of the minimum QS for which the asymmetric state exists and is stable. This is also consistent with two-



dimensional results (Thual and McWilliams 1992) and suggests that the minimum QS rises when wind forcing is added to 

the thermohaline circulation. The location of the regime boundaries must be viewed with some caution because, in reality, 
the ocean is coupled to an atmosphere in which meridional transports of heat and moisture can affect the stability of a state 
(Nakamura et al. 1994; Saravanan and McWilliams 1995; Marotzke 1996). We show that capturing the atmospheric 
temperature feedback by weakening the surface temperature constraint raises the minimum QS for which a stable 

asymmetric state exists. However, a two-dimensional model shows that such a configuration is more unstable than a 
coupled model, in which moisture feedbacks are also included (Capotondi and Saravanan 1996). 

It is not clear how many asymmetric steady states are possible for a given set of parameters. We stumbled upon at least 
three stable equilibria for ΔT = 3°C, with significant basinwide changes in overturning strength and T–S–ρ characteristics. 
However, we could not find multiple asymmetric states for the more realistic ΔT = 30°C. Dijkstra and Molemaker (1997) 
also show a hint of multiple asymmetric states (their Figs. 15 and 16). We attempted to construct a box model that included 
some of the subtleties of the relationships among salinity, overturning strength, and meridional salt transport. None of our 
attempts produced the multiple states seen here, nor did they display the vanishing of the asymmetric state at low QS 

described above, so we do not describe the model details in this paper.

The differences in circulation in our multiple states are larger than those between multiple convection states found by 
Lenderink and Haarsma (1994) in a three-level three-dimensional model, so purely local processes are unlikely to be 
responsible. If the real ocean displays such a multiplicity of states, it would indicate that significant changes in the global 
circulation could be forced by temporary climate events. The existence of such states would imply a much richer range of 
responses for the thermohaline circulation, which is usually portrayed as choosing between convection or no-convection 
states for various oceans (Marotzke and Willebrand 1991) or ocean regions (Hughes and Weaver 1994). 

The system studied here is rather idealized, though it does capture such Atlantic features as the north–south asymmetry in 
polar salinity, the concomitant dominance of one hemisphere over the other in deep-water production, and the tongue of 
low-salinity intermediate water (AAIW in the Atlantic) produced by the fresher hemisphere. The usefulness of such an 
idealization lies partly in the simplicity of the salt transport, which allows for a rough prediction of circulation properties 
from external parameters. The system also shows that the qualitative behavior illustrated by two-dimensional models holds 
for three-dimensional dynamics. An obvious next step would be to include more realistic features from the real world, 
building on the more idealized results to derive the rules governing the more complicated system. Prominent “complications”  
include the wind-driven gyres, nonlinearity in the equation of state, and the Antarctic Circumpolar Current.

Acknowledgments

Work on this paper was done under NSF Grant OCE-9521138. Financial support for JM was granted by the Tokyo 
Electric Power Company through the TEPCO/MIT Environmental Research Program. Kevin Kohler provided programming 
assistance. Thanks go to Andrew Weaver and Michael Eby for donating their flux-corrected transport code and for their 
help in using it, and to Ron Pacanowski and Stephen Griffies for assistance with MOM 2. We acknowledge Claes Rooth and 
Steve Meacham for many interesting and useful discussions about thermohaline circulation and the mathematics of 
bifurcations, Jeff Scott, Thomas Stocker, and two anonymous reviewers for extensive suggestions, and Bob Hallberg for his 
comments.

REFERENCES  

Arakawa, A., and V. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Meth. 
Comput. Phys. 17, 174–267.. 

Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 1971–1979.. 

Böning, C. W., W. R. Holland, F. O. Bryan, G. Danabasoglu, and J. C. McWilliams, 1995: An overlooked problem in model simulations of 
the thermohaline circulation and heat transport in the Atlantic Ocean. J. Climate, 8, 515–523.. Find this article online 

Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulation. Nature, 323, 301–304.. 

— —, 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970–985.. Find this 
article online 

Bryan, K., 1984: Accelerating the convergence to equilibrium of ocean-climate models. J. Phys. Oceanogr., 14, 666–673.. Find this article 
online 



— —, and M. D. Cox, 1967: A numerical investigation of the oceanic general circulation. Tellus, 19, 54–80.. 

