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ABSTRACT

The application of an adaptive mesh refinement (AMR) method for 
structured mesh is examined in the context of ocean modeling. This 
method can be used with existing finite-difference ocean models at little 
computational and programming cost. Some first experiments in academic 
cases are presented in order to give some insight to the two following 
questions: (i) Is the AMR method appropriate and efficient for integration 
of numerical ocean circulation models (and particularly for long-term 
integration)? (ii) Can the AMR method be an efficient alternative to the 
classical zoom techniques for local prediction?

Numerical simulations are performed in the well-known case of the 
barotropic modon and in the case of a multilayered quasigeostrophic box 
model. They demonstrate that the use of the AMR method results in a very 
significant gain in CPU time (by a factor of 3) while conserving, within a 
10%–20% range, the main statistical features of the solution obtained with 
a uniformly high resolution. For the problem of local prediction, it appears 
that only one simulation with the AMR method leads to better local 
predictions than classical nested grid techniques, wherever the region of 
interest is located, and for a comparable amount of computation. Further 
investigations are presently under way to generalize this application to 
basin-scale primitive equation models in realistic configurations and 
investigate whether or not these results are still valid.

1. Introduction  

The problem of spatial resolution is a key point in ocean modeling. Since several numerical experiments demonstrated the 
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strong interactions of the mesoscale eddy activity with the large-scale circulation (e.g., Holland 1978; Barnier et al. 1991), it 
seems to be an important condition for numerous oceanic studies to use eddy-resolving ocean general circulation models. In 
other respects, fine spatial resolution is also of interest to improve the representation of particular local phenomena, for 
example, due to strong bathymetric gradients or to irregularities of the coastline shape. Moreover, the requests for high-
resolution prediction of the ocean circulation in limited areas are presently increasing in conjunction with the development of 
operational oceanography.

However, given the characteristic scales of ocean circulation (basins of thousands of kilometers, timescales of months to 
years), the computational cost is, and will still remain in the forthcoming years, a limiting factor for ocean modelers. Any 
high-resolution basin-scale simulation requires hundreds or thousands of hours of CPU time on present supercomputers. 
Thus, the interest in numerical methods that could possibly reduce the computational cost of ocean models while still 
allowing locally high resolution is evident.

The finite element technique allows, of course, the use of a nonuniform resolution over the computational domain. In the 
field of ocean modeling, this approach has been mostly developed for coastal dynamics (e.g., Lynch and Werner 1987, 
1991) and ocean tide models (e.g., Le Provost et al. 1994a, and references therein). The feasibility and utility of finite 
element methods for modeling the general ocean circulation was first addressed by Fix (1975), who studied the properties of 
the method (stability, convergence, conservation laws) for a barotropic model. Haidvogel et al. (1980) compared the 
precision of a finite-difference model, a finite element model, and a spectral model for applications to open ocean problems, 
while Le Provost et al. (1994b) performed a somewhat similar work for basin-scale quasigeostrophic (QG) dynamics. Le 
Roux et al. (1998) studied recently the performance of several finite-element basis functions for the discretization of the 
linear shallow water equations, with the aim of developing a finite-element ocean general circulation model. 

However, to our knowledge, no finite element model is used presently for large-scale ocean circulation studies. Most 
ocean models use structured grids, and local refinement in this context of finite differences is always performed via nested 
grids, that is, a fixed high-resolution local model embedded in a larger coarse grid model. The interaction between the two 
components is twofold: the lateral boundary conditions for the fine grid are supplied from the coarse grid solution, while the 
latter is updated from the fine grid solution in the area covered by both grids. Spall and Holland (1991) and Laugier et al. 
(1996) applied this approach to the two test problems of a barotropic modon and a baroclinic vortex, while Oey and Chen 
(1992) performed an application to the Norwegian coastal current. In addition, Fox and Maskell (1995, 1996) investigated 
the interest of vertical refinement, in particular for the representation of bottom topography, with an application to the 
Iceland–Faeroe Front. However, this nested grid technique is mainly used as an efficient way to supply open boundary 
conditions in regional ocean models since no particular attention is paid to the solution in the outer domain.

