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ABSTRACT

Recent modeling studies of dense water formation beneath an idealized steady 
coastal polynya have provided simple analytical expressions for the maximum 
density anomaly achievable as a function of the polynya geometry and the 
imposed surface buoyancy flux. These studies have assumed that the buoyancy 
flux and polynya geometry are both constant and independent parameters. To 
relax these assumptions, dense water formation is examined beneath a coastal 
polynya whose size and surface buoyancy flux are computed from atmospheric 
temperature and wind velocity according to a polynya model developed by 
Pease. Though highly idealized, the Pease model produces polynyas that open 
and close on reasonably realistic timescales, and it thermodynamically couples 
the polynya size and buoyancy flux.

Results reveal several interesting and potentially useful features of the ocean 
response to time-dependent polynya forcing. First, under reasonable 
atmospheric conditions, both the maximum density anomaly achievable and the 
volume flux of dense water formed are nearly independent of polynya width and 
atmospheric temperature (and, therefore, surface buoyancy flux), but they are 
strongly dependent on the magnitude of the wind that pushes the ice offshore. 
Second, variations in polynya size produce horizontal gradients in surface 
buoyancy flux that are important in setting the scales of the ocean response. 
Third, timescales of the ocean response (>10 days) are typically longer than 
timescales associated with polynya openings and closings (a few days). 
Therefore, the ocean response to time-dependent polynya size and surface 
buoyancy flux is nearly the same as if the polynya size and surface buoyancy 
flux were fixed at the time average of the forcing (over 30–60 days). This 
suggests that reasonable estimates of dense water formed beneath Arctic polynyas may be possible by applying the 
simple expressions based on steady forcing, but using the seasonal averages of the parameters. Finally, it is difficult 
to find realistic combinations of atmospheric conditions that produce large quantities of water with density anomaly 

greater than about 1 kg m−3. 
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1. Introduction  

It is generally accepted that dense water formed on Arctic continental shelves must play a leading role in the maintenance 
of the cold upper halocline in the deep Arctic basins, as first proposed by Aagaard et al. (1981), although the dynamics of 
the maintenance process largely remain a mystery. The required dense shelf water is believed to be produced primarily in 
regions of rapid and persistent ice growth, for example, coastal polynyas, in which brine rejection during ice formation acts 
as a negative buoyancy flux into the waters beneath. Cavalieri and Martin (1994) used available satellite, oceanographic, and 

atmospheric data to estimate that about 0.7–1.2 Sv (Sv  106 m3 s−1) of dense shelf water is produced within coastal 
polynyas over the entire Arctic; not enough to maintain the upper cold halocline, but a substantial fraction. Such estimates of 
dense shelf water production necessarily involve many assumptions because of the sparse data coverage in both space and 
time, as well as the difficulty of interpreting ice concentrations and growth rates. Another important source of uncertainty is 
that the ocean response is not considered in any detail. A given combination of surface buoyancy flux and polynya size is 
assumed to make a certain amount of dense water, but the ocean response to such complicated forcing is uncertain.

Several recent studies have begun to examine the ocean response beneath a steady coastal polynya and the subsequent 
offshore transport of dense water (Gawarkiewicz and Chapman 1995; Chapman and Gawarkiewicz 1995, 1997). The 
approach has been to study the response in idealized settings in order to develop some basic understanding of the 
fundamental processes involved. Model results show that dense shelf water is carried rapidly offshore in a complicated field 
of small-scale (15–25 km) eddies, rather than a well-defined and organized plume. Despite the complex nature of the flow, 
scaling arguments based on the approach of Visbeck et al. (1996) have been used to derive simple algebraic expressions for 
the maximum density anomaly achievable beneath the polynya and the time required to reach this density anomaly, each in 
terms of the prescribed surface buoyancy flux and the polynya geometry. Even the unknown proportionality constant that 
was determined empirically in these studies has now been estimated theoretically (Spall and Chapman 1998), thereby 
providing a simple dynamically based estimate of the properties of dense water formed beneath a shallow coastal polynya.

These results are encouraging and potentially useful. However, the model polynyas of the previous studies have been 
highly simplified, so the general applicability of the results and simple expressions in more realistic situations is uncertain. 
The objective of the present work is to address three of the most obvious shortcomings of the previous studies:

● The surface buoyancy flux and the polynya geometry have been held fixed in both space and time. Natural polynyas 
open and close on timescales of a few days in response to varying winds and surface buoyancy fluxes, which are 
determined by changing atmospheric weather patterns and complicated ice dynamics. Model estimates of the time to 
reach the maximum density anomaly, based on the simple algebraic relationships with reasonably realistic parameter 
choices, are often considerably longer than the duration of typical polynya events, so it is unclear if the maximum 
density anomaly would ever be achieved.

● The surface buoyancy flux and the polynya geometry have been treated as independent parameters, clearly not the 
case in real polynyas. That is, large surface buoyancy fluxes tend to increase ice production that closes a polynya, 
while small surface buoyancy fluxes may allow a polynya to become exceptionally large. The two parameters should 
be thermodynamically coupled in model polynyas.

● The algebraic scaling relationships depend on the spatial structure of the surface buoyancy flux. In particular, the 
presence of a finite region over which the buoyancy flux decreases to zero away from the polynya (i.e., the so-called 
forcing decay region) changes the power law of the scaling (Chapman and Gawarkiewicz 1997), with the width of 
this region appearing as an important parameter in the scaling relationships (see section 2 for more details). However, 
it is unclear exactly what the forcing decay region represents, how large it might be, and if it is a useful concept in 
more realistic situations.

To address these issues, the timescales of the ocean response to a steady polynya are examined first (section 2). Then, 
the idealized polynya model developed by Pease (1987) is used to introduce time dependence in the surface buoyancy flux 
and polynya size (section 3). More sophisticated and realistic polynya models have been constructed (e.g., Ou 1988; Markus 
and Burns 1995; Lynch et al. 1997; Willmott et al. 1997), but the Pease model is adequate for this study. It is simple yet 
insightful, is easy to implement, produces polynyas that open and close on reasonably realistic timescales, and 
thermodynamically couples polynya size to surface buoyancy flux. Estimates of polynya size and surface buoyancy flux 
from the Pease model are then used as time-dependent forcing for a primitive-equation numerical model of the ocean 
response to a coastal polynya (section 4). The response to one case of “observed”  forcing is also considered. Finally, results 
and implications are discussed and summarized (section 5). 