Capotondi, A., and R. Saravanan, 1996: Sensitivity of the thermohaline circulation to surface buoyancy forcing in a two-dimensional ocean 
model. J. Phys. Oceanogr., 26, 1039–1058.. Find this article online 

Cessi, P., and W. Young, 1992: Multiple equilibria in two-dimensional thermohaline circulation. J. Fluid Mech., 241, 291–309.. 

Colin de Verdiere, A., 1988: Buoyancy driven planetary flows. J. Mar. Res., 46, 215–265.. 

Cox, M. D., 1984: A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group Tech. Rep. 1, Geophysical Fluid 
Dynamics Laboratory/NOAA, 40 pp. [Available from GFDL/NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542.].

— —, 1989: An idealized model of the World Ocean. Part I: The global-scale water masses. J. Phys. Oceanogr., 19, 1730–1752.. Find this 
article online 

Danabasoglu, G., and J. C. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterization of mesoscale tracer 
transports. J. Climate, 8, 2967–2987.. Find this article online 

— —, — —, and P. R. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264, 1123–1126.. 

Dijkstra, H. A., and M. J. Molemaker, 1997: Symmetry breaking and overturning oscillations in thermohaline-driven flows. J. Fluid Mech., 
331, 169–198.. 

Drazin, P. G., 1992: Nonlinear Systems. Cambridge University Press, 317 pp.. 

England, M. H., 1993: Representing the global-scale water masses in ocean general circulation models. J. Phys. Oceanogr., 23, 1523–1552.. 
Find this article online 

Gargett, A. E., and G. Holloway, 1992: Sensitivity of the GFDL ocean model to different diffusivities for heat and salt. J. Phys. 
Oceanogr., 22, 1158–1177.. Find this article online 

Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.. Find this article 
online 

— —, J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation 
models. J. Phys. Oceanogr., 25, 463–474.. Find this article online 

Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 5037–5046.. 

Huang, R. X., 1994: Thermohaline circulation: Energetics and variability in a single-hemisphere basin model. J. Geophys. Res., 99, 12 471–

12 485.. 

— —, and R. L. Chou, 1994: Parameter sensitivity study of the saline circulation. Climate Dyn., 9, 391–409.. 

Hughes, T. C. M., and A. J. Weaver, 1994: Multiple equilibria of an asymmetric two-basin ocean model. J. Phys. Oceanogr., 24, 619–637.. 
Find this article online 

Ledwell, J. R., and A. Bratkovich, 1995: A tracer study of mixing in the Santa Cruz Basin. J. Geophys. Res., 100, 20 681–20 704.. 

Lenderink, G., and R. J. Haarsma, 1994: Variability and multiple equilibria of the thermohaline circulation associated with deep-water 
formation. J. Phys. Oceanogr., 24, 1480–1493.. Find this article online 

Levitus, S., and T. P. Boyer, 1994: World Ocean Atlas 1994, Vol. 4:Temperature. NOAA Atlas NESDIS 4, NOAA, NESDIS, Washington, 
DC, 117 pp..

Macdonald, A. M., 1993: Property fluxes at 30° S and their implications for the Pacific–Indian Throughflow and the global heat budget. J. 
Geophys. Res., 98, 6851–6868.. 

— —, and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382, 436–439.. 

Marotzke, J., 1990: Instabilities and multiple equilibria of the thermohaline circulation. Ph.D. thesis, Berichte Institut für Meereskunde, 
Kiel, Germany, 126 pp. [Available from J. Marotzke, Center for Global Change Science, MIT, Rm. 54-1514, Cambridge, MA 02139.]. 

— —, 1996: Analysis of thermohaline feedbacks. Decadal Climate Variability: Dynamics and Predictability. D. L. T. Anderson and J. 
Willebrand, Eds., NATO ASI Series, 333–378.. 

— —, 1997: Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J. Phys. Oceanogr., 27, 1713–1728.. Find 



this article online 

— —, and J. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21, 1372–1385.. Find this 
article online 

— —, and D. W. Pierce, 1997: On spatial scales and lifetimes of SST anomalies beneath a diffusive atmosphere. J. Phys. Oceanogr., 27, 
133–139.. Find this article online 

— —, P. Welander, and J. Willebrand, 1988: Instability and multiple steady states in a meridional-plane model of the thermohaline 
circulation. Tellus, 40A, 162–172.. 

Mikolajewicz, U., and E. Maier-Reimer, 1994: Mixed boundary conditions in ocean general circulation models and their influence of the 

stability of the model’s conveyor belt. J. Geophys. Res., 99, 22 633–22 644.. 

Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13, 707–730.. 

Nakamura, M., P. H. Stone, and J. Marotzke, 1994: Destabilization of the thermohaline circulation by atmospheric eddy transports. J. 
Climate, 7, 1870–1882.. Find this article online 

Pacanowski, R. C., 1996: MOM 2 documentation, user’s guide and reference manual. GFDL Ocean Tech. Rep. 3.1, Geophysical Fluid 
Dynamics Laboratory/NOAA, Princeton, NJ. [Available from GFDL/NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542.]. 

Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Amer. Inst. Phys., 520 pp.. 

Peterson, W. H., 1979: A steady thermohaline convection model (driven by turbulent buoyant plumes from multiple isolated sources in a 
large non-turbulent finite region, with applications to the oceanic thermocline circulation). Ph.D. thesis, University of Miami, 160 pp.. 

Quon, C., and M. Ghil, 1992: Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions. J. Fluid Mech., 245, 
449–483.. 

— —, and — —, 1995: Multiple equilibria and stable oscillations in the thermosolutal convection at small aspect ratio. J. Fluid Mech., 291, 
33–56.. 

Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799–811.. 

— —, and J. Willebrand, 1995: The role of temperature feedback in stabilising the thermohaline circulation. J. Phys. Oceanogr., 25, 787–
805.. Find this article online 

Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96, 2675–2692.. 

Rooth, C., 1982: Hydrology and ocean circulation. Progress in Oceanography, Vol. 11, Pergamon, 131–149.. 

Saravanan, R., and J. C. McWilliams, 1995: Multiple equilibria, natural variability, and climate transitions in an idealized ocean–
atmosphere model. J. Climate, 8, 2296–2323.. Find this article online 

Schmidt, G. A., and L. A. Mysak, 1996: The stability of a zonally averaged thermohaline circulation model. Tellus, 48, 158–178.. 

Schmitt, R. W., P. S. Bogden, and C. E. Dorman, 1989: Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. 
Oceanogr., 19, 1208–1221.. Find this article online 

Scott, J. R., J. Marotzke, and P. H. Stone, 1999: Interhemispheric thermohaline circulation in a coupled box model. J. Phys. Oceanogr., 29, 
351–365.. Find this article online 

Speer, K. G., and M. S. McCartney, 1991: Tracing lower North Atlantic Deep Water across the equator. J. Geophys. Res., 96, 20 443–20

448.. 

Stocker, T. F., and D. G. Wright, 1991: A zonally averaged ocean model for the thermohaline circulation. Part II: Interocean circulation in 
the Pacific–Atlantic basin system. J. Phys. Oceanogr., 21, 1725–1739.. Find this article online 

— —, D. G. Wright, and L. A. Mysak, 1992: A zonally averaged, coupled ocean–atmosphere model for paleoclimate studies. J. Climate, 5, 
773–797.. Find this article online 

Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.. 

— —, and A. B. Arons, 1960: On the abyssal circulation of the World Ocean. Part I: Stationary planetary flow patterns on a sphere. Deep-
Sea Res., 6, 140–154.. 



— —, — —, and A. J. Faller, 1958: Some examples of stationary planetary flow patterns in bounded basins. Tellus, 10, 179–187.. 

Thual, O., and J. C. McWilliams, 1992: The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a 
comparison with low-order box models. Geophys. Astrophys. Fluid Dyn., 64, 67–95.. 

Toole, J. M., R. W. Schmitt, K. L. Polzin, and E. Kunze, 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. 
Geophys. Res., 102, 947–959.. 

Tziperman, E., 1997: Inherently unstable climate behavior due to weak thermohaline ocean circulation. Nature, 386, 592–595.. 

Vellinga, M., 1996: Instability of two-dimensional thermohaline circulation. J. Phys. Oceanogr., 26, 305–319.. Find this article online 

Veronis, G., 1975: The role of models in tracer studies. Numerical Models of the Ocean Circlation, U.S. Natl. Acad. Sci., 133–145.. 

Wang, X., P. H. Stone, and J. Marotzke, 1999a: Global thermohaline circulation. Part I: Sensitivity to Atmospheric Moisture Transport. J. 
Climate, 12, 71–82.. Find this article online 

— —, — —, and — —, 1999b: Global thermohaline circulation. Part II: Sensitivity with interactive atmospheric transports. J. Climate,12, 
83–91.. Find this article online 

Warren, B. A., 1981: Deep circulation of the World Ocean. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT 
Press, 6–42.. 

