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ABSTRACT

Amplified motions in vortices have been observed in Gulf Stream rings and 
over seamounts. This paper uses the near-inertial oscillation approximation to 
model near-inertial motions in the presence of a barotropic vortical 
background flow. The resulting trapped modes are calculated: there is always 
at least one such mode, but higher modes may exist and these are obtained. 

The characteristics of the trapped mode depend on the quantity Γ/f0R2
n 

where Γ is the circulation (integrated vorticity) of the ring, f0 is the local 

Coriolis frequency, and Rn is the nth Rossby radius of deformation, which 

may be interpreted as a combined measure of the vertical length scale and 
stratification. Asymptotic expressions are presented for the frequency of the 
gravest radial mode for strong and weak vortices. The calculated frequencies 
are compared to previous results, and good agreement is obtained. The initial 
value problem is also studied: the contribution of the trapped modes to the 
evolution of the near-inertial wave field is calculated, as is the contribution due 
to the continuous spectrum. The long time behavior of the continuous 

spectrum decays like (lnt)−1 and takes different forms in the vortex core and 
far from the vortex.

1. Introduction  

Warm core rings are the most spectacular oceanic example of coherent 
structures with strongly negative core vorticity. Because ray-tracing calculations 
show that internal waves are trapped inside regions of negative vorticity (Kunze 1985) one anticipates that these vortices 
might contain localized near-inertial activity. Indeed, the observations of Kunze and Lueck (1986), Kunze (1986), and Kunze 
et al. (1995, KST hereafter) show convincing signatures of trapped, near-inertial modes in a warm core ring. KST also 
contains a theoretical investigation of the near-inertial trapped modes of an axisymmetric barotropic vortex. However, the 
calculations of KST neglect regular singularities in the coefficients of the equation they solve, neglect interactions with 
certain mean-flow terms outside the vortex, and implement an incorrect matching condition across the edge of the vortex. 
More recent work (Kunze and Boss 1998, KB hereafter) has been necessary to vindicate the main theoretical conclusions of 
KST. Kunze and Toole (1997) have studied the trapped near-inertial modes over Fieberling Guyot using a similar model. 
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In this paper we use the near-inertial oscillation (NIO) approximation developed by Young and Ben Jelloul (1997, YBJ 
hereafter) to examine the near-inertial modes on a barotropic, axisymmetric vortex. Because the NIO approximation is a 
reduction of the linearized primitive equations, the time-dependent equations for NIOs in rings can be cast in a 
straightforward form. The resulting equations do not suffer from the mathematical inconsistencies of the original KST 
analysis, and lead to a simple formulation of the time-dependent problem. The eigenproblem for trapped modes may be 
solved in a similar fashion to KB, although there are some important differences, as will be seen. In addition, however, the 
time-dependent problem is solved. This leads to interesting information on the role of the propagating and the trapped modes 
in the evolution of the system. An important point is that the NIO approximation is based on a multiple timescale 
approximation and does not assume separation of spatial scales between the geostrophic flow (the ring) and the near-inertial 
waves (the eigenmode). Thus, results based on the NIO approximation are not limited to modes whose spatial scale is much 
smaller than that of the vortex. In fact, we will find interesting examples of weakly trapped modes with radial decay scales 
of many vortex diameters. This does mean, however, that results obtained using the approximation must be examined to 
check that the predicted slow timescale is not too close to the inertial period, which would invalidate the approximation. 

The outline of the paper is as follows. Section 2 outlines the formulation of the problem using the theory of YBJ. Section 
3 solves the dispersion relation for the Rankine vortex, both in nondimensional form and also taking into account a model of 
ocean stratification. The latter results are compared to the results of KB. Section 4 examines the trapped modes for a family 
of vorticity profiles that are more realistic than the Rankine vortex and identifies asymptotic properties of the dispersion 
relation that hold for all ring profiles. Section 5 examines the initial value problem of the evolution of the trapped mode, given 
a spatially uniform excitation, Finally, section 6 discusses and summarizes the results of the paper. Mathematical results not 
central to the paper are given in the appendix.

2. Formulation  

a. The NIO approximation  

We start with the NIO equation of YBJ. The wave variables are expressed in terms of a complex field, (x, y, z, t), by

 

The differential operators  and L are defined by

 

Using (1)–(4), the leading-order dynamical variables associated with the near-inertial oscillation can be obtained from . 
The complex field  evolves according to the NIO equation of YBJ

 

where  is the geostrophic streamfunction and Z = 2  is the geostrophic vorticity. Throughout this paper, 2  2
x + 

2
y is the horizontal Laplacian. The equation for the wavefield  is linear, and we shall take  to have value 1 at the origin. 

b. Projection onto vertical normal modes  

We confine our attention to barotropic flows, z = 0. This is a dramatic simplification of the highly baroclinic structure 

of the vortices that have been observed, and many physical processes are therefore lost. However, in doing so, we can 
follow the analysis of KST in order to make the resulting problem analytically tractable; in particular it is now possible to 
project onto vertical normal modes. Using the notation of Gill (1984), the Sturm–Liouville problem associated with the linear 
operator L is

L n + f2
0c−2

n n = 0,(7)

 

where the eigenvalue, cn = f0Rn, is the speed of mode n and Rn is the Rossby radius of mode n. The functions n(z) are 

vertical normal modes. The Sturm–Liouville problem (7) defines the Rossby radius Rn, which may be related in the case of 



constant stratification N to a vertical wavelength λz by

 

The field  is represented as

 

and each modal amplitude satisfies the Schrödinger-like equation

 

where

hstok;n  f0R2
n,(11)

 

is the “dispersivity”  of mode n. The terms in (10) have obvious physical interpretations: advection, frequency shift, and, 
on the right-hand side, wave dispersion. 

c. The eigenproblem for an axisymmetric vortex  

For a barotropic radially symmetric eddy, (r), with azimuthal velocity V = r, (10) reduces to

 

where Ω   V/r and Z = rr + r−1
r. This equation has an energy integral that may be obtained by multiplying by *

n 

and taking the real part. The result is

nt + Ω nθ + · Fn = 0,(13)
 

where the energy density of the nth vertical mode is n = ½ n
*

n and the energy density flux is given by

 

The advective term Ω nθ in (13) cannot result in an energy flux to infinity. Requiring that Fn  0 as r  ∞ is the 

boundary condition for trapped near-inertial modes. 