In the present study, we would like to use a more general approach to the problem of local grid refinement for finite-
difference ocean models. It is well known that the ocean circulation presents multiple spatial scales, with complex 
interactions. From the point of view of numerical modeling, the locations where high resolution is needed are mainly related 
to the presence of energetic and turbulent structures such as fronts and eddies, while coarser resolution may be sufficient in 
other areas. However, such structures evolve in time and space. That is why an adaptive resolution could be a way to 
reduce the computational cost of ocean models while conserving the advantages of high resolution. In this context, the 
adaptive mesh refinement (AMR) method for structured grids introduced by Berger and Oliger (1984) seems well suited for 
such an attempt. Moreover, it does not require the development of new models, but can be added to existing ones.

This paper is devoted to the presentation of the AMR method and to the investigation of its potential capabilities for ocean 
modeling through the description of some numerical tests in academic cases. Experiments with a high-resolution primitive 
equation model of the North Atlantic are currently under way, and their results will be presented in a second paper. We will 
focus here on two main questions: (i) Is the AMR method appropriate and efficient for integration of numerical ocean 
circulation models (and particularly for long-term integration since this method was mostly used to our knowledge for short-
term process studies: shock hydrodynamics, turbulent flows, short-term meteorology . . . ) and (ii) can the AMR method 
be an efficient alternative to the classical zoom techniques for local prediction? The present paper is organized as follows: 
The AMR method is presented in section 2. Its adaptive aspect is illustrated in section 3 in the simple case of a barotropic 
modon. Then results from high-resolution fully turbulent experiments with a multilayered quasigeostrophic model are 
presented and discussed in section 4. Finally, some conclusions are drawn in section 5. 

2. The AMR method  

a. General description  

The AMR method was introduced by Berger and Oliger (1984) and Berger and Colella (1989), and a complete description 
of the method can be found in these papers. Note that this method was successfully tested by Skamarock et al. (1989) and 
Skamarock and Klemp (1993) in the context of numerical weather prediction. It is designed for the solution of systems of 
partial differential equations using finite-difference techniques. The basic idea of this method is to attain a given accuracy for 



a minimum amount of work. Therefore, estimates of the truncation error are computed, and refined grids are created (or 
existing ones are removed) where and when necessary. Moreover, this approach is recursive in that fine grids can contain 
even finer grids. So the AMR strategy features a hierarchy of resolution levels, each of which contains a set of grids (Fig. 1 

). Every grid is covered by some set of parent (coarser) grids, the root level consisting of one coarse-resolution grid 
covering the entire domain of computation. The refinement ratio of spatial and temporal resolution between two adjacent 
levels is a given integer r (typically r = 2, 3, or 4). So, if we note Δhl, and Δtl, the grid spacing, and the time step on every 

grid at level l, then

 

With such a convention, once Δh0 and Δt0 are chosen on the root grid, the corresponding CFL criterion is automatically 

verified for all grids. Note, however, that the grid spacing may of course be different in the spatial directions.

The integration algorithm is summarized in Fig. 2 . The integration starts at the root level. The solution on the root grid 
is advanced one time step Δt0. Then this solution is interpolated in time and space to provide boundary conditions for the 

grids at level 1, which can then be advanced r time steps Δt1 and so on recursively for grids at deeper levels. Since Δtl−1 = 

rΔtl for each level l, grids at level l have caught up in physical time with the coarser level l − 1 at the end of r fine time steps 

Δtl. The solution at level l − 1 is then updated using the solution at level l (the update methods and related conservation 

issues are addressed in a following section).

The initialization of the model can be done in several ways: with a coarse grid only or with one or several fine grids, 
partially or even fully covering the domain, in order to introduce high-resolution features. The AMR will then transform this 
initial grid hierarchy into a more adequate one at the first regridding step, following its own internal criteria.

Note that, if the maximum number of grid levels is fixed to two and if the location of the fine grids is imposed (i.e., if the 
adaptive aspect of the method is inhibited), then the AMR method reduces to the classical nested grid technique.

