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ABSTRACT

A linear stability analysis combined with an energy analysis is performed to 
discriminate between the various instabilities that may develop at upwelling 
fronts. In the present study, a two-active-layer model of finite depth is 
considered. Thus, the model includes a variable across-front bottom 
topography, a sloping interface, a surface elevation, and variable densities in the 
two layers. In addition, the energy analysis departs from earlier studies in that it 
makes use of the available gravitational energy to replace the conventional 
potential energy. The concept of available gravitational energy is akin to available 
potential energy, but avoids the constraint of considering a closed basin. 
Interestingly, the earlier findings of two preferred bands of unstable waves are 
retained in the present model. The first band (wavelengths of 10–30 km) is 
associated with the so-called frontal instability (frontal mode), and the second 
band (wavelengths of 60–70 km) is associated with a mixed barotropic–
baroclinic instability (mixed mode). The growth rate of the frontal mode is 
typically in the range of one to two days, while the mixed mode is typically 
three to five days. Although the frontal mode dominates in most cases, an 
exception occurs when the horizontal shear (in terms of the jet speed divided by 
the frontal width) becomes large. Indeed, the frontal mode ceases to exist when 
the frontal width becomes small enough, depending on the horizontal viscosity. 
Another exception occurs when the frontal jet is caused by the sloping interface 
only (no upper-layer density front). In this case the frontal mode is cut off, 
lending further support to the theory that the smaller-scale waves found in the 
coastal transition zones of the world oceans indeed owe their presence to the 
existence of the upwelling front. When the vertical shear is increased, the 
present analysis reveals that the growth rates of all the unstable waves, in 
particular the waves associated with the frontal mode, are increased. Moreover, 
the mixed mode ceases to exist as a preferred band of unstable waves. A final case shows that the frontal mode is 
unaffected by a sloping bottom topography. This is in support of the suggestion that the frontal mode is trapped to 
the upper layer. Experiments with a numerical multilayer, primitive-equation ocean model support the findings of the 
linear stability analysis, both qualitatively and quantitatively. They also reveal a complicated nonlinear wave–wave 
interaction causing a transition from the well-organized linear instability wave pattern toward a new organized pattern 
of much longer scale, filament-type, structures.

1. Introduction  

Table of Contents:
● Introduction
● The governing equations
● Energetics
● Results of the linear
● Comparison with results
● Summary and conclusions
● REFERENCES
● TABLES
● FIGURES

Options:
● Create Reference 
● Email this Article 
● Add to MyArchive 
● Search AMS Glossary 

Search CrossRef for:
● Articles Citing This Article 

Search Google Scholar for:
● Xiao Bing Shi
● Lars Petter Røed 



In the following, the linearly unstable waves that may grow at an upwelling front are investigated using a linear stability 
analysis combined with an energy analysis. This subject has recently been treated by Barth (1989a,b;1994), McCreary et al. 
(1991), Fukamachi et al. (1995), and Young and Chen (1995). The present work extends these studies in that an arbitrarily 
varying mixed layer depth and surface elevation are included and the density is allowed to vary laterally in both layers. 

The study is motivated by investigations revealing the mesoscale structure in the upwelling area off the western Iberian 
Peninsula (Haynes et al. 1993; Sousa 1995). In the traditional view, upwelling-favorable winds force an offshore (Ekman) 
transport in the upper ocean, leading to a persistent upwelling of cold and nutrient rich water from below. This causes an 
upwelling front to be formed offshore that separates the cold saline coastal water from the warmer and fresher ambient 
water offshore. Such fronts are characterized by sharp lateral gradients in velocity, density, and biological fields and are 
most commonly observed in eastern ocean boundary regions (Northern Hemisphere) such as the coastal transition zone 
(CTZ) off the western Iberian Peninsula, the northwestern coast of Africa, and the Oregon and California coasts. An 
example is provided in Fig. 1 , which shows a satellite image of the sea surface temperature off the Iberian Peninsula. 
This image reveals that the upwelling affects the open ocean due to the formation of large-scale upwelling filaments and 
squirts, which may reach as far as 200–300 km offshore (Sousa 1995). 

Also visible in Fig. 1  are smaller-scale instabilities with wavelengths of approximately 15–30 km. The smaller-scale 
waves are postulated to be the result of instability mechanisms and are the focus of this study. It is of interest to note that 
these mesoscale structures are reproducible by numerical models, provided a sufficiently high resolution is used (Stevens et 
al. 1997). 

Of particular relevance to the present study are those of McCreary et al. (1991) and Røed (1996). As for instance revealed 
by Røed (1996), filaments strikingly similar to those observed off the Atlantic coast of the Iberian Peninsula may be 
reproduced using a simple 1½-layer model featuring a realistic coastline geometry. Moreover, Feliks and Ghil (1993) studied 
the evolution of frontal waves using a QG rigid-lid model with several modes in the vertical. They divided the formation of 
frontal waves into three stages. At first, the evolution is mainly due to linear instability, the second stage is characterized by 
eddy formation, and finally, eddies grow into filaments that shoot out from the coast.

a. Earlier work  

There have been many mathematical and experimental investigations of the dynamics behind upwelling filaments, squirts, 
and eddies. Whereas the earlier studies used quasigeostrophic (QG) theory, the more recent studies have been based on 
primitive equation (PE) models. The latter is important since the QG approximation severely restricts the number of possible 
instability mechanisms. A review of some of the earlier work pertinent to the present study is given by Fukamachi et al. 
(1995), and only a few comments and remarks are therefore provided here. 

In his pioneering study of baroclinic instabilities in a two-layer, constant density, QG model, Phillips (1954) found that the 

fastest growing, baroclinically unstable waves had the wavelength λm = 2πR(Hd/H)1/4, where H and Hd are the thickness of 

the upper and bottom layers respectively, R = {gΔρHHd/[f2ρ0(H + Hd)]}1/2 is the internal Rossby radius of deformation, g 

is the gravitational acceleration, Δρ is the density difference between the two layers, and ρ0 is a reference density value. 

Using values typical for the region off the Iberian Peninsula λm  60 km, which is much longer than the 15–30 km 

wavelength observed in Fig. 1 . It is also substantially shorter than the 100–150 km distance separating the filaments 
(Haynes et al. 1993; Sousa 1995). Neither of these waves are therefore caused by the mechanism proposed by Phillips 
(1954). This is to be expected since his theory assumes that the basic state consists of a constant velocity balanced by a 
linear thickness deviation. When the horizontal density structure of the upper ocean is considered, a new type of unstable 
wave–frontal instability wave becomes possible, as shown for instance in the more recent studies of Barth (1994), 
McCreary et al. (1991), and Fukamachi et al. (1995). 

As noted by McCreary et al. (1991) and later by Fukamachi et al. (1995), prominent new instability mechanisms can be 
simulated in PE models that owe their existence to strong lateral density gradients, that is, the existence of a front. This 
instability is, therefore, called the frontal instability. To avoid confusion regarding terminology, the frontal instability is here 
defined as being that part of the baroclinic instability that extracts its energy from the basic lateral density gradient and/or 
density fluctuations.