For a radial vortex, solutions of the form n = ei(mθ−ωt)An(r) may be sought. The resulting eigenproblem for ω is

 

We have now lightened notation by suppressing the subscript n on A and . The boundary condition on the eigenproblem 

above is that A decays faster than r−1/2 as r  ∞ so that F vanishes at great distances from the vortex. (This requirement 
distinguishes the discrete, trapped modes of the vortex from the continuum of radiation modes.)

Multiplying (15) by rA* and integrating leads to the relation



 

Because we are limiting our attention to trapped modes with rapid decay, terms such as [rA′A*]∞0 arising from the 

integration by parts are zero. This result shows that the eigenfrequency, ω, is real. Then, without loss of generality, one can 
take A to be real. 

In addition, if (ω(1), A(1)) and (ω(2), A(2)) are both solutions of (15), then one can obtain the orthogonality relation

 

that is, radial eigenfunctions with distinct eigenvalues are orthogonal. Equation (17), together with the orthogonality 
relations for the vertical and azimuthal structure functions can be used to project an initial condition onto the three-
dimensional eigenfunctions (see section 5). 

We now nondimensionalize the problem. We take the vortex to have radius a and circulation Γ. We now define a 
nondimensional radial coordinate by η   r/a. The vortex is then specified by giving the vorticity in the form

 

The profile function, Δ(η), is normalized by

 

so that Γ is, in fact, the total circulation of the vortex. In this paper, the frequency ω of the normal mode of the NIO 
wavefield is a departure from the inertial frequency f0. The actual physical frequency is f0 + ω. 

d. Comparison with alternate formulations  

Our formulation of the eigenproblem differs from the earlier works of KST and KB in several respects. First, we use a 
Cartesian representation of the velocity field, namely u + i , whereas KST and KB use the radial component of the velocity, 
ur, as the independent variable (following Brink 1989, 1990). This difference produces ambiguity in the definition of the 

azimuthal wavenumber: because

ur = Re[e−iθ(u + i )],(20)

 

it follows that our azimuthal wavenumber m = 0 corresponds to the azimuthal wavenumber −1 of KST and KB. 

Despite the axisymmetry of the vortex, the Cartesian form, u + i , is a natural representation of the linearly polarized NIO 
modes observed by KST. Specifically, Fig. 14 of KST shows that the inertially backrotated wave phase, which corresponds 
to the phase of , does not vary around the ring. In essence, this means that if  is decomposed into azimuthal modes of 

the form eimθ, then only the m = 0 mode is present and  = (r, t). 

It may seem that the distinction between ur and u + i  is an unimportant formality but there are attendant differences in 

the physical interpretation of the results that are confusing. The main issue concerns the possible Doppler shift produced by 
the term Ω nθ in (12). For our m = 0 mode, this advective term vanishes exactly, and so there is no Doppler shift. 

However, if one uses ur as the independent variable, then for the same mode, the advective term is nonzero and this leads to 

the distinction that KST draw between the Lagrangian and Eulerian frequencies.

As a simple illustration of these different interpretations consider a solid-body flow with (U, V) = Ω(−y, x); the vorticity is 
2Ω. For disturbances with very large spatial scale, the pressure gradient is negligible and, using the Cartesian representation, 
one has



 

where D/Dt = t − Ωy x + Ωx y = t + Ω
θ
 is the convective derivative. The solution of (22) is

(u + i ) = e−i(f0+Ω)t.(23)

 

Thus, the frequency shift is Ω, or half of the vorticity of the solid-body flow. The advective terms in D/Dt vanish because 
u and  in (23) do not depend on the spatial coordinates; that is, there is no Doppler shift in this Cartesian representation. 

Alternatively, one can solve this problem using cylindrical coordinates with the independent variables

 

In cylindrical coordinates the equations of motion are

 

and the solution is

 

In (26) and (27) the shift in the inertial frequency is 2Ω, but the advective term is nonzero and its contribution (a “Doppler 
shift”) cancels half of the apparent frequency shift. This leads to the distinction that KST and KB draw between the intrinsic 
frequency, ωi = f0 + 2Ω, and the Eulerian frequency, ωE = ωi + nΩ [for the solution in (28) the azimuthal wavenumber is n 

= −1].

Of course the two representations are completely equivalent; that is, (23) and (28) are the same. This example shows that 
the distinction between the intrinsic frequency and the Eulerian frequency depends on which equivalent representation of the 
velocity field one happens to use. In ray-tracing problems, such as those discussed by Kunze (1985), the notion of a 
Doppler shift is well defined and useful. But in the present context it makes no sense to assign a Doppler shift to a trapped 
modal structure (as opposed to a propagating plane wave).

3. Trapped modes in a Rankine vortex  

We follow KST by considering the Rankine vortex, specified by

 

as an initial example. Our strategy is to first solve the Rankine case in some detail and then turn to the more realistic 
examples with smooth vorticity profiles. Many, but not all, features of the Rankine case are representative of the general 
case.

a. The m = 0 case  

The easiest case, and the one which corresponds most closely to the observations of KST, is m = 0. In nondimensional 
form, the m = 0 eigenproblem is

 

For η  > 1, Δ = 0. A bound state solution is only possible for ω < 0, that is, only if the frequency of the mode is 
subinertial. For η  < 1, Δ = 1/π, and we anticipate that the coefficient of the undifferentiated term in (30) must be positive; 

that is, 2a2ω − Γ/π > 0. The two conditions ω < 0 and 2a2ω − Γ/π > 0 together imply that the vortex must have negative 



circulation Γ < 0 for trapped waves to exist. Hence trapped normal modes are only possible for anticyclonic vortices, such 
as rings (see KST).