2. Time-dependent ocean response to steady forcing  



The timescales expected for the ocean response are revealed by considering a polynya with a constant surface buoyancy 
flux. Immediately upon applying the surface buoyancy flux, the density of the water directly beneath begins to increase. The 
density profile is then unstable, so the water mixes vertically. If the stratification is sufficiently weak that the dense water 
mixes to the bottom (i.e., the shallow convection case typical of Arctic coastal polynyas), then the increase in density is 
linear with time. A density front forms around the edge of the polynya and adjusts toward geostrophy, generating a rim 
current flowing around the edge of the polynya. The rim current is baroclinically unstable, so waves grow rapidly to finite 
amplitude, forming baroclinic eddies that propagate away from the rim current and exchange dense polynya water with 
lighter ambient water. If the forcing continues long enough, a quasi equilibrium is reached in which the buoyancy flux 
accompanying the eddy exchange balances the buoyancy loss at the surface, so the density beneath the polynya reaches an 
approximately constant value. If the surface buoyancy flux subsequently ceases, the eddies continue to exchange denser and 
lighter waters until the denser water is entirely mixed or carried away.

This well-known scenario may be expressed mathematically by following the approach that Jones and Marshall (1997) 
applied to deep convection [while keeping the notation of Chapman and Gawarkiewicz (1997)]. Consider a coastal polynya 
along a straight coastline (Fig. 1 ), occupying an area A over which a uniform surface buoyancy flux B0 is imposed. The 

length of the polynya along the coast is 2a, while the polynya extends offshore a distance b at its widest point. The 
buoyancy flux decreases to zero away from the polynya over a distance W, that is, the forcing decay region. The ocean has 
constant depth H and is initially unstratified with density ρ0. The total change in density beneath the polynya is determined by 

both the surface buoyancy flux and the lateral buoyancy flux associated with baroclinic eddies, and can be expressed as

 

where ρ′ is the density anomaly beneath the polynya,  ′ρ′ is the lateral eddy flux of density normal to the edge of the 
polynya, l is the distance along the edge of the polynya, z is the vertical coordinate, and g is gravitational acceleration. For 
simplicity, the buoyancy flux in the forcing decay region is ignored, so l refers to the edge of the constant flux region in Fig. 
1 . 

The lateral density flux can be approximated as ′ρ′ = ceUρ, where U is the total geostrophic velocity along the rim 

current (i.e., the difference between the maximum surface and bottom velocities), ρ = ρ′ dA dz/AH is the spatially 
averaged density anomaly beneath the polynya, and ce is an efficiency constant that can be viewed as the ratio of the speed 

of eddy propagation away from the rim current to the velocity of the rim current itself (Spall and Chapman 1998). The rim 
current velocity can be accurately estimated from the thermal wind (Chapman 1998), so U = (gH/ρ0f)(ρ/W), where f  is the 

Coriolis parameter which is assumed constant. Substituting these approximations into (1) and assuming that ′ρ′ is 
independent of l and z yields

 

where P is the perimeter of the polynya along which eddy exchange occurs, that is, excluding the length at the coast. 

The various possible balances in (2) demonstrate the expected ocean response to a steady coastal polynya. For example, 
immediately after the surface buoyancy flux is applied there are no eddies, so the eddy flux (second term on the left) is zero. 
Integrating (2) yields

 

That is, the density beneath the polynya increases linearly with time. If the surface buoyancy flux is applied long enough, 
then a quasi-steady state is achieved in which the baroclinic eddy flux balances the surface flux and dρ/dt = 0 in (2), 
producing the equilibrium density anomaly



 

From (3), the time to reach the equilibrium density anomaly is

 

The estimates (4) and (5) are those obtained by Chapman and Gawarkiewicz (1997) but now generalized to an arbitrary 
polynya geometry. Note that Visbeck et al. (1996) obtained expressions analogous to (4) and (5) but for the case of W = 0, 

and these can be recovered by replacing W with the internal Rossby radius at equilibrium, Rd = (ρegH/ρ0f2)1/2. The 

transition between the two cases has been investigated by Chapman (1998) and will not be considered here. Suffice it to say 
that W is here assumed large enough that (4) and (5) apply. If the surface buoyancy flux ceases at time tc, then the right-

hand side of (2) vanishes, leading to

 

where ρc is the density anomaly at time tc. If tc > te, then ρc = ρe, and (6) becomes

 

The ocean responds to polynya changes on the timescale te. At the onset of ice production (i.e., surface buoyancy flux), 

density increases linearly with time until equilibrium is approached at time te. After ice production ceases, eddies mix the 

dense water away with timescale ρete/ρc, which is always greater than or equal to te. The scale te in (5) depends on the 

polynya geometry (through A and P) and the surface buoyancy flux. Examples of A and P for several idealized polynya 

shapes are shown in Table 1 . For typical parameter values [say, B0 = 2.5 × 10−7 m2 s−3, b = 10 km, W = 10 km, f  = 

10−4 s−1, and ce = 0.016 based on Chapman (1998)], te ranges from 13 to 18 days depending on the particular geometry 

(Table 1 ). This is generally longer than the timescales associated with large polynya events (e.g., Cavalieri and Martin 
1994), implying that the ocean probably cannot respond to rapid changes in polynya size and must, in some sense, integrate 
the polynya forcing. In general, A/P  b and is nearly independent of the alongshore length of the polynya 2a, consistent 
with Chapman and Gawarkiewicz (1997). This means that ρe in (4) depends on the product B0b, which is a measure of the 

total ice produced in a polynya and therefore the total salt rejected and available to increase the water density. The 
importance of this product will become clear later.