Finally, it must also be pointed out that we have implemented this method in such a way that the ocean model is seen as a 
black box; almost no modifications to the original code are required. Moreover the management of the grids, the 
computation of the error estimate, and the refinement procedure involve only a marginal computational cost, mostly because 
meshes are resized and relocated only every N time steps Δt0. This package will be made available to the scientific 

community.

b. Refinement procedure  

As mentioned previously, the grid hierarchy may change from one coarse time step to the other. In practical applications, 
estimates of the truncation error are computed at regular intervals (every N coarse time steps) and grid points are detected 
where a finer grid is necessary or where an existing fine grid is no longer useful. The estimation is performed with 
Richardson’s method. Let L

Δh be a finite-difference operator that advances the numerical solution from one time step Δt on 

a uniform mesh of spacing Δh. If we assume that the spatial and temporal truncation errors are of the same order (this is 
usually the case in ocean models, which mostly use second-order temporal and spatial schemes), then we have

 

where u is a smooth enough solution of the PDE. If two time steps are performed, we obtain

 

One can also use the same difference operator with a time and space grid of size 2Δt and 2Δh. This leads to



 

Subtracting these two last equations leads to the following estimate of the local truncation error:

 

Such an estimation procedure can be easily implemented on every level of the grid hierarchy. One has to coarsen the data 
on a given grid by a factor of 2. Then advance this coarsened solution one coarsened time step and compare the result with 
the current solution advanced two time steps using the preceding formula. If the truncation error is too large, then the grid 
point is flagged to indicate that a finer grid must be created there. Note that similar criteria can of course also be derived 
when the spatial and temporal truncation errors are of different orders, or even if they are unknown (Marchuk and 
Shaydourov 1983). In addition to this purely mathematical criterion, one can also use physically meaningful constraints to 
ask for refinement when local quantities (e.g., potential vorticity or kinetic energy) are higher than a prescribed value. 

The grid points requiring the same level of resolution are then clustered into rectangular subgrids, as can be seen in Fig. 1 
. An efficient regridding procedure is described, for example, in Berger and Rigoutsos (1991). 

c. Updating the solution  

We pointed out in the general description of the method that if a level l is not the finest one in the grid hierarchy, the 
solution on the grids at level l is updated after each time step Δtl using the solution on the finer grids at level l + 1. This 

update can be performed in several ways, the usual ones being either an average of neighboring fine grid values or even a 
simple copy of the fine grid values at corresponding coarse nodes.

However, additional numerical schemes can also be used to ensure flux conservation of the model variables at the 
interfaces between those coarse cells that are overlapped by fine cells and those that are not. Kurihara et al. (1979) proposed 
a simple methodology for this correction. Let  be the interface between a fine grid at level l + 1 and a coarser grid at level l. 
Fluxes through  can be computed from the fine grid solution and summed over all the r fine time steps Δtl+1 that constitute 

a coarser time step Δtl. This gives a so-called fine flux. The corresponding “coarse flux”  through  is also computed, using 

the coarse solution only. Then the difference between the fine fluxes and the coarse fluxes is uniformly distributed to correct 
the coarse values along the interfaces in order to ensure conservation.

Other methods have also been developed recently in nested grid applications. Laugier et al. (1996) make the solution fluxes 
satisfy a weak continuity relation over a control volume via an iterative method; Perkins et al. (1997) propose a “near 
continuity”  of prognostic model variables performed through a radiation of the difference between inner and outer solutions. 

All these strategies can, of course, be applied in the context of the AMR method. However, it must be noted that the 
problem of flux conservation is intrinsically less crucial with the AMR than with classical nested grid calculations. As a 
matter of fact, AMR places automatically the fine-to-coarse interfaces where fine grids become no longer useful, that is, 
where coarse and fine solutions are not very different, which is obviously not the case when the grids are fixed.

3. A simple illustration: The barotropic modon  

The AMR method and its ability to refine the model grid where and when necessary will be first illustrated in the well-
known case of the barotropic modon. This structure corresponds to a solution of the barotropic vorticity equation in the 
beta-plane approximation, without wind and dissipation,

 

where  is the barotropic streamfunction,  is the relative vorticity, J is the Jacobian operator, and β is the meridional 
gradient of the Coriolis parameter at the midlatitude of the domain. An analytic solution was found by Flierl et al. (1980). Its 
expression in polar coordinates (r, θ) is



 

where a is the radius of the modon and J1 and K1 are Bessel functions. This modon will propagate eastward at a uniform 

speed C. Choosing C = βa2 imposes the value of the wavenumber k = 3.9226 (Flierl et al. 1980). 