The solution of (30) for η  < 1 is

 

For η  > 1, the solution is

 

The matching condition at η  = 1 is obtained by matching pressure and radial velocity as in KB. In the NIO approximation, 
the complex velocity is proportional to n [because of (7)] whereas pressure is proportional to n . In polar coordinates, 

therefore, the radial velocity is continuous if A(r) is continuous and the pressure is continuous if A′(r) is continuous. The 
two conditions on A and its derivative lead to the eigenvalue relation

 

This equation may be solved numerically to give the eigenvalue relation for the nondimensional frequency σ > 0, defined 
by

 

as a function of the nondimensional “vortex strength,”  −Γ/  > 0. Figure 1  shows the first two branches, labeled q = 0 

and q = 1, of the eigenrelation in the (−Γ/ , σ) plane. The branches originate with σ = 0 at circulation values −Γ/  = πj21,q, 

where j1,q is the qth zero of J1.1 We may note that the form of the curves of Fig. 1  is independent of the the value of Rn 

since the abscissa and ordinate both scale with R−2
n. 

The gravest radial mode is the q = 0 branch emerging from the origin in Fig. 1 . Consequently, very weak vortices 
(i.e., vortices with 0 < −Γ/   1) have a single, trapped, near-inertial mode. In this limit, the approximate solution of the 
eigenvalue relation (33) is

σ  e4π /Γ  1.(35)

 

The eigenfrequency σ is “exponentially small”  in the vortex strength parameter −Γ/ ; this explains why the q = 0 
eigencurve in Fig. 1  is so “flat”  near the origin. The mode is weakly trapped because the radial decay scale, lK, of the 

modified Bessel function K0 in (32) is lK  a/(σ )½  a. That is, most of the eigenfunction is outside the core of the 

vortex.

As the strength of the vortex increases and we proceed up the q = 0 curve in Fig. 1 , the mode becomes tightly bound 
to the vortex core. Also, as −Γ/  increases, new modes with more radial structure appear: q = 1 and so on. At their birth on 
the abscissa of Fig. 1 , the modes have σ  1, and consequently the new modes are weakly trapped. But as |Γ/ | 
increases the higher modes also become tightly bound to the vortex core. Figure 2  shows the two radial modes 
supported by a vortex with −Γ/  = 60; the corresponding values of the nondimensional frequency parameter σ are 1.38 and 
15.32.

In the limit of large σ and Γ/ , the eigenvalue relation is approximately linear and given by

 



where j0,q+1 is the (q + 1)th zero of the Bessel function J0. This linear relation is shown by the dotted straight lines in Fig. 

1 . The agreement is not good for the relatively small values of σ in Fig. 1 ; however, the dotted lines do show the 
eventual σ  1 behavior of the eigenbranches. 

b. The m  0 case  

The results of the previous section apply only to the special case m = 0, that is, modes with no azimuthal structure, such 
as those observed by KST. We made an unsuccessful effort to find solutions of (15) with m  0. We did prove rather easily 
that there are no solutions with m < 0. But the case m > 0 remains open. We do not know if such solutions exist, nor can we 
prove that they do not exist.

c. Trapped modes in the presence of a model buoyancy profile  

Figure 1  presents the solution of the eigenproblem in a compact nondimensional form. However, it is difficult from 
this figure to estimate the variables with the most immediate physical meaning. Therefore, at the risk of some redundancy, 
we will consider a specific example and find the eigenfrequencies in dimensional variables. This approach has the advantage 
that one can make an a posteriori assessment of the validity of the NIO approximation.

We must first solve the vertical mode eigenproblem in (7) and obtain the Rossby radius and modal dispersivity n = 

f0R2
n. We use the buoyancy profile of Gill (1984):

 

(z = 0 is the bottom of the ocean). The parameters for the buoyancy profile are given in Table 1 : n decreases rapidly 

(like n−2) as n increases. Thus, the vortex strength parameter, −Γ/ n, becomes larger as the vertical mode number 

increases.

The characteristics of the vortex are chosen to match Fig. 5  of KST and are given in Table 1 . The resulting profile 

is a simple approximation to what was measured by KST.2 

Figure 3  shows the absolute value of the modal frequency, |ω|/f0, as a function of the vertical mode number n for the 

first few radial eigenmodes. This eigenrelation has the form

 

where the Fq > 0 are the nondimensional functions displayed in Fig. 1  for q = 0 and q = 1. The eigenfrequency of the 

mode with vertical mode number n and radial mode number q is ωn,q < 0. (The azimuthal mode number is m = 0 in all 

cases.) As the vertical mode number n increases, there are more trapped radial modes. Also, because the eigenfrequencies 
are negative, all of the trapped modes have slightly subinertial frequencies. Figure 3  shows that new radial modes arise at 
the vertical mode numbers 1, 5, 9, 13, 17, 20, and 25.

In terms of dimensional variables, the approximate dispersion relation (36) is

 

where c is the constant vorticity in the core of the Rankine vortex. The approximation above shows that the modal 

frequencies, ωn,q, saturate at c/2 for large n. Thus, the largest value of |ωn,q| is always less than | c/2|. The timescale 

separation assumption made in YBJ is that |ω|/f0  1 so that, in this problem, one requires that | c|/2f0  1. This condition 

is verified a posteriori for the parameters in Fig. 3 , for which |ωn,q|/f0 < 1/8  1. 

d. Comparison with the results of KB  

Kunze and Boss calculated the frequencies of trapped near-inertial oscillations in the presence of a background barotropic 
azimuthal flow, which is meant to model the warm core rings of KST and also the strong vortex cap observed above 
Fieberling Guyot. The parameters for the warm core ring and Fieberling Guyot are given in Table 2 . We shall use the 



same values to be able to compare results.

The results obtained so far may now be applied to the warm core ring and to Fieberling Guyot. We shall not use any 
model for the buoyancy profile, but rather calculate the dispersivity from the parameters of KB. The resulting value of  will 
not correspond to a vertical mode as such, but will give a numerical value appropriate to the measurements as reported by 
KB.