3. Time-dependent polynya  

In the previous section, the polynya size and surface buoyancy flux were held constant and were treated as independent 
variables. To relax these constraints, the thermodynamical model of a latent heat coastal polynya developed by Pease (1987) 
is used to provide reasonably realistic polynya sizes and surface buoyancy fluxes that can then be used (in section 4) to 
force a numerical model of the ocean response.

a. The Pease model  

Building on the ideas of Lebedev (1968), Pease (1987) considered the simplest conceptual scenario—the offshore width b 
of a polynya is determined by a competition between ice formation tending to close the polynya and wind tending to open the 
polynya by blowing the ice offshore. The alongshore extent of the polynya is assumed infinite, corresponding to the “infinite 
strip”  polynya in Table 1 . The Pease model can be written in terms of the surface buoyancy flux as

 

where Vi is the offshore speed of the ice, taken to be 3% of the offshore wind speed Va, and κ = Δρsghi/ρ0 where Δρs is 



the density change resulting from salt rejection, and hi is the so-called collection depth of the newly formed frazil ice. There 

is considerable uncertainty in estimates of hi, but a value of about 0.1 m appears to be reasonable (Markus and Burns 1995) 

and is used here. The density change for ρ0 = 1025 kg m−3, assuming 69% of the salt is rejected, is Δρs = 17.25 kg m−3, 

leading to κ = 0.0165 m2 s−2. For the present purposes, κ is considered constant at this value. 

The surface buoyancy flux is determined by the ice production rate and can be written:

 

where Q is the total surface heat flux from the atmosphere to the ocean, ρi = 0.95 × 103 kg m−3 is the density of young 

sea ice, and Lf = 3.34 × 105 J kg−1 is the latent heat of freezing for salt water. The surface heat flux is given by

Q = Qld − Qlu + Qs + Qe − Qr,(10)
 

where Qld, Qlu are the downward and upward longwave radiation, respectively, Qs is the sensible or turbulent heat flux, 

Qe is the evaporative heat flux, and Qr is the solar radiation. Following Pease (1987), Qlu is assumed constant and equal to 

301 W m−2 because the surface water is always nearly freezing at Tw = − 1.8°C; Qr is neglected because it is nearly zero at 

high latitudes during winter; Qe is ignored because it is smaller than the uncertainty in Qs; Qld = σea(273°C + Ta)4, where σ 

= 5.67 × 10−8 W m−2 °C−4 is the Stefan–Boltzmann constant, ea = 0.95 is an effective emmisivity for the air, and Ta is the 

air temperature in °C; and Qs = ρaChCp|Va|(Ta − Tw), where ρa = 1.3 kg m−3 is the air density, Ch = 0.002 is a sensible heat 

coefficient, Cp = 1004 J °C−1 kg−1 is the specific heat of air, and |Va| is the magnitude of the wind velocity. Substitution 

into (9) and (10) yields

 

From (11), the surface buoyancy flux depends on both the air temperature and the wind speed, so Ta and Va have 

become the variables that force the polynya model (8). 

b. Constant forcing  

The solution of (8) with constant Ta and Va (and, therefore, constant B0) is

 

The polynya opens from b = 0 to the maximum width

bmax = 0.03κVa/B0(13)
 

with timescale κ/B0. Pease (1987) investigated this case extensively. For reasonable values of Ta and Va, the opening 

timescale is less than one day, so the polynya nearly reaches bmax within 1–2 days. For example, for Ta = −20°C and Va = 

10 m s−1, (11) produces B0 = 2.9 × 10−7 m2 s−3 from which the opening timescale is κ/B0 = 0.66 days and the maximum 

polynya width is bmax = 17.1 km. The polynya opens quickly relative to the ocean response timescale of more than 10 days, 

indicating that forcing a model with a suddenly imposed surface buoyancy flux over the entire polynya width, as done in 
previous studies, is a reasonable approximation.

During the opening process, the length of time that the ocean is exposed to the surface buoyancy flux decreases with 



distance offshore. That is, the region near the coast is exposed for the entire opening time, while the seaward edge of the 
polynya is always just being exposed as the polynya expands. This creates an offshore density gradient that in turn produces 
an alongshore geostrophic current. However, the polynya opens so rapidly that the density gradient and current are both 
small and can be ignored in the ocean response (see the appendix).

Figure 2  shows the surface buoyancy flux B0 from (11) and the maximum polynya width bmax from (13) computed 

over a wide range of air temperatures and wind speeds. The buoyancy flux varies by nearly an order of magnitude with the 
largest fluxes occurring for the coldest air temperatures and the strongest winds. The maximum polynya width, on the other 
hand, is nearly independent of wind speed and only moderately dependent on air temperature, except at the warmest 
temperatures. Typical values of bmax range from 10 to 30 km. The weak dependence of bmax on Va reflects the competing 

roles of the wind in opening the polynya; it pushes the ice offshore, which opens the polynya, but it also contributes to the 
surface buoyancy flux, which tends to close the polynya.

The steady or maximum polynya width, given by (13), can be used to estimate the ocean equilibrium response (4) and 
(5). As mentioned above, the maximum density anomaly achievable, given by (4), depends on the product B0b, which from 

(13) is 0.03κVa. Thus, ρe depends on the offshore wind speed but is independent of the air temperature! That is, the rate at 

which ice moves offshore determines how dense the water can become, not the air temperature or the polynya width, 
implying that the presence of a very large polynya or very cold air temperature does not necessarily mean that unusually 
dense water is being formed. The reason is that cold air temperatures lead to rapid ice production, which both increases 
brine rejection and reduces the polynya size; two responses that have opposite impacts on dense water formation, essentially 
canceling their effects. [This result has been independently recognized by van Woert (1998).] According to (5) with (13), 
the time required to reach the maximum density anomaly te is inversely proportional to B0, so ρe is more likely to be 

achieved when the air temperature is cold.

c. Time-dependent forcing  

The polynya response to time-dependent air temperature and wind speed and its impact on dense water formation, 
through the product B0b, are examined here. A general analytical solution for (8) with arbitrary air temperature and wind 

speed is

 

where C is a constant of integration determined from the initial conditions. However, the complicated relationship among 
Ta, Va, and B0 makes (14) difficult to evaluate except for the simplest cases, so solutions of (8) presented here have been 

obtained numerically using a one-step Runge–Kutta scheme available in MATLAB. 