As mentioned previously, the barotropic modon was chosen by Spall and Holland (1991) and Laugier et al. (1996) for 
numerical tests of nested grid procedures. We have chosen here parameter values similar to those previous studies in order 

to compare the numerical results. The radius of the modon a is taken equal to 75 km, and β = 1.78 × 10−11 m−1 s−1, which 

corresponds to a latitude of 38.5°N. The eastward velocity of the modon is thus 0.1 m s−1. The computational domain is 

750 × 750 km2. The AMR method is used in this simple case with only two levels of grids with a grid ratio of 4. The 
coarse-grid spacing is Δh0 = 15 km with a timestep Δt0 = 8 h, while the fine grid parameters are Δh1 = 3.75 km and Δt1 = 2 

h. The truncation error is estimated every 10 coarse time steps, and a regridding is then performed if necessary. Initially, the 

modon is located at the center of the domain in a fine grid of 300 × 300 km2. As can be seen in Fig. 3b , this fine grid 
propagates eastward with the modon, which is not the case in classical nested grid calculations (Fig. 3a ). 

The results from the AMR calculations are compared with results from a coarse grid computation (uniform mesh size 
Δh0), a fine grid computation (uniform mesh size Δh1), and a nested grid (NG) computation similar to those performed by 

Spall and Holland (1991) and Laugier et al. (1996). The error with regard to the exact analytical solution is computed, and its 
integrated value is plotted as a function of time in Fig. 4a . As could be anticipated, the AMR and the NG calculations 
perform rather similarly as far as the modon remains in the nested domain (approximately until day 9), but the AMR leads to 
much better results as soon as the modon significantly departs from the center of the domain. At the end of the simulation 
(day 29), the rms error is equal to 34% in the NG run, but only to 14% in the AMR run. Also of importance is that this 
improvement is achieved for a low additional cost: the AMR run requires 15.5 s CPU time while the NG run requires 14.1 s 
(see Table 1 ). 

Another important issue is the efficiency of the AMR for local prediction. This point is illustrated in Fig. 4b . As in Fig. 
4a , we computed the evolution with time of the rms error, but integrated only over the central inner domain, which is 
supposed to be of particular interest. This domain corresponds to the fixed fine grid in the NG calculation and to the initial 
location of the fine grid in the AMR run, but one must notice that this domain is no more refined after some days in the 
AMR run. However, the AMR method leads to better results than the NG method, even in this area. As a matter of fact, the 
rms error is equal to 14% on day 20 and 45% on day 29 in the NG run, but decreases to 7% and 20%, respectively, in the 
AMR run. This illustrates that increasing the local resolution is not necessarily the best way to improve a result in an area of 
particular interest. It can be more fruitful to increase the resolution in some critical areas, even out of the area of interest, in 
order to reduce more efficiently the local numerical error. This point will be further discussed in the following section, but 
AMR already appears as a possible efficient alternative to classical zoom techniques.

4. Experiments with a multilayered QG model  

We will now describe an application of the AMR method in the context of a multilayered QG box model. Such a model is 
known as a simple prototype of eddy-active large-scale circulation in the midlatitudes. A number of papers can be found 
dealing with such models in the literature (e.g., Holland 1978; Schmitz and Holland 1982), and the interested reader can refer 
to these for further details.