The analysis of KB is in terms of a vertical wavelength λz, which we shall relate to the dispersivity  through [cf. (8)]

 

As in KB, only the gravest radial mode (q = 0) is considered and the vorticity distribution is taken to be the Rankine 
vortex. The governing parameter in the eigenrelation (33) is then

 

For each radial mode, the dispersion relation is monotonic (see Fig. 1 ), and hence it suffices to consider the extremal 
values of Γ/  to obtain bounds for the frequency of each mode. High values of σ, that is, frequencies farther away from the 

inertial frequency, are obtained for large values of c and small values of N2 and λz, and vice versa. 

For the warm core ring, these parameters lead to extremal values for |Γ|/  of 78 and 1086. This corresponds to a 
dimensional frequency in the range 0.95f0 < ωE = f0 + ω < 0.98f0. This is the Eulerian frequency of KST and KB. The most 

subinertial frequency corresponds to the larger value of |Γ|/ , that is, to the stronger vortex. One advantage of the current 
representation is that it is easy to provide bounds for the frequency of the trapped mode, given the range of the physical 
parameters. The analysis of KST and KB is in terms of the effective Coriolis frequency, feff  f0 + c. The ratios ωE/feff 

and ωi/feff, where ωi is the intrinsic or Lagrangian frequency of KST, depend both on Γ/  and on c. In fact, the Eulerian 

frequency ratio ωE/feff increases monotonically with Γ/  with extremal values ωE = (1.024–1.056)feff. This is within 1% of 

the range (1.022–1.062)feff calculated by KB (in terms of the factor in front of feff). The intrinsic frequency, on the other 

hand, decreases with c for fixed Γ/  and increases with Γ/  for fixed c. As a consequence its extremal values do not 

necessarily correspond to the extremal values of Γ/  and c and must be obtained as a two-parameter problem. 

Figure 4  shows the solution envelope. It is very similar to Fig. 5  of KST and Fig. 2  of KB. The present 

solutions also match smoothly across r = a. The outer and inner radial wavelengths of KB become lK = 2πaσ−1/2 and lJ = 

2πa(−σ − Γ/π )−1/2. The inner radial wavelength has the range 118–136 km while the outer has the range 15–59 km. The 
KB values are 118–136 km and 15–60 km, respectively, and the agreement is excellent. 

The magnitude of the quantity Γ/  suggests that the asymptotic expression (39) should be a good approximation to the 
actual frequency. In fact, the leading order term in (39), ½ c, is good to better than 0.3%. Hence, for these large values of 

−Γ/ , the value of the core vorticity gives the frequency of the trapped mode. 

The same calculation for Fieberling Guyot using the values of Table 2 , which give two possible values for the core 
radius, leads to a range of 7.4 < |Γ|/  < 22.3 for a radius of 5 km and to a range of 14.5–43.7 for the 7-km radius. The 
corresponding frequency ranges are (0.85–0.95)f0 and (0.81–0.90)f0, respectively. These ranges indicate that the predicted 

frequency is too far from f0 for the NIO approximation to hold. The same remarks as before about the dependence of the 

frequencies expressed in terms of feff apply, further complicated by the existence of two different core radii. The range of 

the Eulerian frequency is (1.719–1.764)feff for the 5-km radius and (1.630–1.679)feff for the 7-km radius. The agreement in 

this case with the results of KB is only good to about 18%. The resulting eigenfunction envelopes in Fig. 5  are similar to 
those of KB, but are smooth since the appropriate matching condition for the NIO problem leads to continuous A and A′, 
unlike the KB matching condition. The range of inner wavelengths is 18–24 km for the 5-km core and 23–28 km for the 7-
km core, compared to the 22–34-km values of KB. 

The asymptotic relation (39) does not hold for these parameter values. The measured K1 tidal frequency of 0.933f0 lies 

within the calculated range for the 5-km radius core. Taking the larger values of λz and c and the smaller value of N leads to 

a theoretical value of 0.9454f0, which is within 1.4% of the observed value. 

We emphasize that the results in Figs. 4  and 5 , as in KB, apply only to the gravest radial and azimuthal mode q = 0 



and m = 0, respectively. The argument has often been made that large-scale forcing will dominantly excite this mode. In 
section 5 we provide a critical assessment of this assumption. 

4. Trapped modes in smooth vorticity profiles  

a. A family of quartic vorticity profiles  

We now turn to the near-inertial eigenstructure for vortices with spatially varying core vorticity. We obtain numerical 
results for an illustrative family of vorticity profiles and compare these to some asymptotic results that apply to arbitrary 
profiles. The profiles that we consider are given by

 

for η  < 1 and 0, otherwise (see Fig. 6 ). The profiles above form a one-parameter (Δ0) family, normalized so that (19) 

is satisfied. If the vorticity at the origin, Δ0, is greater than 3/π, the vorticity changes sign in the interval (0, 1). Such profiles 

have been observed although they are presumably barotropically unstable. The results for these vortices are the same as for 
those with Δ0 in the range (3/2π, 3/π). However for Δ0 < 3/2π, Δ"(0) > 0, with the vorticity increasing from Δ0 up to a 

maximum Δm, the results do change. The important difference is the presence of a maximum in negative vorticity away 

from the origin. These cases are similar to the measured vorticity profile of KST (their Fig. 5 ). Dewar (1987) argued that 
winter cooling might be responsible for forming such structures. It turns out that the case with a noncentral Δm has some 

interesting qualitative differences from the Rankine vortex of section 3. 

The eigenfunctions take the form (32) for η  > 1 since the vorticity vanishes beyond the core of the vortex. Inside the 
vortex, (30) is solved numerically. Using a trial value of ω, the resulting solutions are matched onto each other, and the 
procedure is repeated until A and A′ are continuous (which is the appropriate matching condition as discussed previously), 
yielding the eigenfrequency ω. The first eigenbranch, q = 0 is shown in Fig. 7  for two representative members of the 
family, one with maximum vorticity at the origin (Δ0 = 3/π and hence monotonically decaying) and one with maximum 

vorticity in the core of the vortex but not at the origin (Δ0 = 3/20π, in which case the maximum in vorticity is at η   0.7). 