The work of Young and Chen (1995) is of particular interest. They extended the analysis of Fukamachi et al. (1995) to 
include a (linearly) varying upper-layer thickness in addition to a variable density in the basic state. They concluded that, 
when a linear slope in the basic state upper-layer thickness is included, a low wavenumber cutoff exists below which the 
waves are stable;that is, longer waves are stabilized. In upwelling areas, however, the base of mixed layer is not a linear 
slope, but exhibits a frontal-like structure. It is therefore of interest to study the case when both the basic upper-layer 
thickness and density exhibit a frontal structure.

Using a continuously stratified model Barth (1994) investigated the stability of a coastal frontal jet and front and explained 
the growth of two modes of instability. One is in the longer wavelength band with wavelengths of O(100 km) and extends to 
the deep ocean. He postulated that this was a modified version of the conventional baroclinic instability. The other mode was 
in the shorter wavelength band with unstable waves of O(20 km), with a much faster growth rate (e-folding time of 1.5 
days). Moreover, another form of instability, inertial instability (Hoskins 1974), can also form if the horizontal velocity shear 
is larger than the Coriolis parameter f, but in this case the disturbance will not appear as a wavelike instability. 



Barth also used results generated with the spectral, nonlinear model of Haidvogel et al. (1991) to study the instability 
associated with fronts and to compare it with his results obtained using linear instability theory. By imposing the same basic 
state in the nonlinear numerical model he was able to verify qualitatively the existence of the frontal instability mode by the 
similarity of the model and the linear instability results.

Fukamachi et al. (1995) analyzed the linearly unstable waves with a 1½-layer model. They obtained two types of 
instabilities in this model also, confirming the results obtained by Barth (1994). The most unstable waves were in the shorter 
wavelength band ( 20 km) and were caused by the frontal instability mechanism. The other instability was in the long 
wavelength band with wavelengths of about 60 km. These waves were caused by a mixture of barotropic and baroclinic 
instability and appeared to dominate below a certain threshold of frontal width.

It should be noted that the present model has horizontal density gradients in the layers without having an accompanying 
vertical shear since it is assumed implicitly that Reynolds stresses balance exactly the z-dependent part of the pressure 
gradient in the layer model. Criticisms of such models were raised by Young (1994), who argued that momentum is not 
ensured to be uniformly mixed even though the density can be homogenized by strong vertical mixing processes in the 
mixed layer. He, nevertheless, developed a partial justification for a model in which the top layer was well mixed in both 
density and momentum. Later, Young and Chen (1995) found that it was indeed more realistic to include a vertical velocity 
shear in the mixed layer since the long-wave behavior of the Eady mode can be reproduced nicely this way, and that models 
with vertical shear make qualitatively different predictions from models without vertical shear under certain circumstances. 
Therefore, the results from inhomogeneous layer models should be interpreted with care. Nevertheless, such models have 
not yet failed in any fundamental way to simulate oceanic phenomena, for example, McCreary et al. (1991) and Røed 
(1996). 

b. Present research  

The analysis scheme of Fukamachi et al. (1995) is extended below in order to include the effect of bottom topography, 
that is, a barotropic mode. To this end, a two-active-layer, finite depth model is considered. In the basic state, the interface, 
the surface, and the density in the upper and lower layers are all allowed to vary in the cross-channel direction and, 
specifically, to have a (nonlinear) frontal structure. The new scheme also supports lateral density and thickness perturbations 
in both layers. Thus, the model contains barotropic and frontal instabilities, instability due to vertical velocity shear, inertial 
instability, as well as a conventional baroclinic instability. An energy analysis along the lines of McCreary et al. (1991) and 
Fukamachi et al. (1995) is undertaken to investigate the relative importance of the various instability mechanisms present, in 
which the concept of available gravitation energy of Pinardi and Robinson (1986) and Røed (1997) is used to replace the 
conventional potential energy.

Six cases are considered. The first is a reference run featuring a flat bottom and a basic-state jet in the upper layer only. 
This is achieved by letting the basic-state density in the upper layer (baroclinic mode) and the basic-state surface deviation 
(barotropic mode) vary in such a manner that the lower-layer velocity becomes zero. The basic state has a flat interface and 
a uniform lower-layer density. Although the reference run is constructed to be similar to the basic state considered by 
Fukamachi et al. (1995), it differs from theirs in that the basic state necessarily features a barotropic velocity component 
(due to the finite depth) to make the lower-layer velocity zero. The remaining five cases are sensitivity cases in which the 
various constraints of the reference run are relaxed. While the first considers the effect of a density front combined with an 
interface deviation, the second considers the effect of a varying horizontal eddy viscosity; the third the effect of varying the 
basic-state horizontal shear (essentially the width of the front); the fourth considers the effect of varying the vertical shear, 
in which case the basic-state lower-layer density is allowed to have a weak front as well; and the fifth and last is constructed 
to show the effect of introducing a sloping bottom. It should be pointed out that similar sensitivity cases have been carried 
out by McCreary et al. (1991), Barth (1994), and Fukamachi et al. (1995), however, using different model configurations. 
Finally, the details and nature of the instabilities are further investigated by comparing the results of the linear instability 
analysis with the response of a layered, nonlinear, primitive equation numerical model.

The governing equations, including the basic-state balance, the perturbation equations, and the solution method, are 
presented in section 2. The energy analysis scheme used is presented in section 3. Section 4 gives an account of the results 
of the linear stability analysis and also includes the results emanating from the energetics applied to the six cases mentioned 
above. Results from the experiments with the numerical model are discussed in section 5. Finally, section 6 offers a 
summary and some concluding remarks.

2. The governing equations  

The model ocean is a two-active layer, finite depth, primitive equation model with lateral inhomogeneity in the layer 
densities. As such the model is similar to the reduced-gravity-type models employed by McCreary et al. (1991) and 
Fukamachi et al. (1995) but, yet, different in that it includes the barotropic mode. For details on the derivation of the model 
equations the reader is referred to Røed (1995). Let hi denote the layer thickness, ui the depth-averaged layer velocity with 

components ui, i in the horizontal directions, and ρi the depth average layer density. Neglecting the effect of wind forcing, 

diapycnal mixing, and fluxes across interfaces (including the surface flux) the governing equations become



 

where Ji is the pressure force given by (neglecting surface pressure)

 

The water mass is confined within a meridional channel with x pointing eastward (across channel direction) and y pointing 
northward (along channel), respectively. The layer index i (i = 1, 2) is counted from top down (see Fig. 2 ). Subscript t 
indicates differentiation with respect to time, and the  operator denotes a differentiation in the horizontal direction only. The 
Coriolis parameter is f, νi is the eddy viscosity coefficient, ρ0 is a constant reference density, g is the gravitational 

acceleration, k  is a unit vector along the upward z axis, and D is the ocean depth. Note that the above equations are valid for 
an arbitrary number of layers, but for the purpose of this study only two layers are considered.

a. The basic state  

The basic state is assumed to be in geostrophic balance and to consist of a frontal jet varying in the cross-channel 
direction (x axis) only. The frontal area over which the basic-state variables vary is sufficiently remote from the walls to be 
considered a free jet (e.g., Lee and Csanady 1994), that is, not to be impeded by the presence of the walls. Thus, the frontal 
area is located at least one Rossby radius away from the walls. Given this constraint, the diffusion of the basic state is small 
everywhere, even close to the walls, and may consequently be neglected everywhere. Thus, in accordance with (1) the 
basic state is governed by