For simplicity, Ta and Va are treated as independent variables. The air temperature is assumed periodic with a mean offset

Ta = T0 + T1 cos(ωTt),(15)
 

where T0 is the mean air temperature, T1 is the amplitude of the oscillation, and ωT is the frequency of oscillation. The 

wind is more complex because it appears in (8) and (11) as both the offshore wind speed and the magnitude of the wind 
speed. The offshore wind speed varies due to changes in wind direction as well as changes in magnitude. To represent this 
in a simple way, the wind is assumed to have the form

 

where V0 and V1 are constants, ωm is the frequency of wind magnitude variations, and ωo is the frequency of offshore 

wind oscillations. This choice corresponds to a wind that rotates direction with frequency ωo while changing magnitude 

with amplitude V1 and frequency ωm about a mean of V0. If Va becomes negative, that is, onshore, then Va is set to zero 



for the integration of (8). These forms for Ta and Va are clearly artificial, but they lead to interesting and not unrealistic 

responses.

There are, of course, unlimited choices for air temperature and wind speed using (15) and (16). After examining many 
solutions of (8) for such choices, the polynya responses can be grouped into two broad categories: 1) persistent polynyas 
that open rapidly and remain open while continually changing size and 2) intermittent polynyas that repeatedly open and 
completely close during the forcing period. These two categories are roughly consistent with the types of observed Arctic 
polynyas suggested by Stringer and Groves (1991) based on Advanced Very High Resolution Radiometer imagery. The 
difference between the polynya responses is determined by whether or not the offshore wind speed reverses; an onshore 
wind allows ice formation to completely close the polynya.

Figure 3  shows the response typical of a persistent polynya over 40 days of forcing. In this case, the frequency of the 

offshore wind speed oscillation was set to zero, that is, ωo = 0 in (16), so Va = |Va| and oscillates between 0 and 24 m s−1 

with a period of 4 days (Fig. 3a ). The air temperature oscillates between −28.2° and −1.8°C with a period of 5 days 
(Fig. 3b ). Thus, the wind speed Va and surface buoyancy flux B0 each oscillate between zero and a maximum, but with 

different periods so that different combinations of the two occur through the forcing period, repeating the pattern every 20 

days. The resulting surface buoyancy flux (Fig. 3c ) varies from 0 to about 9 × 10−7 m2 s−3. As expected, it tends to be 
largest when the wind is strong and the air is cold. It vanishes when the air and water temperatures are identical and is small 
when the wind vanishes. The polyna width (Fig. 3d ) is irregular, changing from a minimum of about 12 km to a 
maximum of about 80 km. As expected from the steady solutions, there is a tendency for B0 and b to vary inversely, at least 

on an event-by-event basis. That is, the width is small (large) when the surface buoyancy flux is large (small). The largest 
polynyas occur when B0 is small and Va is nonzero (e.g., days 11 and 31); then the ice can be pushed far offshore before 

new ice production can close the polynya. Conversely, the polynya is rapidly reduced to its minimum size when the wind is 
weak and the buoyancy flux is strong (e.g., days 3 and 18).

Figure 3e  shows the product B0b as a measure of both total ice production and the maximum density anomaly 

achievable. The large variability indicates that B0 and b are not as simply related as suggested by (13). Total ice production 

obviously vanishes when B0 vanishes. Ice production is largest either when B0 is large and b is small (e.g., days 2 and 18) 

or when B0 and b are each in their midrange of values (e.g., days 7 or 14). Ice production can be small even when the 

polynya is wide (e.g., days 10 and 30).

Figure 4  shows the response typical of an intermittent polynya over 40 days of forcing. Here, the offshore wind speed 

oscillates with a period of 5 days (Fig. 4a ), while the wind magnitude oscillates between 10 and 22 m s−1 with a period 
of 6 days (Fig. 4b ). This ensures that the wind magnitude never vanishes, but the offshore wind reverses direction. The 
air temperature oscillates between −35° and −15°C with a period of 7.5 days (Fig. 4b ). The surface buoyancy flux (Fig. 

4c ) varies between 0 and about 10−6 m2 s−3, again with largest values when |Va| is large and the air is cold (e.g., days 3, 

27, and 33). The polynya width (Fig. 4d ) is more regular than in the persistent polynya case and varies within a smaller 
range, from 0 to about 20 km. The regularity results from the rapid response of the polynya to changes in the forcing; that 
is, the polynya closely follows the forcing. Therefore, the polynya closes completely when the offshore wind vanishes for a 
few days, and it opens when the wind turns offshore again. Interestingly, the two largest polynya widths occur under 
different circumstances. On day 15, the surface buoyancy flux is of medium size, but the offshore wind is at maximum 
strength, driving the ice well offshore. On day 30, the wind is about half the strength of day 15, but the surface buoyancy 
flux nearly vanishes, so the moderate wind can still open the polynya nearly as wide as on day 15. The amount of ice 
produced in these two periods is also different; Fig. 4e  shows that B0b on day 15 is about twice that on day 30. 

Similarly, periods of nearly identical polynya variations may vary by a factor of 2 in ice production (e.g., days 4–7 compared 
with days 9–12). Therefore, simply observing the polynya width does not indicate how much ice is being produced. Figure 
4e  also shows the dominance of offshore wind speed in determining ice production, as suggested by (13); times of 
largest ice production all correspond to times of strongest offshore winds.