The dotted curves show the asymptotic behavior for large |Γ|/ . The agreement is not as good for the latter profile as for 
the former.

Figure 8  shows the birth of the second eigenmode for the quartic profile with Δ = 3/5π. The appearance of new 
eigenmodes is very similar to the case of the Rankine vortex; the second branch emerges at −Γ/   58 (as opposed to 46 in 
the Rankine case).

Figure 9  shows the radial modes for the quartic family for the same values of Δ0 as Fig. 7 , with −Γ/  = 20. The 

maximum of A moves away from η  = 0 more slowly than the maximum of the vorticity profile to which it corresponds. 
This shows that the vorticity minimum must be displaced a fair way from the center of the vortex for the trapped mode to 
have a clear maximum away from the core. Figure 10  quantifies this by showing ηm, the value of η  where Δ(η) has its 

maximum against ηA, the value of η  where A(η) achieves its maximum. For the quartic family, the maximum in A does not 

move off the axis until ηm > 0.65. 

b. Asymptotic results: The q = 0 branch near the origin  

A remarkable aspect of Fig. 7  is that the eigenvalues coincide near the origin of the (σ, −Γ/ ) plane. This suggests that 
the structure of the q = 0 eigenbranch becomes independent of the vorticity profile as σ tends to 0. The analysis in appendix 
A confirms this expectation by showing that, in this limit,

σ  e4π /Γ.(43)

 

Physically, when σ  1, the mode is weakly trapped and only “feels”  the total circulation Γ of the vortex; roughly 
speaking, the weakly trapped mode “sees”  the vortex as a point singularity of strength Γ. 

c. Asymptotic results: The q = 0 branch for large σ and large −Γ/   

The behavior of the eigencurves for the gravest radial mode for large |Γ|/  and large σ depends on whether Δm is located 

at the origin (e.g., the curve Δ0 = 3/π in Fig. 6 ) or away from the origin (e.g., the curve Δ0 = 3/5π in Fig. 6 ). 

For Δm at η  = 0, and σ and |Γ|/  both large, the analysis in appendix B shows that the approximate eigenvalue relation is



 

Notice that Δ0 is positive while Γ and Δ"(0) are both negative.
 

For vorticity profiles with Δ0 < Δm [or equivalently Δ"(0) > 0], the approximate eigenrelation is

 

where μ2 is given by (B17). The results in (44) and (45) show that as −Γ/  increases, the dimensional eigenfrequencies 

approach min/2, no matter where min = ΓΔm/a2 is located in r. 

5. The initial value problem for a Rankine vortex  

We now consider the initial value problem in which an impulsive wind stress with infinite horizontal scale sets the 
uppermost layer of the ocean into unidirectional motion in the zonal direction, and the geostrophic flow is a Rankine vortex. 
The initial condition for (6) is LA = uI(z) where uI is some function concentrated near the surface [an example is given in 

Balmforth et al. (1998)]. We use the parameter values of Table 1  to define the vertical modes. 

The initial condition is then projected onto the vertical normal modes defined in (7) and consequently the initial value 
problem reduces to solving (10) with an initial condition

n(r, θ, 0) = 1.(46)
 

[Because the problem is linear, we can multiply this solution by the appropriate projection coefficient of uI(z) onto n.] In 

order to deal with quantities that decay at large distances from the vortex, it is convenient to define n = n − 1. It then 

follows from (10) that

 

with the initial condition that n = 0. The right-hand side of (47) is independent of θ and consequently the solution of (47) 

is independent of θ; thus the Jacobian term in (47) is zero. 

For fixed vertical mode number, n, there are only a finite number of radial modes (Fig. 3 ); for example, for n = 10, 
there are three trapped radial modes. This situation is similar to other problems in wave guide theory in which the trapped 
modes do not form a complete set. Consequently, one must also use radiation modes to represent the initial condition. Thus, 
our solution of (47) is

 

where (q)
n is defined by

 

The number of discrete radial modes for vertical mode n is Q(n). 

Because the discrete modes are not complete, the full solution of (47) requires the use of the continuous spectrum and 

this produces the term (bc) in (48). The Laplace transform is a systematic way of obtaining this solution, and using this 

method, (bc) corresponds to a“branch cut”  contribution in the inversion formula. The full details of the solution for the 
Rankine vortex are given in appendix C.



It turns out that, for the Rankine vortex, the integrals in (49) can be evaluated analytically; this leads to

 

where J1 = J1(α), J0 = J0(α), K0 = K0(β), and K1 = K1(β) with

 

The coefficient c/ω
(q)

n may be rewritten as 2Γ/π nσ
(q)

n, which shows that it only depends on the parameters used in 

section 3. 

Radial mode q = 1 has a large projection coefficient for vertical mode n = 5. However, the vertical dependence for the 
initial condition must be specified to see whether the higher modes will actually be significantly represented in practice. 
Using the initial condition of Balmforth et al. (1998) [their Eq. (4.4)], the actual projection amplitudes of the modes can be 
calculated for each n and q using

 

where n = exp(−n2/600) is a filter to avoid Gibbs-type phenomena and the σn are properties of the Gill buoyancy profile. 

Normalizing with respect to the (0, 0) mode, the next highest amplitudes are the gravest radial mode of the vertical mode n = 

5, (0)
5 = 0.0114, and the first radial mode of the lowest vertical mode (1)

0 = 0.065. Hence if anything beyond the gravest 

mode (radial and vertical) is seen, the first radial mode will be observed too. Figure 11  shows the projection coefficient 

for the first radial and vertical modes, as well as the actual values for the initial amplitudes of the modes (q)
n. 