 

and

 

where η  is the surface deviation,  is the interface depth (Fig. 2 ), and Vi(x), Hi(x), and Ri(x) denote the velocity, 

thickness, and density of the basic state respectively. Note that the surface, interface deviations, and the layer thickness of 
the basic state are interrelated such that

η  = −D + H1 + H2(7)
 

and

 = −D + H2,(8)
 

respectively. Thus, only two of the five can be chosen independently.

b. Perturbation equations  

To study the possible instabilities that may grow, the basic state is perturbed as follows:



 

where u′i, h
′
i, and ρ′i, are the perturbation waves superimposed on the basic state and j is a unit vector along the positive y 

axis. Assuming that the horizontal diffusion coefficient is constant and equal in the two layers and that the perturbations are 
small to O( ), where  is an arbitrarily small parameter, (1)–(3) can be linearized to give

 

The O( ) pressure gradient fields are given by

 

and

 

respectively.

Solutions to the two-dimensional perturbation equations (12)–(14) are sought in the form of normal modes;that is,

(u′i, h
′
i, ρ

′
i) = (ûi, i, i)e

i(ly−σt),(17)

 

where û, ,  are small amplitude functions of O( ) relative to the basic state, and vary in the cross-channel (x axis) 
direction only, l is an alongfront wavenumber in the channel direction (y axis), and σ is a complex frequency with real and 
imaginary parts, σr and σi. Thus, unstable (stable) waves are associated with positive (negative) values of σi. 

c. Solution method  

Substitution of (17) into (12)–(14) gives a coupled set of equations for the amplitude functions (not shown), which are 
solved numerically. To this end a finite difference grid is constructed with ′, h′, ρ′ points located at the center of cells of 

size Δx and with u′ points located at the edges of the cells. At the two channel walls x = 0, L the conditions u′i = 0, ′
ix = 0, 

and ρ′ix = 0 are applied to ensure that neither the momentum nor the heat is transported through the boundaries. The finite 

difference equations are then reduced to a set of algebraic equations that can be written in matrix form Ex = σx. The matrix 
E contains the information about the basic state, while the vector x contains the unknowns u′, h′, ρ′ at the grid points. The 
matrix equation is solved using the standard routine EIG of the MATLAB (MATrix LABoratory) software to obtain all (σ, l) 
pairs.

To find E knowledge of the basic state is required. To this end, the function Θ(x) is defined by



 
(Click the equation graphic to enlarge/reduce size)

and is used to represent both the basic-state upper-layer density and the layer thickness. Furthermore, α = 2π(x − xm)/fw, θl 

and θr are the density and/or layer thickness values west and east of the front respectively, fw is the width of the front, and 

xm denotes the distance from the eastern wall to the middle of the front (see Fig. 3 ). For the jet to be free, it is required 

that |xm| is larger than the Rossby radius. In the application below, the Rossby radius is of O(10) km, while the frontal area 

is located in the middle of a channel 100 km wide; that is, xm = −50 km. Note that the basic state consists of eight variables, 

that is, the upper and lower layer alongchannel velocity components V1 and V2, the upper and lower layer densities R1 and 

R2, the upper and lower layer thicknesses H1 and H2, and the surface and interface deviations η  and . Since the variables 

are governed by (5) and (6) together with the relations (7) and (8), only five of them can be chosen independently. This 
point will be returned to in section 4.

3. Energetics  

As suggested by McCreary et al. (1991), Fukamachi et al. (1995), and others (Holland 1978; Pinardi and Robinson 1986; 
Røed 1997) the nature and relative importance of the various instability processes are best understood by investigating the 
terms responsible for exchange, or conversion, of energy between the “mean”  and the wave motion. Following McCreary et 
al. (1991) and Fukamachi et al. (1995), the mean motion is first defined as the average over one meridional wavelength λ = 
2π/l; that is,

 

where q is any of the model variables. 

Next, kinetic and potential energy must be defined. Following the suggestion by Røed (1997), available gravitational 
energy (AGE) replaces the conventional potential energy. As indicated by its name, the source of the AGE is gravity and, 
equally important, it contains only that portion of the potential energy that is available for conversion into kinetic energy. 
AGE bears a strong resemblance to the available potential energy. However, in contrast to the available potential energy, it 
allows one to undertake a pointwise (in the horizontal) energy diagnosis. Let K denote the kinetic energy and  the AGE. 
Then, the total energy is defined by

 

Here the function i = ρ1/2
ihi and its reference value i = 1/2

i i, where the ( ) is used to denote a (constant) reference 

value of the variable in question, are introduced for convenience. Since both density and layer thicknesses may vary laterally 
in the basic state, the respective (constant) reference values are chosen to be equal their respective cross-channel average 
values; that is,

 

and

 

As is obvious, the first term on the right-hand side of (20) is the kinetic energy while the remaining terms constitute the 
AGE.

The average energy may be derived by substitution of (9)–(11) into (20) and then applying the operator (19). The result is



‹E›  = E + ‹E"›,(23) 

where E is that part of energy that only involves ‹q›  variables (henceforth the mean energy) and ‹E"›  is the energy 
associated with the perturbation waves. As noted by several authors (e.g., McCreary et al. 1991) there is no unique way to 
decompose ‹E›  into and ‹E"›, and hence the division is ambiguous. Here the mean energy is chosen to consist of the basic-
state variables only; that is,

 

where i = R1/2
iHi. This is different from McCreary et al. (1991) who also included third-order correlations, that is, O(

3) terms, in the definition of the mean. Here the focus is on the exchange of energy between the mean and the unstable 

waves, and the contributions of the O( 3) terms are downplayed. The energy associated with the unstable waves becomes

 
(Click the equation graphic to enlarge/reduce size)

and consists of second-order correlations only.

a. Energy budget equation  

To investigate the relative importance of the various individual instabilities, an energy budget for the energy associated 
with the perturbations is required. To this end, (25) is first differentiated with respect to time. Next, all time derivatives of 
the perturbations are replaced making use of (12)–(14). In addition, (5) and (6) describing the basic state are used. The 
result is

‹E"›t + Px = C + S,(26)
 

where P is a flux given by

 
(Click the equation graphic to enlarge/reduce size)

and S is an energy dissipation term. The latter is found by collecting all the 2( ) terms; that is,

(Click the equation graphic to enlarge/reduce size)

The remaining terms are lumped together in C as given by (29) below, which defines the energy conversion between the 
mean and eddy motions. It should be noted that from (25) and (17) it follows that ‹E"›t = 2σi‹E"›.

As alluded to above, the chosen mathematical formulation of C is ambiguous. In particular, the choice made for C 



depends on the formulation chosen for the flux term P. The choice made here is based on the argument that both C and P 
should be recognizable in terms of known physical processes (Lorenz 1955; Harrison and Robinson 1978). 