4. Numerical results  

The ocean response to rapid variations of the thermodynamically coupled surface buoyancy flux and polynya width is 
examined here by forcing a primitive-equation numerical ocean model with the solutions found in section 3. The calculations 
follow closely the approach of Chapman and Gawarkiewicz (1997). 

a. Model description  



The numerical model is the semispectral primitive equation model described by Haidvogel et al. (1991). The model domain 

is a high-latitude, uniformly rotating (f  = 1.3 × 10−4 s−1), straight channel with periodic boundaries at the open ends. The 
domain is 100 km × 100 km with 1-km resolution in each direction. The ocean has uniform depth, H = 50 m, and nine 
Chebyshev polynomials are used to resolve the vertical structure. Standard dynamical assumptions are made: rigid lid, no 
flow or density flux through solid boundaries, no stress at the solid boundaries or the surface, a Richardson-number-based 
vertical mixing coefficient, convective adjustment to mix the density field whenever it is statically unstable, and small lateral 
Laplacian subgrid-scale mixing to ensure numerical stability. Further model details may be found in Chapman and 
Gawarkiewicz (1997). 

Each calculation begins from rest with a homogeneous ocean with density ρ0. At time t = 0, a surface buoyancy flux B0 

is applied in a strip along the entire channel, adjacent to the coast and extending a distance b offshore. The values of B0 and 

b vary in time according to the solutions obtained from the Pease model (section 3). The surface buoyancy flux decreases 
sharply to zero within 1 km offshore of b. That is, there is essentially no explicitly imposed forcing decay region at each 
instant in time. Thus, if B0 and b were to remain constant in time, the scales for shallow, internally constrained convection 

(Chapman 1998) would apply instead of (4) and (5). Each calculation is halted before eddies reach the offshore boundary. 

b. Response to a persistent polynya  

The ocean response to a persistent polynya is examined first by forcing the numerical model with the Pease model 
solution shown in Fig. 3 . Figure 5  shows the density anomaly at the bottom at selected times during the 40-day 
calculation. Despite the large variations in B0 and b, the development is remarkably similar to that with steady forcing. Near 

the coast, where the polynya remains open at 10–15 km, the density increases steadily. By day 10, small eddies have formed 
along the edge of this persistently open region. Larger eddies develop by day 20, after which the domain continues to fill 
with eddies.

In this case, the polynya width varies considerably, twice nearly crossing the entire model domain (Fig. 3d ). The 
primary effect of the varying polynya width is to create a wide region of decreasing density anomaly, much like that found 
beneath a forcing decay region, despite the absence of such a region here. This is illustrated in Fig. 6 , where the surface 
buoyancy flux, averaged over the 40-day period, is plotted as a function of distance offshore. The persistently open region 

extends 12.5 km from the coast and has a nearly uniform average buoyancy flux of B0  2.5 × 10−7 m2 s−3. Offshore of 

this uniform region, the average surface buoyancy flux decreases almost exponentially with an e-folding scale of about 7.5 
km (dashed curve), appearing like a forcing decay region.

The ocean response is represented by the time history of the density anomaly near the coast averaged along the channel 
and within 4 km of the coast (solid curve in Fig. 7 ). For about 23 days, the density anomaly simply increases in response 
to the surface buoyancy flux. The response for the first 20 days is nearly identical to the time integral of (2) using the 
imposed surface buoyancy flux and neglecting the eddy flux term (not shown). By day 25, the baroclinic eddies (Fig. 5 ) 

have become dominant, and equilibrium is reached with a quasi-steady density anomaly of ρe  0.9 kg m−3. 

An identical calculation was made in which the forcing was held steady at approximately the 40-day average shown in 

Fig. 6 ; that is, B0 = 2.5 × 10−7 m2 s−3 within 12.5 km of the coast, beyond which B0 decays exponentially with an e-

folding scale of 7.5 km (dashed curve in Fig. 6 ). The resulting density anomaly near the coast (dashed curve in Fig. 7 
) roughly follows the response to the time-dependent forcing, confirming that the slow ocean response integrates the 

higher frequency forcing of the polynya events. Furthermore, the average forcing values can be used to estimate the 

equilibrium density anomaly and timescale according to (4) and (5) (infinite strip in Table 1  with B0 = 2.5 × 10−7 m2 

s−3, b = 12.5 km, W = 7.5 km, ρ0 = 1000 kg m−3, and ce = 0.016),1 producing ρe = 0.9 kg m−3 and te = 20 days, both of 

which are in good agreement with Fig. 7 . This suggests that the steady results could be used to estimate the properties 
of dense water formed beneath a time-dependent persistent polynya by using the seasonally averaged values of the surface 
buoyancy flux and its offshore distribution.

A third calculation was made in which the forcing was steady, but the forcing decay region was absent; that is, B0 = 2.5 

× 10−7 m2 s−3 within 12.5 km of the coast and zero farther offshore. The resulting density anomaly near the coast (dotted 
curve in Fig. 7 ) shows that equilibrium is reached after about 15 days with an equilibrium density anomaly of about 0.6 

kg m−3, considerably less than that obtained with the forcing decay region. These are close to the theoretical values of ρe = 

0.69 kg m−3 and te = 15.6 days, obtained by substituting Rd = (ρegH/ρ0f2)1/2 for W in (4) and (5). Thus, the time-varying 



polynya width produces an effective forcing decay region that sets the horizontal scale of the rim current, thereby slowing 
eddy development and allowing a larger increase in density beneath the polynya, in agreement with Chapman and 
Gawarkiewicz (1997) and Chapman (1998). 

c. Response to an intermittent polynya  

The ocean response to an intermittent polynya is examined by forcing the numerical model with the Pease model solution 
shown in Fig. 4 . The density anomaly at the bottom is shown in Fig. 8  at several times during the 40-day calculation. 
The overall behavior is qualitatively similar to the persistent polynya (Fig. 5 ), except that there is no region of constant 
forcing near the coast because the polynya completely closes about every 5 days. That is, the entire area beneath the polynya 
has strong cross-shelf density gradients and resembles a forcing decay region adjacent to the coast. As a result, the 
baroclinic eddies modify the density at the coast as soon as they form, so equilibrium is expected to be reached more 
rapidly.