The remaining part of the solution is the branch cut contribution (bc)(r, t). It is impossible to invert the Laplace 

transform and obtain an exact expression for (bc)(r, t). However, there is a simple asymptotic approximation that is valid if 

r is fixed and at long times nt/a2  1:

 

where the function (η) is defined in (C9) and the nondimensional time τ in (C12). Thus, at fixed r, the continuum 

contribution in (54) is a very slowly decaying (lnt)−1 transient. This decay is so slow that for all practical purposes it is 
probably unobservable; this greatly complicates the interpretation of observations, such as those of KST. Thus, while it is 
true that large-scale forcing will excite the undamped trapped modes [the sum from q = 1 to  on the right-hand side of 
(48)], the forcing also produces the long-lived transient in (54). Nevertheless, KST observed intensified near-inertial 
motions. One reason for the slow decay of the present result is that it effectively produces inertial waves of infinite extent. 
Adding further physical processes such as realistic forcing or including the β effect would lead to more rapid decay, 
although the problem would no longer be tractable. In addition, the present barotropic model does not allow for amplification 
in a vertical critical layer at the base of the ring.

Adding to the possibility of confusion between the discrete modes and the continuum is the fact that the spatial structure 

of the transient, (bc)(r, t), resembles the q = 0 mode, although with the wrong frequency to be a normal mode. The radial 
structure of the continuous spectrum for large time is similar to the normal modes with zero frequency, although the value 
of Γ/π  is now arbitrary. This is not true for large r however: when η   r/a > 1, the lnη  term gives the (mistaken) 

impression that (bc)(r, t) grows at great distances from the vortex center. However, the asymptotic approximation in (54) 
is valid only with r fixed and t  ∞. In order to obtain an expression that is useful when r and t are large, we must take a 
distinguished limit in which the similarity variable

 

is held fixed and t  ∞. One can develop this alternative approximation using the Laplace transform solution in appendix 

C. But there is a simpler approach that, because of the probable importance of (bc)(r, t), is worth developing in the body of 
this paper.



The basic idea is that at long times and great distances from the vortex many details of the internal structure of the 
solution become irrelevant and instead one obtains a self-similar evolution. Rewriting (47) in the region outside the vortex 

(where Z = 0) using  and τ [defined in (C12)] as new independent variables gives

 

With hindsight from the Laplace transform solution of appendix C, we look for a solution of (56) that has the form

 

The leading order term, (0)
n, satisfies (56) with the left-hand side replaced by zero; the solution of this equation, which 

decays to zero as   ∞, is

 

where E1 is the exponential integral. The constant of integration, C, is determined by matching the outer solution in (58) 

with the inner solution in (54); one finds that C = −2. Hence, the similarity solution is given by

 

Figure 12  shows the asymptotic approximations (54) and (59) for t = 100 × (2a2/ ). The agreement between the 

actual solution and the asymptotic approximation is very good for η  < 1 and  = O(1). Between these two ranges; that is, on 
the right-hand edge of the first panel, the agreement is not so good because (54) is not formally valid as r becomes large. 
The z-dependence enters implicitly into these results through . 

6. Discussion  

We have examined the m = 0 part of the near-inertial eigenspectrum of compact vortices. Normal modes exist for vortices 
with negative vorticity and relate the two nondimensional quantities Γ/  and σ. Modes appear with the inertial frequency as 
the nondimensional strength of the vortex |Γ|/  grows and become progressively more subinertial as |Γ|/  increases. For a 
fixed value of Γ/ , higher modes are less tightly bound to the core of the vortex. There is also a continuous radiation 
spectrum that must be considered for the initial value problem.

For the warm core ring considered by KST and KB, the nondimensional strength of the vortex is large enough for the 
asymptotic approximation ω  f0 + ½ c to hold. This means that the NIO approximation gives good answers, and the 

results agree well with KST and KB. For the mode trapped over Fieberling Guyot, the conditions of validity of the NIO 
approximation do not hold so well since the core vorticity of the flow is no longer small compared to the inertial frequency, 
and the timescale separation between the inertial oscillation and the slower motion due to the modulation of the NIO is no 
longer pronounced. Nevertheless, the calculated frequency agrees well with the observed frequency of the diurnal tide.

The modes trapped on a family of smooth vorticity profiles that vanish outside a vortex core have also been calculated. 
The results are similar to the case of the Rankine vortex. In particular, asymptotic approximations are presented for small 
and large values of |Γ|/ . For large |Γ|/ , the frequency of the trapped mode tends to ½ c. Provided the core vorticity is 

smaller than the inertial frequency, this verifies the NIO approximation a posteriori.

The solution to the initial value problem for the Rankine vortex with a spatially uniform initial condition has also been 
considered. The discrete response is not just concentrated in the lowest radial modes and there is a potentially significant 
response in the second radial mode. Whether this is actually relevant depends on the initial condition: for the Balmforth et al. 
(1998) profile, the maximum amplitude for the second radial mode is less than 1% of the lowest radial mode, so it is unlikely 
to be significant, although it is of the same order as the amplitude of the n = 1 vertical mode. Therefore the response for 
vertical modes greater than n = 1 is strongly affected by the first radial mode. 

The continuous spectrum is necessary in addition to the discrete spectrum to obtain the full solution. The continuous 

spectrum decays very slowly in time, like (lnt)−1, and has an oscillatory spatial structure in the core of the vortex that 
depends only on Γ/π , whereas the asymptotic behavior far from the vortex has a similarity form in terms of the exponential 



integral and also decays slowly in time. To a certain extent, some of these features may be due to the simplifications adopted 
in the present model, but they provide some explicit results for the time-dependent problem.
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APPENDIX A  

7. The q = 0 Eigenbranch for |Γ|/   1  

The confluence as −Γ/   0 of the q = 0 eigencurves in Fig. 7  suggests that there is a general result, independent of 
the details of the vorticity profile, for the structure of the eigencurves near (Γ/ , σ) = (0, 0). Consider then a general 
vorticity profile Δ(η). The scalings of (35) suggest writing Eq. (15) in the form

 

where the circulation, Γ, is related to the unknown function α(σ) by

 



The goal is to determine α by expanding (A1) and (A2) in terms of (lnσ)−1; that is, α = α0 + (lnσ)−1α1 + · · · . It turns 

out that this expansion is not uniformly valid in η  and we will need to introduce an outer coordinate ρ = σ1/2η  and perform 
an asymptotic match.