It is first noted that the chosen form (27) of P is recognizable as the pressure excess flux associated with the unstable 
waves (see Røed 1997). Second, to facilitate an interpretation of C, it is divided into three parts

C = C1 + C2 + C3,(29)
 

where

 

and

C3 = C31 + C32 + C33(32)
 

in which

 

b. Discussion of the energy conversion  



Inspection of (30) reveals that C1 is proportional to the horizontal velocity shear. It is, therefore, associated with the 

kinetic energy exchange between the mean state and the unstable waves. As is common, it is recognized as the barotropic or 
the horizontal shear instability mechanism (Gill 1982). As displayed by (31), C2 requires the presence of a vertical velocity 

shear combined with a thickness gradient in the basic state. It is, therefore, recognized as being a mixture of vertical shear 
instability and the conventional baroclinic instability mechanism. Hence, it will be referred to as a mixed vertical velocity 
shear and conventional baroclinic instability. Finally, the instability C3 requires the presence of a horizontal density gradient 

and/or density fluctuations, and is thus recognized as the frontal instability as defined in the introduction. Among the terms in 
the frontal instability, C31 gets its energy from the mean across-channel density gradient and the alongchannel gradient in the 

density fluctuations. Here C32 is proportional to the layer thickness gradient of the basic state, while the term C33 is 

proportional to the gradient of horizontal velocity shear of the perturbation field. It is also noted that C32 contains terms 

proportional to bottom topography variations. Note that, if the model is reduced to a constant density layer model, then C3 

vanishes.

The above division of the conversion terms is different from that made by McCreary et al. (1991). They divided the 
energy conversion into four categories: barotropic, Kelvin–Helmholtz, frontal, and conventional baroclinic instability. In view 
of the ambiguity inherent in the choice of C, alternative ways of dividing the energy budget is likely to be a topic of further 
discussion.

Another item to consider is that the wave energy (25) includes expressions that can lead to negative energy. Therefore, a 
positive mean to perturbation energy conversion does not necessarily imply growth of an instability. Only if the conversion 
or pressure excess term flux is positively correlated with ‹E"›t will the wave amplitudes increase. Many former studies have 

already discussed this non-positive-definite perturbation energy (see Cairns 1979; Ripa 1983; Hayashi and Young 1987;Barth 
1989ab; Fukamachi et al. 1995; Yu et al. 1995) and it is therefore not discussed further here. 

4. Results of the linear stability analysis  

Six cases are considered below (see Table 1 ); the first case is the reference run. Although it is constructed to yield a 
basic state similar to that used in the earlier studies, specifically those of Fukamachi et al. (1995), it is nevertheless 
significantly different due to the inclusion of the barotropic mode necessary to nullify the lower-layer velocity. It is therefore 
of interest in itself to investigate whether this has an effect upon the results of the earlier studies.

The remaining five cases are constructed to elucidate the effect on the instability of a combination of upper-layer 
thickness and density gradients (run 1), of variations in the horizontal mixing (run 2), of variations in the horizontal shear 
(width of the jet, run 3), of variations in the vertical velocity shear (run 4), and the presence of a sloping bottom (run 5). 
Note that, similar cases have been performed by McCreary et al. (1991) in a 2½-layer model (run 1), Fukamachi et al. 
(1995) in a 1½-layer model (runs 2 and 3), and Barth (1994) in a continuously stratified model (runs 4 and 5). 

a. The reference run  

In this case, the lower-layer velocity is set to zero and the lower-layer basic density is constant and equal to the reference 
density ρ0. Then, (6) gives an expression for the sea surface elevation, and the upper-layer velocity is found by means of 

(5). Finally, it follows that

 

and

 

where the subscript l denotes the value of the variable in question at the western wall. Note that information of any slope 
in the equilibrium depth is hidden in x. If the bottom is flat, as assumed here, the actual constant value of the depth 

becomes redundant information. In this case, the initial conditions simulate essentially a reduced-gravity model. As shown by 
(36) and (37), only the depth of the interface may be chosen independently besides the upper- and lower-layer densities. 
Further, the interface is chosen to be flat, and a density front of width fw = 40 km is located in the middle of a channel 100 

km wide (Fig. 4 ). The associated frontal jet is southward (along the negative y axis) and has a maximum speed of 0.1 m 

s−1 (V0 = −0.1 m s−1). The central latitude of the channel is 41°N and hence the Coriolis parameter is f  = 1.1 × 10−4 s−1. 

The horizontal mixing coefficient is ν = 10 m2 s−1, and R2 = ρ0 = 1027.3 kg m−3. In the upper layer, which contains the 



front (Fig. 4 ), the lighter water of density 1026.3 kg m−3 is located west of the front, while the denser water (1026.8 kg 

m−3) is located east of front. This gives a Rossby radius of approximately 8 km. 

1) EIGENMODES 

To resolve the frontal structure a grid mesh of size 1 km is chosen when solving the coupled eigenvalue equations as 
described in section 2c. The result is plotted in Fig. 5  and reveals that the unstable waves propagate in the direction of 
the basic-state current (negative phase speeds), but with a speed always less than the maximum jet speed. The fastest 
growing, or preferred, wave has a wavelength of approximately 15 km and an e-folding time (the reciprocal of σi) of 1.7 

days (see the left panel of Fig. 5 ). It propagates with a phase speed of about cr = −0.09 m s−1 that is, in the direction of 

the upper-layer jet and with 90% of its speed. 

Inspection of Fig. 5  (left panel) also reveals that a bend of σi curve with wavelengths of about 60–70 km and e-folding 

times of about 5 days. These unstable waves propagate much slower and with a phase speed of −0.03 m s−1, that is, in the 
direction of the jet with a speed of about one-third that of the short waves. 

Details on the structure of the most unstable waves can be studied by inspection of Fig. 6 . This figure has been 
constructed by plotting the variable

 

where j(x), lj, and σj represent the complex amplitude function, wavenumber, and complex frequency of the jth most 

unstable wave respectively, t0 is an arbitrary nonzero time, and M is the total number of discrete alongfront wavenumbers 

chosen (here M = 21). Because the amplitudes of the wave fields must be of O( ) to satisfy the assumptions of a linearized 

model, they are scaled by choosing the maximum amplitude of the upper-layer density ρ′1 to be 0.125 kg m−3. The left 

panels of Fig. 6  show the total fields, that is,  = (x) + ′, where  (x) is the specified basic state. 

As revealed by Fig. 6 , the meander associated with the growing instability is evident in density, surface elevation, as 
well as the horizontal velocity fields. The alongchannel asymmetry is due to the different growth rates and phase speeds of 
the various unstable waves. Also the preference of the fastest growing short-wave instability is evident (right-hand panels of 
Fig. 6 ). The meandering current generated by the unstable waves advects cold saline coastal water offshore (to the 
west), which is compensated by advection of warm and fresh offshore water toward the coast (to the east). Moreover, Fig. 
6  reveals that the mean density gradient across the front is weakened and that the surface deviation is much smaller than 
the interface deviation. The latter indicates that the unstable waves are dominantly baroclinic.