The 40-day average surface buoyancy flux as a function of distance offshore is shown in Fig. 9 ; it decreases rapidly 
over the first kilometer and then almost linearly before nearly vanishing at about 12–13 km offshore. This structure 
precludes the application of (4) and (5) because they were derived after neglecting the buoyancy flux in the forcing decay 
region relative to that in the constant flux region (see Chapman and Gawarkiewicz 1997; Chapman 1998). Here, all the 
buoyancy flux occurs in the forcing decay region. Furthermore, the theoretical estimate of ce from Spall and Chapman 

(1998) may not apply. Therefore, no attempt is made here to predict the equilibrium values ρe and te for the intermittent 

polynya.

Figure 10  shows the density anomaly near the coast in response to the intermittent polynya (solid curve) and the 
response to a steady surface buoyancy flux (dashed curve) that approximates the time average of the variable forcing [B0 = 

3.5 × 10−7 m2 s−3 at the coast and decreasing linearly to zero at 13 km offshore (dashed curve in Fig. 9 )]. The 
responses differ in detail, as expected, but they are fairly close in terms of the time at which equilibrium is approached as 
well as the quasi-steady equilibrium density anomaly. Again, this supports the contention that the ocean responds to the 
average polynya forcing rather than the rapid variations in polynya width and surface buoyancy flux. These calculations also 
clearly support the importance of the forcing decay region because without it there would be no surface buoyancy flux.

d. Spindown  

If the surface buoyancy flux ceases, exchange by baroclinic eddies continues until the dense water is completely carried 
away or mixed with ambient water. The decay of the density anomaly should, in principle, follow (6) or (7), depending on 
when the surface buoyancy flux ceases. To test this idea, both the persistent and intermittent polynya calculations described 
above were repeated, but now setting the surface buoyancy flux to zero at some time after the equilibrium has been reached. 
Equation (7) should apply in both cases. 

The responses are shown by solid curves in Fig. 11 . The dashed curves show the decay according to (7); ρe = 0.9 kg 

m−3, te = 20 days, tc = 30 days for the persistent polynya (Fig. 11a ) and ρe = 0.6 kg m−3, te = 13 days, tc = 26.5 days 

for the intermittent polynya (Fig. 11b ). (In Fig. 11a  the decay curve has been shifted slightly upward so as to start at 
the actual density anomaly at day 30.) In both cases, the spindown of the polynya system is close to the theoretical 
prediction, supporting the validity of the eddy exchange model of section 2. 

e. Response to “observed”  forcing  

Observed polynya widths and surface buoyancy fluxes that would be needed to impose realistic forcing on the numerical 
model are not readily available. Nevertheless, proxies for these quantities can be estimated from observed air temperatures 
and winds near a polynya, combined with polynya sizes derived from satellite observations. An example of such data is 
described by Weingartner et al. (1998) for the northeast Chukchi Shelf during the winter of 1991/92. The surface heat flux 
is computed using (10) in essentially the same way as described in section 3. A buoyancy flux is then estimated according to 
(11). The polynya width is approximated from the open water area computed by Weingartner et al by assuming that the 
polynya extends a uniform distance from the coast over the entire 350-km length of coastline considered in the satellite 
imagery; that is, polynya width equals open water area divided by 350 km. Further details of the data gathering and 
processing are explained by Weingartner et al 

The “observed”  daily mean forcing variables are shown in Fig. 12  for a 60-day subset of the Weingartner et al dataset, 
beginning on 20 December 1991. The“observed”  polynya is like an intermittent polynya in that the offshore wind reverses 
occasionally (Fig. 12a ) and the polynya width nearly vanishes several times (Fig. 12d ). The “observed”  polynya 



width never actually vanishes because it is estimated from the total open water in the region, whether or not it is adjacent to 
the coast. So, it is almost certainly an overestimate of the true opening. The largest ice production B0b occurs when the 

polynya is widest because both the offshore wind and the surface buoyancy flux are substantial.

The average buoyancy flux (Fig. 13 ) looks like a cross between the persistent and intermittent polynyas. There is a 

narrow region near the coast (1.5 km) where the buoyancy flux is nearly constant at B0  2.7 × 10−7 m2 s−3, adjoining a 

region of nearly exponential offshore decay with an e-folding scale of about 12 km. Figure 14  shows the ocean response 
to the “observed”  surface buoyancy flux and polynya width (linearly interpolating the curves in Fig. 12  to get values at 
each time step) and the response to an approximate 60-day average forcing (dashed curve in Fig. 13 ). As in the previous 
examples, the equilibrium density anomalies are similar, although the transition to equilibrium is different. The time-dependent 
forcing takes longer to reach equilibrium because the largest contributions to the average come from the two events centered 
on days 20 and 30 (Fig. 12 ) that are, by definition, included in the average forcing from the beginning of the calculation. 
Thus, this more realistic case again supports the idea that the ocean basically responds to the average polynya forcing.

5. Discussion and summary  

The objective of this work was to address three shortcomings of previous studies of dense water formation beneath 
coastal polynyas; namely, (i) steady forcing, (ii) independence of surface buoyancy flux and polynya width, and (iii) lack of 
evidence and/or meaning for the forcing decay region. To address these shortcomings, a few calculations have been 
presented that are representative of a larger number of similar calculations that have been made using a wide range of 
parameters. Taken together, the results shed light on all three of the issues.

First, the typical ocean response timescale is determined by the dynamics of baroclinic eddies and their efficiency in 
exchanging dense water from beneath the polynya with ambient water. A typical ocean adjustment timescale is greater than 
10 days; longer than typical polynya event timescales, which are determined primarily by regional weather patterns. 
Therefore, the ocean tends to integrate the polynya forcing over many events, as shown by the numerical calculations that 
use steady forcing equal to the average of the time-dependent forcing and yield similar results, especially in terms of the 
maximum density anomaly achieved. This suggests that the simple scaling relationships (4) and (5), based on steady forcing, 
could be used to estimate dense water formation beneath persistent coastal polynyas over a longer time period (e.g., an entire 
winter) by using the average parameter values. This approach has been taken by Martin et al. (1998) in an investigation of 
dense water formation beneath polynyas in the Okhotsk Sea with encouraging results. For intermittent coastal polynyas, new 
theoretical estimates of the equilibrium water properties [like (4) and (5)] are needed, and then the same approach may be 
applicable, provided that the time between polynya events is shorter than te. Otherwise, the ocean will have time to respond 

between events and the averaging approach may be invalid.