In the inner field, the expansion of (A1) has the form A = A0 + (lnσ)−1A1 + · · · , and the zeroth-order equation is given 

by

 

The solution may be scaled arbitrarily so we take

A0 = 1.(A4)
 

The next order in the expansion of (A1) is (lnσ)−1 and at that order

 

The solution of the equation above can be obtained as a double integral of Δ(η) (or, equivalently, A1 is proportional to the 

geostrophic streamfunction ). However, it turns out that all we need for the purposes of matching is the behavior of A1 

when η  is large:

 

where the normalization condition (19) has been used. Assembling the results in (A4) and (A5) we now have the outer 
limit of the inner expansion: A  1 + (α0 lnη/2π lnσ). 

In terms of the outer variable ρ = σ1/2η  the eigenproblem is

 

For a localized geostrophic eddy, the Δ term will be exponentially small in σ and hence does not enter into the far-field 
problem. The scaling of A in the far field must now be specified; to match the inner solution we must solve the equation 

above by taking A = (lnσ)−1A0 + A1 + · · · ; that is, the outer expansion starts at (lnσ)−1. Then the leading-order equation is 

given by

 

with solution

A0 = pK0(ρ),(A9)
 

where p is an unknown constant. We take the inner limit of the outer expansion using K0(ρ)  −lnρ as ρ  0. Thus the 

inner expansion of the outer solution is A  −(p/2) − p(lnη/lnσ). 

Matching the two expansions above gives the two relations p = −2 and α0 = 4π. Thus, the dependence of the eigenvalue σ 

on the vortex strength parameter Γ/  is given by (35) for all localized vorticity distributions. 

APPENDIX B  

8. The Eigenvalue Relation in the Case |Γ|/   1 and σ  1  

We first consider vorticity profiles that decay monotonically from a central maximum at η  = 0 (the cases with Δ0 > 3π/2 



in Fig. 6 ). Then the profile function Δ(η) has a Taylor expansion of the form

 

where Δ2 = −Δ"(0) > 0. [We assume that there are no odd terms in the expansion of Δ(η).] The calculation is insensitive 

to the presence of an annulus of positive vorticity: it is the location of the negative vorticity maximum that counts.

For large |Γ|/ , the NIO equation can be rewritten as

 

where 2  − /Γ. Equation (36) shows that for the Rankine vortex the leading order behavior is σ  −Δ0Γ/ , where Δ0 

= 1/π is the value of Δ(η) at the origin. This observation suggests the scaling 2σ = Δ0 + μ, where μ = μ1 + 2μ2 + · · · . 

Then, using the definition (η)  Δ0 − Δ(η), (B2) becomes

 

The function (η) increases monotonically from zero at η  = 0 to Δ0 at η  = ∞.

 

The WKB substitution A = exp(S/ ) leads to

 

However, this equation need not be solved in its entirety. All that is needed is to determine the eigenvalue μ by removing 
potential singularities in S (arising from the S′/η  term) that cannot match onto the regular solution of (B2) near the origin. 

Expanding the leading-order WKB solution, S′0 = − (η)1/2, about the origin gives

 

Provided Δ2 does not vanish, the next order equation near the origin is

 

To avoid a singular solution, the next order correction to the eigenvalue must be

μ1 = −(2Δ2 )½.(B7)

 

Proceeding analogously at the next order gives

 

Assembling the results above, we obtain (44). 

We now turn to the case in which the vorticity profile has a maximum, Δm, at η  = ηm  0 (the cases with Δ0 < 3π/2 in 

Fig. 7 ). Define (η) = Δm − Δ(η). The function (η) has a global minimum at ηm and in the neighborhood of this 

point,



 

where "
m  − Δ"(ηm) > 0. Scaling the eigenvalue as 2σ = Δm + μ, we again obtain the eigenproblem in the form (B3).

 

In this case the approximate solution is obtained by arguing that the eigenfunction is localized in the neighborhood of ηm 

and is exponentially small away from this point. A local approximation of (B3) is obtained by defining

z = (η  − ηm)/ 1/2.(B10)

 

In this case, the parameter μ will have the form μ = μ1 + 3/2 μ3/2 + 2μ2 + · · · . Then, at leading order, (B3) is

 

The equation above is the well-known problem of the quantum simple harmonic oscillator. The requirement that A decays 
exponentially for large |z| determines the eigenvalue as

μ1 = −(2q + 1)( "
m/2 )½,(B12)

 

where q is an integer. We consider only the q = 0 branch. Thus

A0 = eμ1z2/2.(B13)

 

The equation at next order is

 

Both sides of this equation must vanish when multiplied by A0 and integrated over all z. Using this compatibility condition, 

μ3/2 = 0. The solution for A1 is

 

The next equation in the hierarchy is

 

Now the compatibility condition gives

 

APPENDIX C  



9. Solution of the Initial Value Problem for the Rankine Vortex  

Equation (47) may be solved using the Laplace transform

 

Hereafter in this appendix we drop the subscript n. Then, recalling that the solution depends only on η , the transformed 
version of (47) is

 

For η  > 1, so that Z = 0, the solution to (C2) is

 

and for η  < 1, so that Z = Γ/πa2, the solution is

 

where

 

The point s = 0 is a branch point; the points in the complex s plane at which kK1(k)J0(j) − jJ1(j)K0(k) = 0 are simple poles 

(these are simply the points s = −iω(q)
n). The point s = −iΓ/2πa2 does not have any special characteristics: the 

corresponding singularity in (C3) and (C4) is removable. 