2) ENERGETICS 

Regarding the shortest waves, the energy budget equation (26), as illustrated in Fig. 7 , shows that the dominant 
balance is between ‹E"›t and C. Moreover, the energy transfer to unstable waves is confined to the area where the density 

gradient is close to its maximum value and thus seems to be uncorrelated with horizontal velocity shear. The energy 
dissipation term is negatively correlated to the perturbation energy, and hence the horizontal mixing opposes the formation of 
the unstable waves as expected. The energy flux gradient term is generally small and does not contribute significantly to the 
energy balance. As revealed by Fig. 7b , C3 is by far the largest of the energy conversion terms. The barotropic term C1 

and the mixed conventional and vertical shear term C2 are both very small. Hence, this unstable wave is driven by the 

available potential energy stored in the mean density gradient and the density and velocity fluctuations in the upper layer. To 
distinguish it from the conventional geostrophic baroclinic instability, Barth (1989a,b; 1994) referred to this kind of instability 
as ageostrophic instability. Here, these short unstable waves will simply be referred to as the “frontal waves”  or the “frontal 
mode.” 

A similar energy analysis for the long-wave instability reveals that the balance between ‹E"›t and C still dominates (see Fig. 

8 ). The energy conversion now encompasses the whole region over which the basic state varies. Furthermore, it has a 
two-peak structure with the peaks located exactly where the horizontal velocity shear is maximum. This indicates that the 
longer unstable waves are related to the horizontal velocity shear. Indeed, although the frontal instability C3 still dominates, 

energy conversion due to the barotropic instability process represented by C1 cannot be ignored. Again both the diffusion 

and pressure excess flux terms are small, with diffusion opposing the energy conversion.

Although the long-wave instability is primarily frontal too for the reference run, it can be shown later that barotropic 
instability becomes more important when the lateral density gradient is decreased or the horizontal velocity shear is 
increased. These long unstable waves will therefore be referred to as “mixed waves”  or the“mixed mode.” 



b. The effect of an upper-layer density gradient combined with an interface deviation (run 1)  

As revealed by (36), the basic-state jet of the reference run may equally well be produced by a setup in which the upper-
layer density gradient is reduced, and the interface deviation is given a compensating gradient (R1x  0 and x  0). Indeed, 

the upper-layer jet may be reproduced even with R1x = 0. 

1) EIGENMODES 

A typical case in which both R1x  0 and x  0 is shown in Fig. 9 . The growth rate and phase speed for this case is 

plotted in Fig. 10  (dashed line). For comparison the corresponding curves for the reference run are plotted in the same 
figure (solid line).

Inspection of Fig. 10a  shows that the growth rate is decreased for all wavelengths compared to the reference run. 
While the phase speeds for the long unstable waves decrease, the phase speeds for the short unstable waves (see Fig. 10b 

) increase. 

To verify that the small-scale instability waves are indeed due to the frontal instability, the above procedure was repeated 
with R1x = 0, in which case the model is reduced to a conventional, constant density layer model, in that no density 

perturbations are allowed (ρ′1 = 0). Thus, the basic-state jet is balanced by the gradient of the upper-layer thickness only as 

given by (36). In this case, the growth rate associated with the fastest growing unstable wave is about 8.5 days and is hence 
greatly decreased compared to the previous model (see the dash–dot curve in Fig. 10a ). Moreover, all the waves shorter 
than 40 km are no longer unstable. In fact, the fastest growing wave has a wavelength of about 70 km associated with a 

phase speed of about 0.02 m s−1 (see dash–dot curve in Fig. 10b ); that is, the wavelength is unchanged, while the phase 
speed has been reduced compared to the mixed wave of the reference run. The diminishing importance of the frontal 
instability wave, when the lateral density gradient is decreased, supports the previous finding that the frontal wave is indeed 
caused by the lateral density gradient, that is, by the presence of the front.

2) ENERGETICS 

The energy budget for the frontal wave is very similar to the reference run and is therefore not shown. The frontal 
instability term C3 is the only conversion term that is positively correlated to ‹E"›t, with the mixed conventional and vertical 

shear instability C2 being negatively correlated to ‹E"›t and thus tending to weaken the instability. 

Regarding the mixed mode (long wavelength) instability, the energy flux gradient term −Px is now significant and is 

positively correlated with ‹E"›t outside of the central frontal area (Fig. 11 ). In the central area, the energy flux term 

combined with the energy conversion term C balance ‹E"›t. The energy flux advects energy into the central part of the 

frontal area and helps to increase the energy of the unstable waves, while it advects energy from the two sides of the central 
area and hence decreases the energy of the unstable waves there. As displayed by Fig. 11b , all the conversion terms are 
important to the long unstable waves. As expected, the importance of the barotropic instability conversion C1 is limited to 

the areas where the velocity shear is maximum and is insignificant in the central area where the frontal instability conversion 
term C3 dominates. Curiously, the mixed conventional–vertical shear conversion C2 is important only on the inshore 

(eastern) side of the front where the velocity shear is maximum, approaching the magnitude of the barotropic instability 
conversion term C1. In conclusion, the preferred long unstable wave mode is caused by a mixture of barotropic and 

baroclinic instability.

c. Effects due to horizontal mixing (run 2)  

In this case, the horizontal mixing coefficient ν was varied from 0 to 50 m2 s−1 in steps of 5 m2 s−1 (see run 2, Table 1 
), and the eigenvalue problem solved for each of the 11 values. The result is shown in Fig. 12 . The effect on the 

frontal wave is to increase its wavelength from 15 to 30 km (look at Fig. 12a ). However, the wavelength of the preferred 
long-wave instability appears to be unaffected and is nearly constant and equal to 70 km. Furthermore, it is found that the 
phase speed of the unstable waves are almost independent of the horizontal mixing coefficient (not shown). This is in line 
with Fukamachi et al. (1995) and serves to show that the effect of the barotropic mode is insignificant. 

Figure 12b  shows that the maximum growth rate of the frontal mode monotonically decreases as ν increases and that 

it has dropped by a factor of 2 when the horizontal mixing coefficient is increased from 10 to 50 m2 s−1. As ν  0, the 
wavelength of the preferred frontal mode goes to zero. Thus, the introduction of viscosity helps to give a preferred finite 
wavelength for the frontal mode. In this connection it is interesting to note that Young and Chen (1995) found that the 
introduction of a weak vertical density stratification within the mixed layer has a similar effect.

Finally, as revealed by Fig. 12b , the maximum growth rate of the long-wave instability or the mixed mode (look at the 
dotted line) decreases only slightly as the horizontal mixing coefficient ν increases. Additionally, it is observed that the mixed 



mode always has a growth rate smaller than the frontal mode. The energy analysis corroborates the findings above and is, 
therefore, not shown.

Thus, independently of the value chosen for the horizontal mixing the preferred short wave is always associated with the 
frontal instability and the preferred long wave with the mixed mode instability.

d. Effects due to a varying horizontal shear (run 3)  

Because the structure of a front varies from season to season and from one geographical area to the next, the influence of 
a varying width of the front is also of some interest. This is illustrated in Fig. 13 , where the width of the front is varied 
from 10 to 60 km in steps of 5 km (see Table 1 , run 3). It should be noted that when the maximum speed is kept 

constant at 0.1 m s−1, an increase (decrease) in the width of the front corresponds to a decrease (increase) in the horizontal 
shear.