Second, the Pease model of a latent heat coastal polynya shows that the surface buoyancy flux and polynya width are 
tightly coupled, providing strong constraints on the parameters as they appear in the equilibrium relationships (4) and (5). In 
particular, for constant forcing the equilibrium density predicted by (4) is independent of both air temperature and polynya 
width because B0b depends only on the offshore wind speed according to (13). This means that large polynyas and/or cold 

air temperatures alone do not indicate the formation of large amounts of dense water. Instead, persistent polynyas with 
strong offshore winds and cold air temperatures tend to produce the greatest increase in water density. These polynyas tend 
to be relatively small, b  10–20 km from Fig. 2 , which implies the need for improved small-scale resolution in estimates 
of ice cover based on remote sensing approaches. Many satellite instrument footprints are as large or larger than the 
offshore scale of these polynyas, suggesting that past estimates of open water area may have missed some of the most 
important sites of dense water formation.

Third, the present results support the contention that the forcing decay region is important in setting the scales of the 
ocean response, as suggested by Chapman and Gawarkiewicz (1997). Here, no explicit forcing decay region was imposed, 
but time variations in polynya width exposed the water to the surface buoyancy flux for different lengths of time, producing 
cross-shelf density gradients over a substantial region and thereby an effective forcing decay region that is important in 
determining ρe and te. Thus, the forcing decay region used with steady forcing may be interpreted as the region over which 

the polynya width changes in time. Alternatively, a forcing decay region may form as a consequence of spatial variations in 
large-scale forcing or ice dynamics. Such a region could be included explicitly in calculations like those in section 4, and it 
would probably widen the effective forcing decay region and increase ρe. In any case, the presence of a forcing decay 

region is likely to be important in natural polynyas. For example, Martin et al. (1998) used the concept of the forcing decay 
region to represent the large areas of thin ice typically surrounding Okhotsk Sea polynyas and found it to be an important 
contributor to the estimates of dense water formation.

The present results can be used to estimate the volume rate of dense water production from a coastal polynya. With 
steady forcing (e.g., this could be the seasonal average), the density in the volume of water beneath the polynya is increased 



by an amount ρe in time te. Afterward, the eddies carry that water away, and the polynya must continue to produce water 

with the equilibrium density anomaly at the same rate to maintain the equilibrium. So, the volume flux F of dense water at 
equilibrium is given by the polynya volume divided by te, or

 

where (5) has been used. From Table 1 , AP  ba2 indicating that the volume flux increases linearly with both the 
water depth and the alongshore length of the polynya. That is, longer polynyas over deeper shelves tend to make more dense 

water. However, ρe is proportional to H−1, so the density anomaly will be reduced on deeper shelves. Conversely, very 

dense water can be made in shallow regions, but the volume flux will be greatly reduced. The linear dependence of AP on b 
means that the product B0b appears again in (17), so the volume flux of dense water tends to be independent of air 

temperature and polynya width, as is ρe. A typical value of F based on the calculations presented here is F  0.04 Sv per 

100 km of coastal polynya. So, the equivalent of about 25 such lengths of polynya would be needed to produce 1 Sv of 
dense water, possibly available for maintaining the cold upper halocline if the water has the proper density.

The equilibrium density anomalies achieved in the model calculations presented here are all about 1 kg m−3 or less. This is 
also true for the numerous similar calculations that have been made, suggesting (speculatively) that reasonably realistic 

polynyas may not produce enough ice for extended periods of time to increase the density by more than about 1 kg m−3. 
The density anomaly could, of course, be increased by decreasing the ocean depth, but this would decrease the volume flux 
of dense water formed [according to (17)], so such a shallow polynya would probably not be an important source of dense 
water. Thus, only in extreme conditions can a coastal polynya make water dense enough to sink to the bottom of the deep 
Arctic basins, which may account for the small amounts of Arctic bottom water that appear to originate over the shelves. 
This also lends support to the idea that the dense shelf water can maintain the cold upper halocline, because the density 
increase is about the right size. Of course, the calculations presented here provide estimates of the density anomaly, so the 
ambient density at the beginning of winter is of paramount importance to the maximum density produced during the winter.

From an observational standpoint, the present results suggest that estimates of dense water formation require 
measurements of polynya size, air temperature, wind velocity, and ambient water density. It appears that gross estimates of 
seasonal dense water formation do not require detailed oceanographic surveys of dense water fluxes away from the 
polynyas. This is encouraging for prospects of long-term monitoring and observations of global change. Furthermore, the 
ideas presented here could be tested relatively simply by measuring polynya size from satellites, air temperature, and wind 
velocity at the coast and ocean water properties from a single moored CTD near the coast. Is an equilibrium density anomaly 
achieved? If so, is it close to that estimated from (4)? Of course, other aspects of the modeling results should be tested, for 
example, eddy sizes and structures, frontal scales, and velocities, etc., which would probably require a large-scale field 
program. If successful, simple relationships like (4) and (5) could be used for examining interannual variability in dense 
water formation using historical data, for predicting global change scenarios, and perhaps for incorporating shelf processes 
into basin-scale numerical models that are presently incapable of resolving coastal polynyas and their effects. 