— —, 1983: Why is no deep water formed in the North Pacific? J. Mar. Res., 41, 327–347.. 

Weaver, A. J., and E. S. Sarachik, 1990: On the importance of vertical resolution in certain ocean general circulation models. J. Phys. 
Oceanogr., 20, 600–609.. Find this article online 

— —, and — —, 1991: The role of mixed boundary conditions in numerical models of the ocean’s climate. J. Phys. Oceanogr., 21, 1470–
1493.. Find this article online 

— —, and M. Eby, 1997: On the numerical implementation of advection schemes for use in conjunction with various mixing 
parameterizations in the GFDL ocean model. J. Phys. Oceanogr., 27, 369–377.. Find this article online 

— —, E. S. Sarachik, and J. Marotzke, 1991: Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353, 836–838.. 

— —, J. Marotzke, P. F. Cummins, and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 
23, 39–60.. Find this article online 

Weber, S. L., 1998: Parameter sensitivity of a coupled atmosphere–ocean model. Climate Dyn., 14, 201–212.. 

Welander, P., 1986: Thermohaline effects in the ocean circulation and related simple models. Large-Scale Transport Processes in Oceans 
and Atmospheres, J. Willebrand and D. L. T. Anderson, Eds., NATO ASI Series, D. Reidel, 163–200.. 

Wijffels, S. E., R. W. Schmitt, H. L. Bryden, and A. Stigebrandt, 1992: Transport of freshwater by the oceans. J. Phys. Oceanogr., 22, 
155–162.. Find this article online 

Winton, M., 1996: The role of horizontal boundaries in parameter sensitivity and decadal-scale variability of coarse-resolution ocean 
general circulation models. J. Phys. Oceanogr., 26, 289–304.. Find this article online 

— —, and E. S. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. 
Phys. Oceanogr., 23, 1389–1410.. Find this article online 

Wunsch, C., 1970: On oceanic boundary mixing. Deep-Sea Res., 17, 293–301.. 

Zhang, J., R. W. Schmitt, and R. X. Huang, 1998: Sensitivity of GFDL Modular Ocean Model to the parameterization of double-diffusive 
processes. J. Phys. Oceanogr., 28, 589–605.. Find this article online 

Tables  

Table 1. Summary of numerical experiments.
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Table 2. Restoring runs, one and two hemisphere (hem) overturning. All transports given in Sv. For 2-hem runs, ΔTN = 0.
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Table 3. Subordinate overturning cell depth. Dcell is the maximum depth of the subordinate cell, D
ΔTP

 is the depth of the ΔTP 

isotherm in the ΔTP = ΔTS run, and Dmixed is the mixed layer depth. All depths are in m. 
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Table 4. Series of mixed BC experiments, asymmetric state. External parameters and some solution characteristics of the mixed-
boundary-condition runs. Min and max refer to minimum and maximum values for which an asymmetric state was found (not 

including slightly asymmetric states in ΔT = 3° runs). Here, ΔT is in °C, κH is in m2 s−1, τ is in days, and QS is in 10−6 psu cm s−1 
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Figures  
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Fig. 1. Meridional overturning streamfunction (contours) and zonal average temperature (shading) for restoring BC 
experiments, (a) 1H and (b) 2H, ΔTN = 0. Overturning contours are 2 Sv apart; isotherms are at 0.05, 0.1, 0.2, 0.4, and 0.8 of ΔTS = 

30°C. In this and all subsequent plots of overturning streamfunction, dashed, solid, and dotted contours represent negative 
(southern sinking), positive (northern sinking), and zero values, respectively.
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Fig. 2. Meridional overturning streamfunctions for runs with ΔTS = 30°C and various ΔTN < ΔTS. Contour intervals are 2 Sv for 

dashed contours and 1 Sv for solid. Shading represents the temperature range ventilated in both hemispheres (all water warmer 



than subordinate hemisphere minimum sea surface temperature).
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Fig. 3. Volume transport as a function of ΔTP for the dominant cell, subordinate cell, sum of dominant and subordinate cells, 

and cross-equatorial flow. (a) Experiments with horizontal diffusion. (b) Experiments with Gent–McWilliams mixing (advective 
plus eddy components).
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Fig. 4. Meridional heat transport as a function of ΔbP/ΔbS for temperature-only (dashed) and mixed-boundary-condition (solid) 

experiments, including values at the equator (×), the southward (dominant) maximum (+), and the northward (subordinate) 
maximum ( ). 
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Fig. 5. Salt flux QS and imposed temperature difference ΔT for mixed-boundary-condition experiments with κH = 1000 m2 s−1. 