1) EIGENMODES 

As revealed by Fig. 13a , the wavelength corresponding to the frontal wave increases slightly from 13 to 16 km as the 
front width increases from 20 to 60 km. The wavelength of the fastest growing mixed mode also increases with increasing 
wavelength. The slope of the dotted line relative to the dashed implies that the wavelength of the fastest growing mixed 
mode undergoes larger variations than the fastest growing frontal mode.

It should be noted that the importance of the mixed mode in terms of the growth rate increases as the width of the front 
decreases. This is illustrated in Fig. 13b , which shows that the growth rate of the frontal wave increases nearly 
logarithmic with increasing front width, that is, the wider the front the faster the growth rate, while the mixed wave 
experiences a near linear decrease. In fact, the two lines intersect at the point fw = fc = 20.6 km. At this point, the frontal 

and mixed wave have the same growth rate (e-folding time about 3.8 days). When fw < fc, the mixed wave dominates, 

whereas the frontal wave dominates when fw > fc, indicating that the relative importance of the mixed wave increases with 

increasing shear.

Another feature of the frontal wave is that it develops only when the front is wider than 15 km. The mixed mode, on the 
other hand, forms a preferred band only when the front width is less than 40 km, an indication that when the horizontal 
shear decreases (increasing frontal width) the mixed mode ceases to exist as a predominant unstable wave.

These results are valid for an eddy viscosity of ν = 10 m2 s−1. It is therefore of interest to investigate if this is the case 
for other values of eddy viscosity. To this end, a series of calculations for different eddy viscosities and frontal widths are 
performed. The result is plotted in Fig. 14 . The shaded region corresponds to the region where the frontal instability 
wave ceases to exist. Thus, the relative importance of the frontal instability wave diminishes when the front becomes 
narrower for all values of the viscosity coefficient ν. Figure 14  also reveals that the frontal instability wave grows faster 
when the front is wide and the eddy viscosity is low. Moreover, the growth rate is more sensitive to variations in the 
horizontal viscosity when the front is wider.

Finally, it is noted that the phase speed decreases for all waves when the horizontal shear increases, and this effect is 
more pronounced in the long wavelength band than in the short wavelength band (not shown).

2) ENERGETICS 

While the energy analysis for the frontal mode reveals no major change over the reference run when the front width is 
varied, this is not the case for the mixed mode. When the frontal width is narrowed to 20 km, the energy flux gradient term 
−Px is significant and positively correlated to the perturbation energy outside of the central front area (e.g., |x| > 60 km and 

|x| < 40 km), all other contributions to (26) being negligibly small there (Fig. 15b ). This indicates that the energy change 
outside the central area is purely caused by an energy flux away from the frontal area. In contrast, the energy flux is 
negatively correlated with the energy change within the central area and thus acts to oppose the conversion of energy there. 
As expected, the barotropic instability C1 dominates in the area of large horizontal velocity shear and is positively correlated 

with ‹E"›t there. In the area of maximum velocity (and hence little shear), C1 drops to zero and the frontal instability C3 

dominates. Thus, as the front narrows the long-wave instability becomes a truly mixed barotropic–frontal instability. 

e. Effects due to vertical velocity shear (run 4)  

In many upwelling situations, the upper-layer jet is accompanied by an opposite jet in the lower layer. This situation is 
simulated here by specifying a basic state in which a sloping interface and a lower-layer density variation are introduced in 
combination with surface elevation and upper-layer density gradients. The resulting basic state is shown in Fig. 16 , in 

which the lower-layer jet is opposite to the upper-layer jet, and with only a slightly lower speed (V02 = 0.08 m s−1). Thus, 



the vertical shear has been increased by 80% compared to the reference run (see Table 1 , run 4). Note that this case is 
somewhat similar to run 1 in that both a lateral density gradient and an interface gradient are included (see Figs. 16  and 9 

). Note also that, when the constraint of a motionless lower layer is relaxed, (36) is no longer valid and the surface 
elevation η  must be specified independently of R1 and . Finally, note that a slight lateral density gradient in the lower layer 

has been imposed as well.

1) EIGENMODES 

As revealed by Fig. 17 , the introduction of the lower-layer jet gives an increased growth rate for all wavelengths. This 
is particularly true for the fastest growing short wave, which experiences an increase of 30% (from 1.7 days to about 1.3 
days) at a slightly shorter wavelength. It is also observed that the mixed mode no longer forms a preferred band. The 
magnitude of the phase speed is slightly reduced for all wavelengths. This conclusion is hardly surprising. It supports the 
earlier findings of Ikeda and Apel (1981), who used a quasigeostrophic model to show that the addition of a jet in the lower 
layer in the same direction as the upper-layer jet, that is, a reduced vertical velocity shear weakens the baroclinic instability. 
A similar conclusion was also reached by Barth (1994), who used a continuously stratified model. Thus, an increased 
vertical shear acts to enhance the baroclinic instability.

2) ENERGETICS 

As shown in Fig. 18 , the conversion term C still balances the ‹E"›t term for the short wavelength instability. The 

frontal instability term C3 is the only conversion term that is positively correlated to ‹E"›t, and hence the only contributor to 

instability amplification. The mixed conventional and vertical shear instability term C2 is negatively correlated to ‹E"›t and 

thus tends to weaken the instability.

Since there is no clear preferred band of long unstable waves (Fig. 17 ), the energy budget analysis for the long waves 
is not shown here.

f. The effect of bottom topography (run 5)  

Finally, the effect of a linear bottom topography is investigated. The setup chosen is as close to run 4 as possible with a 

linear bottom slope of −2 × 103 (see Table 1 , run 5). The results may, therefore, be compared with the results of run 4. 
The linear stability analysis reveals that a sloping bottom only slightly reduces the growth rate of the frontal mode and that its 
phase speed is not influenced. The phase speed of the mixed mode is slightly reduced (not shown).

Thus, it is concluded that the frontal instabilities are trapped in the upper layer and that, in a coastal upwelling region over 
a (moderately) sloping shelf, the unstable modes appear not to be significantly affected by a variable bottom topography. 

5. Comparison with results derived from a numerical model experiment  

Experiments with numerical models have shown that waves similar to those revealed by the analysis above may be 
produced in upwelling areas both with an idealized straight coast (McCreary et al. 1991; Stevens et al. 1997) and with 
realistic coastline geometry and bathymetry (Røed 1996). The above experiments investigated wind-driven upwelling fronts 
close to the coast, that is, with a continuous frontogenesis associated with the favorable upwelling wind conditions. The 
associated frontal jet is, therefore, too close to the coast for the jet to be considered free. It is therefore of some interest to 
perform an idealized numerical experiment with a free jet and to compare it with the analysis above. To this end, the 1½-
layer model of Røed (1996) is used to perform a corresponding numerical experiment because, as shown, the effect of the 
barotropic mode is insignificant. The model solves the primitive equations in spherical coordinate (for details, see Røed 1995, 
1996). Because of the spherical coordinates, the channel has been rotated 90° to fit the cyclic boundary conditions employed 
at the open ends of the channel. A channel 419 km long and 280 km wide is used, which with a grid size of 1.39 km gives 
301 × 201 grid points. Initially, a front 40 km wide is located in the middle of the domain with a maximum velocity of −0.1 

m s−1. Thus, both the front and the Rossby radius are well resolved. Since the walls are far removed from the front, the 
effect of the side walls can be neglected. The initial condition mimics the basic state of the reference run (shown in Fig. 4 

). To trigger the instability, this geostropically balanced jet is perturbed with ten geostropically balanced waves of random 
phases at the initial time. The summed amplitudes of the perturbations are maximum 10% of the initial background field. The 
model is then allowed to progress in time without further interference. In this run no entrainment/detrainment is allowed and 
no forcing is applied; that is, the governing equations are essentially those given by (1)–(3). 