Finally, it is important to remember that many simplifications have been made in the present study. Bottom topography, 
stratification, bottom friction, wind forcing of ocean currents, ambient ocean currents, and ice dynamics have all been 
ignored. Bottom topography and bottom friction are known to alter the estimates of ρe and te by changing ce (Chapman and 

Gawarkiewicz 1997; Chapman 1998). Wind forcing and ambient ocean currents may also have an important impact on the 
results and should certainly be considered in future studies.
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APPENDIX  

6. Ocean Response during Polynya Opening  

As the Pease model polynya opens, the amount of time that each offshore location is exposed to the surface buoyancy 
flux varies. If y is the offshore coordinate measured from the coast, then location y < b has been exposed for a time interval

 



where t is the present time and (12) has been used. The second term on the right of (A1) is the negative of the time at 
which the polynya edge reached y. Note that Δt = t at the coast y = 0, and Δt = 0 at the polynya edge y = b. Eddies are not a 
factor during the initial polynya opening, so the surface buoyancy flux increases the water density by

 

according to (3). The maximum geostrophic velocity that develops from this density anomaly can be estimated from the 
thermal wind, assuming that the velocity is vertically antisymmetric:

 

The density anomaly is largest at the coast, but the density gradient and, therefore, the velocity are largest at the polynya 
edge. Interestingly, the velocity is independent of time, so the geostrophic velocity does not change at each location once the 
polynya edge has passed. This occurs because the density gradient is set as the polynya edge passes, and continued 
exposure to the surface buoyancy flux simply increases the density by the same amount everywhere, leaving the density 
gradient unchanged. The polynya opens so rapidly that the velocity produced is small except near the polynya edge and is 

unimportant to the ocean response on longer time scales. For example, with bmax = 15 km, κ = 0.0165 m2 s−2, and f  = 1.3 

× 10−4 s−1, the velocity from (A3) only reaches 0.05 m s−1 at y = 13.7 km, very close to the polynya edge. 

Tables  

Table 1. Polynya area A and perimeter P for various idealized shapes. The infinite strip alongshore length 2a is included only to 
allow A/P to be computed. Here E is the complete elliptic integral of the second kind. 
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Fig. 1. Generalized coastal polynya geometry with length 2a along a straight coast and extending offshore a distance b at its 
widest point. Constant surface buoyancy flux B0 is applied within the inner region, decreasing to zero across the forcing decay 

region of width W. 
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Fig. 2. Surface buoyancy flux B0 (upper) and maximum polynya width bmax (lower) from the Pease polynya model with 

constant forcing, computed using (11) and (13) with various air temperatures Ta and offshore wind speeds Va. 
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Fig. 3. Persistent polynya response to periodic air temperature and wind speed given by (15) and (16), respectively, with T0 = 

−15°C, T1 = 13.2°C, ωT = 2π/5 days, V0 = 12 m s−1, V1 = −12 m s−1, ωm  = 2π/4 days, and ωo = 0. The dashed curve in (b) is Ta. 
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Fig. 4. Intermittent polynya response to periodic air temperature and wind speed given by (15) and (16), respectively, with T0 = 

−25°C, T1 = 10°C, ωT = 2π/7.5 days, V0 = 16 m s−1, V1 = −6 m s−1, ωm  = 2π/6 days, and ωo = 2π/5 days. The dashed curve in (b) is 

Ta. 
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Fig. 5. Plan views of density anomaly at the ocean bottom for the persistent polynya forcing in Fig. 3  after 10, 20, and 30 

days. Contours are 0.075 to 1.2 by 0.075 kg m−3 with the minimum contour farthest offshore. The full model domain extends 100 
km offshore.
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Fig. 6. The solid curve is the 40-day average surface buoyancy flux as a function of distance offshore for the persistent 

polynya forcing in Fig. 3 . The dashed curve is an approximation to the average; B0 = 2.5 × 10−7 m2 s−3 out to 12.5 km 



offshore, adjoined to an exponential decay with an e-folding scale of 7.5 km. 
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Fig. 7. The solid curve is the density anomaly near the coast (averaged along the coast and within 4 km offshore) versus time 
for the persistent polynya forcing shown in Fig. 3 . The dashed curve is the response to the approximate average forcing 
shown by the dashed curve in Fig. 6 . The dotted curve is the response to steady forcing with no forcing decay region; B0 = 

2.5 × 10−7 m2 s−3 out to 12.5 km offshore and zero beyond. 
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Fig. 8. Plan views of density anomaly at the ocean bottom for the intermittent polynya forcing in Fig. 4  after 10, 20, and 30 

days. Contours are 0.075 to 0.75 by 0.075 kg m−3 with the minimum contour farthest offshore. The full model domain extends 100 
km offshore.
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Fig. 9. The solid curve is the 40-day average surface buoyancy flux as a function of distance offshore for the intermittent 

polynya forcing shown in Fig. 4 . The dashed curve is an approximation to the average; B0 = 3.5 × 10−7 m2 s−3 at the coast 

and decreasing linearly to zero 13 km offshore.
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Fig. 10. The solid curve is the density anomaly near the coast (averaged along the coast and within 4 km offshore) versus time 
for the intermittent polynya forcing shown in Fig. 4 . The dashed curve is the response to the approximate average forcing 
shown by the dashed curve in Fig. 9 . 



 
Click on thumbnail for full-sized image. 

Fig. 11. Density anomaly near the coast, as in Figs. 7  and 10 , except that the forcing ceases at day 30 for the persistent 

polynya in (a) and at day 26.5 for the intermittent polynya in (b). The dashed curves are given by (7); ρe = 0.9 kg m−3, te = 20 

days, and tc = 30 days in (a), ρe = 0.6 kg m−3, te = 13 days, and tc = 26.5 days in (b). 
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Fig. 12. “Observed”  daily values of the polynya forcing parameters based on data from Weingartner et al. (1998). Day 0 
corresponds to 20 December 1991. See text for more details. The dashed curve in (b) is Ta. 
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Fig. 13. The solid curve is the 60-day average surface buoyancy flux as a function of distance offshore for the “observed”  

forcing shown in Fig. 12 . The dashed curve is an approximation to the average; B0 = 2.7 × 10−7 m2 s−3 out to 1.5 km offshore, 

adjoined to an exponential decay with an e-folding scale of 12 km. 
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Fig. 14. The solid curve is the density anomaly near the coast (averaged along the coast and within 4 km offshore) versus time 
for the “observed”  forcing shown in Fig. 12 . The dashed curve is the response to the approximate average forcing shown by 
the dashed curve in Fig. 13 . 

 

 

1 The equilibrium quantities (4) and (5) were derived assuming a linear forcing decay region with total width W. However, an exponential forcing 
decay region produces the same relationships but with W being the e-folding scale. 
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