The Laplace transform is inverted according to the standard prescription,

 

where  is the straight line labeled “original Bromwich contour”  in Fig. C1 . An alternate path of integration is obtained 
by deforming the contour to the left so that the poles on the imaginary axis are enclosed and evaluated as residues while the 
remainder of the contour surrounds the branch line along the negative real axis. The residue contribution from the poles 

gives the sum from q = 0 to Q in (48). The contribution from the branch cut gives the remaining term (bc). 

The t  1 behavior of the (bc) may be obtained from (C3), (C4) by an expansion in s near the origin. Expansion of (C3) 
and (C4) gives

 

In this expression, γ = 0.577. . . is Euler’s constant,



 

and

 

In addition 1  (1). Logarithmic terms have been grouped in with algebraic terms of the same order in s−1.

 

The branch cut integral (including the contribution from the singularity at the origin) is then

 
(Click the equation graphic to enlarge/reduce size)

Ignoring higher-order terms, this may be rewritten as

 

where

 

The integral in (C11) may be expressed in terms of Ramanujan’s function,

 

by changing the contour of integration to the positive real axis. This is permissible because the original integration contour 
is the negative imaginary axis and may be deformed onto the positive real axis without passing through the pole of the 
integrand located at u = −1. The final result is

(bc)(η ,t) = −1 − 2 (η)N(iτ).(C14)

 

The asymptotic expansion of Ramanujan’s integral is given in Bouwkamp (1971) as

 

The derivation of Bouwkamp (1971) is valid only for real arguments of N(θ). However it can be shown that (C15) 
actually holds for θ in the right-half complex plane, including on the imaginary axis. 

The asymptotic behavior (C14) is not valid for large η  and breaks down for η2  t. It is easy to deduce the appropriate 
asymptotic behavior using an appropriate expansion of the inverse Laplace transform (Ritchie and Sakakura 1956). 
However, as shown in section 5, it is more instructive to work in a similarity variable appropriate for the far field. The 
logarithmic behavior exhibited by (C14) is also seen in diffusion problems in cylindrical geometry (Carslaw and Jaeger 1959; 
Ritchie and Sakakura 1956). 



Tables  

Table 1. Physical parameters: the first five are parameters for the Gill model buoyancy profile (in fact Nmix is derived from the 

previous four), and the last four, which relate to the vortex and its surroundings, are taken from KST.
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Table 2. Physical parameters for a warm core ring and Fieberling Guyot (taken from KB).
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Figures  
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Fig. 1. The first two eigenbranches obtained from the eigenvalue relation (33), plotted as solid curves. The abscissa is the 

nondimensional vortex strength parameter −Γ/  and the ordinate is the nondimensional frequency σ = −2a2
ω/ . The dotted 

lines show the large-σ behavior of the eigenbranches from (36). The next eigenbranch, q = 2, starts around −Γ/   150. 
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Fig. 2. The velocity amplitude A(r) [chosen to have A(0) = 1] for the two radial modes supported by a Rankine vortex with −Γ/  
= 60. The vortex has radius η = 1. 
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Fig. 3. Modal frequency |ω|/f0 as a function of vertical mode number n for the first five radial eigenmodes. (The azimuthal mode 

number is m = 0 in all cases.) The modes with q  1 exist for sufficiently large n (i.e., only for sufficiently large Γ/ n). As n 

increases, all of the eigencurves asymptote to | c|/2f0 (1/8 in the figure above). 
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Fig. 4. Solution envelope, A(r), for the warm core ring considered in KST and KB. The upper bounding curve corresponds to 
the smaller value of |Γ|/  and is less trapped than the lower curve, which corresponds to the larger value of |Γ|/ . The dotted line 
corresponds to the edge of the vortex at 43 km.
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Fig. 5. Solution envelope, A(r), for Fieberling Guyot, as considered by KB. The inner envelope corresponds to the 7-km core 
radius, the outer envelope to the 5-km core radius. Both radii are shown as dotted lines. As in Fig. 4 , the upper limit of each 
envelope corresponds to the smaller value of |Γ|/  and the lower to the larger value of |Γ|/ . 
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Fig. 6. Six members of the quartic vorticity-profile family Δ(η). The value of Δ0 = Δ(0) is given next to each curve.
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Fig. 7. Eigenvalue curves for the first radial eigenmode (q = 0) of the quartic family (solid lines). The value of Δ0 is indicated 

next to the eigenvalue curves. The asymptotic approximations (44) and (45) are the dotted curves. 
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Fig. 8. First two eigenbranches of the quartic profile with Δ0 = 3/5π. The second branch appears at around −Γ/   58.
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Fig. 9. The velocity amplitudes A(r) of the lowest (q = 0) radial modes of the quartic family with −Γ/  = 20. The values of Δ0 

characterizing each mode are shown next to the curve.
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Fig. 10. The value of η at which A(η) attains its maximum, ηA, plotted against the value of η at which Δ(η) attains its maximum, 

ηm . 
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Fig. 11. (a) Projection coefficient, (q)
n, for the lower radial and vertical modes. Vertical modes n = 1–6 and radial modes q = 0–

2 are shown. (b) Amplitude coefficients, (q)
n(t = 0), for the Balmforth et al. (1998) initial condition uI(z). A logarithmic scale is 

used, normalized with respect to the (0, 0) mode.
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Fig. 12. Real and imaginary parts of the branch cut contribution (solid curves), (bc) + 1, to the solution of the initial value 

problem for the Rankine vortex, at time t = 100 × (2a2/ ). The dotted curves are the asymptotic approximations (54) in the left-
hand panel and (59) in the right-hand panel. In this calculation Γ/π  = −80. 
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Fig. C1. Complex s-plane for the definition of the Laplace inversion of (C3) and (C4). 

 

 

1 The integer index q starts at q = 0; we use the convention that the “zeroth”  zero of J1 is j1,0 = 0. Then, as in Abramowitz and Stegun (1965), j1,1 

 3.83, etc. 

2 The Coriolis frequency however is taken to be 10−4 s−1: the small difference from the actual value at the latitude of the warm core ring (9.4 × 

10−5 s−1) has no importance for the results of this section. 
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