Figure 19  shows the results in terms of the Fourier transform constructed from the density structure along the middle 
of the front after 8 and 10 days, respectively. The dominant wave lengths are centered on 14 km in both cases, while the 

peak energy increases from 0.0566 × 103 to 0.2240 × 103 kg2 m−5, an increase of about e1.3 within two days. This entails 
that the e-folding time for the dominant wave is approximately 1.5 days. Thus, both the preferred wavelength band and the 
growth rate are consistent with the frontal wave predicted by the linear stability analysis of the reference run.

Figures 20a,b  show the structure of the density and the density anomaly after 10 days and may be compared with 
those shown in Figs. 6a,b . The density anomaly field is obtained by subtracting the background structure from the basic-
state density field so that the wavelengths of the unstable modes become distinguishable. The results are qualitatively similar 



to the numerical solution that evolved from a free jet in Fukamachi (1992) at the early stage of the development. They also 
clearly support the earlier findings that, when linear effects dominate, small-scale instabilities with wavelengths of about 14 
km form upon the front and that these instabilities are frontally trapped.

The correlation between the linear model and the early stage of the numerical model is striking. Even the U-shaped 
structure of the unstable waves (compare Fig. 6b  with Fig. 20b ) is captured by the numerical model. The 
alongchannel asymmetry is also evident in the model results.

At a later stage, small eddies form (Figs. 20c,d ). At this stage, a weakly nonlinear effect starts, and the dominant 
wavelengths are now increased to about 30 km. Later, at t = 80 days, the nonlinear effect completely dominates the picture 
in that large-scale eddies and filaments appear over most of the domain. The basic-state front structure no longer exists 
because the amplitudes of the distortions are comparable to those of the basic state. Figure 20f  shows that the scale of 
the filaments is between 80 and 120 km and the local density gradient is intensified by the eddies and filaments.

Further inspection of the time evolution of the Fourier transforms at the middle of the front (Fig. 21 ) shows that the 
dominant wave (about 14 km) appears first (t = 10 days) in accordance with the linear stability theory. At t = 24 days, the 
dominant central wavelength increases to about 30 km. As time progresses, the majority of the wave energy moves to even 
longer waves; for example, at t = 55 days the energy spectrum shows a single peak at 45 km. Later the energy accumulates 
at 80 km and with less energy distributed in the shorter wavelength band. At t = 100 days, there is significant energy on a 
broad band between 90 and 150 km where the filaments appear. It is of interest to note that the scale increase of 
disturbances in the present experiment is qualitatively similar to that of the forced solution of McCreary et al. (1991) in a 
2½-layer model. The progression of wave energy from shorter to longer waves is an indication that the instabilities 
exemplify a process which is “upgradient.”  It cannot therefore be parameterized by a simple “downgradient”  diffusion 
parameterization, and hence underscores the point made by Visbeck et al. (1997). 

6. Summary and conclusions  

A linear stability study of a two-layer, finite-depth, primitive equation model is presented. It extends the analyses of Barth 
(1994), Fukamachi et al. (1995), and Young and Chen (1995) in several ways. First, the effects of a variable across-front 
bottom topography, frontal (nonlinear) variations in the interface and surface elevations, and two opposing jets in the two 
layers (increased vertical shear) are investigated. The present model also allows density gradients and density fluctuations in 
the lower layer as well as in the upper layer.

The energy analysis departs from the earlier studies in that the available gravitational energy replaces the conventional 
potential energy. Additionally, a different choice is made in separating the terms that define conversion of energy from the 
basic state to the unstable wave state. The combination of these changes leads to a different interpretation of the instability 
mechanisms, yet leaves their relative importance intact.

Six cases are considered, of which the first is a reference run. The other five are sensitivity analyses. Through these six 
cases, a portion of the parameter space not previously mapped out is presented, which serves to reinforce the earlier 
conclusions.

A reference run is first performed in which the basic state consists of an upper-layer jet only and thus mimics the set up 
considered by Fukamachi et al. (1995). The results of this case are very much in line with the results of Fukamachi et al. 
(1995), who used a reduced-gravity version of the model. The results of the reference run show that the effect of the 
barotropic mode on the preferred instability waves is not significant. Thus, two prominent bands of unstable waves are 
found, with the frontal mode having growth rates (e-folding times) typically of order 1–2 days. The mixed mode, on the 
other hand, typically gives maximum growth rates of about 3–5 days, that is, a much slower growth. 

The results of the reference run are verified against results derived using a numerical model. The model employed is a 1½-
layer model similar to that utilized by McCreary et al. (1991) and Røed (1996). In the initial stage, the model features a 
geostrophically balanced jet in the middle of a zonal channel. This initial balanced state is then perturbed. No other energy 
dissipative mechanism is involved. The regular unstable waves that develop at the front in the numerical model are indeed 
quite similar to the unstable waves predicted by the linear stability theory both qualitatively and quantitatively. This is 
gratifying and supports the hypothesis that the small-scale waves observed in frontal areas are indeed caused by the 
presence of the front.

In all cases considered and in line with the earlier studies, it is found that the unstable waves propagate in the direction of 
the basic-state jet with phase speeds invariably less than the basic jet speed. In addition, the phase speeds of different frontal 
modes is only slightly less than the jet speed, while the mixed mode moves with a speed about one-third of that of the frontal 
mode. The existence of two preferred bands of unstable waves of different growth rates and phase speeds leads to an 
apparent asymmetry along the direction of the jet in the regular wave train, with areas of stronger wave activity in regions 
where the two modes interact positively. This conspicuous asymmetry is also reproduced by the numerical model.

Except for two special cases, it is found that the frontal mode dominates the mixed mode based on the observed relative 
difference in the growth rates. One of the exceptional cases is discovered when the relative importance of the surface 
elevation and the lateral density gradients are varied in constructing a given upper-layer jet. By systematically lessening the 
intensity of the front, it is found that the importance of the frontal mode is progressively diminished. Indeed, when the front 
vanishes (no upper-layer lateral density gradient), the frontal mode ceases to exist. Interestingly, during this process the 



mixed mode is unchanged in wavelength, growth rate, and phase speed.

The second case in which the importance of the frontal mode is diminished is discovered by increasing the horizontal 
velocity shear in the jet. The shear is increased simply by decreasing the width of the front while keeping the maximum jet 
speed constant. In fact, as the width of the front is decreased to a certain critical value, the two modes become equally 
important (see Fig. 13 ). When the width is decreased beyond this point, the frontal mode becomes less important. 
Interestingly, this is the case for all values of the eddy viscosity (except for zero viscosity in which case the frontal mode 
wavelength goes to zero). This is not the case for the mixed mode which continues to increase in growth rate as the front 
narrows.