Locations in parameter space are denoted by a “+”  if only T-dom states were found, by a “×”  if only S-dom states were found, 
and by an“ ”  if at least one asymmetric state was found. Solid lines represent estimates of regime boundaries. Dotted lines are 

estimates of QS(ΔT) for constant s values of 0.1, (0.1 )½, 1, and (10 )½ (section 4b). Here, s is the nondimensional subordinate 

hemisphere salinity gradient, normalized by its influence on density relative to ΔT. 
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Fig. 6. Zonal average surface (a) salinity and (b) density for several ΔT = 30 experiments (QS = 8.6, 10, 26, 52, 80). Salinity range 

and temperature asymmetry both increase with QS. 



 
Click on thumbnail for full-sized image. 

Fig. 7. Schematic of overturning transport maximum vs QS showing (a) subcritical and (b) supercritical pitchfork bifurcation 

(Drazin 1992). Solid lines are stable equilibria, while dashed lines are unstable equilibria. Upper curve is +, lower curve is 
−

, 

and central curve is symmetric state.
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Fig. 8. Total volume transport of the dominant (“+”) and subordinate (“ ”) meridional overturning cells as a function of QS (in 

units of 10−6 psu cm s−1, which roughly corresponds to cm yr−1 of surface freshwater flux) for (a) κH = 5000 m2 s−1, (b) ΔT = 30°

C, and (c) ΔT = 3°C experiments. Each dashed line connects an experiment to the experiment that is used as an initial condition 
(initial condition runs were generally at higher QS than succeeding runs). Solid lines show values for runs in which QS is changed 

continuously during the run. The S-dom experiments are not shown. In (b), the highest QS experiment data is based on a time-

average of the oscillating series.
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Fig. 9. Meridional streamfunction and zonal average density for (a) very asymmetric, (b) intermediate asymmetric, and (c) 

slightly asymmetric states with ΔT = 3°C and QS = 1.2. Streamfunction contour interval is 0.5 Sv; isopycnals are at (28 kg/m3 − ρ), 

where ρ is 0.025, 0.05, 0.1, 0.2, and 0.4 kg m−3. 
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Fig. 10. Dimensionless salinity gradient s as a function of dimensionless salinity flux QS/Q0 for asymmetric-state runs. ΔT = 3 

runs are represented by circles; ΔT = 30 runs are represented by squares (default κH), diamonds (high κH), and triangles (weak 

temperature restoring). Black lines are estimates based on (14), with dashed line for high κH runs. For reference, gray lines mark 

slopes of 0.5, 1, 2, 4, 8, and 16.
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Fig. 11. Total volume transport of dominant and subordinate cells as a function of polar buoyancy difference ΔbP for ΔT = 3°C 

(circles) and ΔT = 30°C (squares for default κH, diamonds for high κH, and triangles for weak restoring). Volume transport and 

buoyancy difference in each series of experiments are normalized by values from corresponding QS = 0 (T-dom state) experiments. 

Filled symbols represent experiments, open symbols represent prediction based on ΔbP and ΔbS (i.e., changes in dominant 

hemisphere buoyancy differences are taken into account), and dashed lines represent predictions based on ΔbP alone (dominant 

hemisphere buoyancy differences are assumed constant).
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Fig. 12. Zonal average salinity (shaded), overturning streamfunction (thin contours), and densest isopycnal to outcrop at the 
surface in subordinate hemisphere (thick contours) for ΔT = 30°C experiments with (a) QS = 8.6, (b) QS = 26, and (c) QS = 52. For 

each experiment, salinity contour interval is 1/20 of salinity range of the experiment. Darker shading represents fresher water in 
tongue protruding from northern boundary, but saltier water in tropical surface patch. Streamfunction contour interval is 2 Sv, 
with negative values dashed and zero contour dotted.
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Fig. 13. Length of low salinity tongue (in degrees latitude) as a function of ratio of polar buoyancy difference to dominant 
hemisphere buoyancy range, for ΔT = 3°C runs (circles), ΔT = 30°C, default and high κH runs (squares and diamonds, 

respectively).
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