It is found that the inclusion of horizontal viscosity is essential to form a preferred frontal mode band of unstable waves 
that have a finite wavelength. In this regard, it is interesting to note that Young and Chen (1995) found that the inclusion of a 
slight vertical density gradient has the same effect.

Perhaps the single most important conclusion of the present study is that, except in the single extreme case mentioned 
above, one expects a separate band of small-scale unstable waves of wavelengths on the order of 10–30 km to form at any 
front. These waves, which exist regardless of the model used (whether finite depth or reduced gravity), are trapped in the 
upper layer and owe their existence to the presence of a lateral density gradient.
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Tables  

Table 1. The parameters used in the different cases: V01 and V02 are the maximum jet speeds in the upper and lower layers, 

respectively, fw is the front width, ν is the horizontal viscosity,  is the interface elevation, and R1 is the upper-layer density, and 

Dx  (De − Dw)/L is the bottom slope, where De and Dw are the water depth near the eastern and western walls, respectively. 

The notation 10(5)60 means that the variable in question is varied from 10 to 60 units in steps of five units.
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Figures  
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Fig. 1. NOAA-14 satellite image showing sea surface temperature off the Iberian Peninsula 26 September 1995, that is, toward 
the end of the upwelling season. Note the cold upwelled water along the coast and the superimposed small-scale instability 



waves of wavelengths 15–30 km. Note also the longer-scale filaments positioned at 41° and 42°N bringing cold water offshore. 
(Courtesy of A. G. F. Fiúza, University of Lisbon.)
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Fig. 2. Sketch of the layering structure for a two-active layer, finite-depth model conveniently showing the notation used in the 
text.
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Fig. 3. Sketch of the basic state variables for the reference run. The fine dashed line gives the density distribution, while the 
solid line gives the upper-layer velocity as calculated from (5). Dash–dot lines are used to indicate the free jet area according to 
(18). Note that the figure is not drawn to scale. 
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Fig. 4. Solid (dashed) lines show upper (lower) layer basic-state variables of the reference run as functions of the cross-

channel distance: (a) the surface elevation (in cm) (b) the interface depth in meters (flat), (c) the density (in kg m−3, and (d) the 
velocity. Cross-channel distance in kilometers is shown along the horizontal axis. 
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Fig. 5. Solid curve show the growth rates (left panel) and phase speeds (right panel) as functions of wavelength for the 
reference run (see Table 1 ). The wavelength scale shown along the horizontal axis is logarithmic and decreases to the right, 

along the vertical axis of the left-hand panel is shown the growth rate in day−1, while the vertical axis of the right panel shows the 

phase speed (in m s−1). 

 
Click on thumbnail for full-sized image. 

Fig. 6. Along- and cross-channel structure of the instabilities for the most unstable waves as constructed from (38). Only the 
upper-layer variables are shown. Solid and dashed lines in panels (b) and (d) represent positive and negative amplitudes, 

respectively: (a) the density (contour interval 0.1 kg m−3), (b) the density anomaly (contour interval 0.025 kg m−3). (c) the surface 
deviation (in cm: contour interval 0.5 cm), (d) the interface deviation (anomaly) (in m: contour interval 1 m), (e) the velocity field, 
including the basic-state jet for the upper layer, and (f) the perturbation velocity. Note that the scale along the y axis in panels (e) 
and (f) is half shown in the remaining panels. The numbers appearing in panel (b) and (d) are maximum values.
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Fig. 7. Cross-channel variation of the various terms entering the energy budget equation (26) for the short, fast growing wave 
of the reference run: (a) the four terms concerned (26). Note that the energy exchange term (dash–dot curve) nearly balances the 
time rate of change of the perturbation energy (solid line) everywhere, and that the energy flux term (dotted curve) and the 
diffusion term (dashed curve) are both small. (b) The three terms (30)–(32) contributing to the energy conversion of (a). Of the 
three, the frontal instability is by far the largest.
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Fig. 8. As in Fig. 7  but for the longer and slower growing unstable wave (mixed mode) of the reference run. 
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Fig. 9. As in Fig. 4  but for run 1 (see Table 1 ). Note the decreased lateral density gradient in the upper layer. 
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Fig. 10. As in Fig. 5  but showing the growth rates and phase speeds of the reference run (solid line) and run 1 (dashed and 
dash–dot curves), respectively. Note that the growth rate increases for all wavelengths compared to the reference run and that 
the phase speeds are diminished for long unstable waves and increased for short unstable waves. The dash–dot lines show the 

growth rate and phase speed of a constant density layer model (R1x = 0, ρ′1 = 0), while the dashed curve is for the basic state 

shown in Fig. 9 . 
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Fig. 11. As in Fig. 8  except for run 1 for which the basic state is illustrated in Fig. 9  (see Table 1 ). 
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Fig. 12. (a) Contours (solid curves) of growth rates as function of horizontal viscosity and wavelength for the most unstable 
waves for run 2 (see Table 1 ). The dashed and dotted lines represent the wavelength associated with maximum growth rate 
and are replotted in (b) as a function of the horizontal viscosity. Values corresponding to the reference run are shown by the 
dash–dot line for comparison. 
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Fig. 13. As in Fig. 12  but for run 3 (see Table 1 ). (a: left) Contours (solid curves) of growth rates as function of front 
width and wavelength for the most unstable waves. Note that the two curves of (b: right) intersect for a front width fc about 20 

km. In this case, the long-wave and short-wave instability are of equal importance (equally preferred). 
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Fig. 14. The contour lines show the growth rate (day−1) of the most unstable frontal wave as a function of front width xw and 

viscosity coefficient ν. There is no frontal instability wave in the shaded area. The frontal wave develops only when the front is 
wider than 15 km at ν = 10. 
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Fig. 15. As in Fig. 8  but for run 3 (see Table 1 ) when the frontal width is 20 km. Note that C1 peaks exactly where the 

basic-state jet has its maximum shear and is positively correlated with Et there. 
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Fig. 16. As in Fig. 4  but for run 4 (see Table 1 ). Note that the introduction of a basic-state jet in the lower layer opposite 
to the upper-layer jet. 
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Fig. 17. As in Fig. 10  but for run 4. The dashed curves correspond to run 4, while the solid curves show the reference run. 
Note that the growth rate increases with increasing vertical shear for all wavelengths. The phase speeds are all diminished, in 
particular for the longer unstable waves.
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Fig. 18. As in Fig. 7  except for the case with increased vertical shear (see Table 1 , run 4, and Fig. 16 ). 
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Fig. 19. The Fourier transform along the middle of front. The sold and dashed lines represent t = 10 days and t = 8 days, 
respectively.
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Fig. 20. The three left-hand panels show the density of model simulation, while the three right-hand panels show the density 
anomalies in the upper layer as function of along- and cross-channel coordinates. Panels (a) and (b) are at t = 10 days, (c) and (d) 
are at t = 24 days, and (e) and (f) are at t = 80 days. Positive and negative amplitudes are presented by solid and dashed lines, 
respectively. In (a)–(d) only a small representative area is shown, while the full channel area is shown in (e) and (f). 
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Fig. 21. Time evolution of the wavenumber spectrum derived from the density field. The result are derived by taking a Fourier 

transform along the middle of the front. Contour intervals are 5 kg2 m−5. 
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