The vertical stratification of the ocean is approximated by dividing the total depth into N layers, each layer k being of 

constant density ρk. The reduced gravity at the interface between layers k and k + 1 is defined by g′k+1/2 = g(ρk+1 − ρk)/ρ0, 

g being the acceleration due to gravity and ρ0 a reference density. The thickness at rest of layer k is denoted by Hk. The 

classical beta-plane approximation is used, so the Coriolis parameter f  is written f(y)  f(y0) + β(y − y0), where y0 

corresponds to the midlatitude of the domain, and

 

The governing equations can be written as



 

where D/Dt is the Lagrangian operator / t + J( , · ). The variables are the streamfunction k and the vorticity k = Δ

k in each layer. Here f0 = f(y0) is the Coriolis parameter at the midlatitude of the domain, and hk+1/2 is the height of the 

interface perturbation. It can be expressed as f0( k+1 −  k)/g′k+1/2, (k = 1, · · · , N − 1), with h1/2 = 0 (rigid-lid 

approximation) and hN+1/2 = 0 (flat bottom). The term Fk expresses the influence of the wind on the upper layer:

 

where τ is the horizontal wind stress at the surface of the ocean and Fk = 0 for any k > 1. The dissipation of subgrid-

scale processes is ensured by the use of a biharmonic lateral viscosity operator: Dk = A4
4

k (k = 1, · · · , N − 1). In the 

bottom layer, another dissipative term is added to take into account bottom friction:DN = A4
4

N − Cb N. 

We choose a configuration similar to an experiment by Barnier et al. (1991), which results in an intense eastward jet 
associated with a strong eddy activity (Fig. 5 ). The model is six-layered, with depths of 300, 350, 400, 500, 1350, and 
2100 m. The basin has horizontal dimensions of 3600 km × 3200 km. The stratification parameters are fairly standard and 
lead to Rossby radii of deformation of 38.8, 18.7, 12.6, 10.2, and 9.2 km, respectively. The rotation parameters are f0 = 9.3 

× 10−5 s−1 and β = 2 × 10−11 m−1 s−1. The wind-stress curl forcing is sinusoidal with an amplitude τ0 = 6 × 10−5 m2 s−2. 

The bottom friction coefficient is Cb = 10−7 s−1. 

a. Efficiency of the AMR for long-term integration  

A spinup of the model was performed with a uniform 10-km horizontal resolution and a lateral friction coefficient A4 = 

0.25 × 1010 m4 s−1. This simulation was 10 years long in order to reach a statistically steady state. Then the model solution 
at the end of this run was taken as the initial condition for three experiments. In each case, the model was run for a 
sequence of 5 years, and flow statistics were computed and compared to assess the effectiveness of the AMR method for 
long-term integrations. Experiment G-10 was performed with an uniform 10-km horizontal resolution in both directions, and 

a lateral friction coefficient A4 = 0.25 × 1010 m4 s−1; experiment G-40 with 40-km resolution and A4 = 64 × 1010 m4 s−1 

(these values of A4 ensure consistency between the dissipation timescales on the different grids). A third experiment G-AD 

was performed using AMR with a grid ratio r = 4 and two levels of grids corresponding to G-40 and G-10. The refinement 

criterion is that the error estimate of the velocity in the upper layer must be less than 2 cm s−1. The interpolation from the 
coarse grid to the fine grids is performed with cubic splines for the initialization of the fine grids and with Lagrange 
polynomials for the specification of the boundary conditions. The coarse grid values are updated by a simple copy of the 
corresponding fine grid values. Conservation of mass between coarse and fine meshes is implicitely ensured by these 
procedures since the model variable is the streamfunction. On another hand, strict conservation of energy is not imposed 
since this is not appropriate on a nested mesh (Kurihara et al. 1979; Peggion 1994). 

Examples of instantaneous surface circulation corresponding to these simulations are displayed in Fig. 5 . Since the 
mesoscale activity is not properly resolved with the 40-km resolution, the level of instability is much weaker in experiment 
G-40 than in experiment G-10, and the transfer of energy from the eddy flow to the mean flow is not sufficient to lead to 
the formation of an intense central jet. However, as can be seen in Fig. 5c , the adaptive method working with a 40-km 
coarse grid plus a 10-km fine grid where and when necessary seems able to reproduce the eddy activity of the flow 
observed in the 10-km case. An important point here is, of course, the computational cost of the G-AD simulation, which is 
three times lower than the cost of the G-10 experiment. This is illustrated in Fig. 6 , where the mean location of the fine 
grid in the G-AD experiment is plotted. As can be seen, this fine grid covers on average only about one-third of the domain, 
corresponding to the areas of maximum eddy energy (see Fig. 8 ). 



We cannot, of course, expect experiment G-AD to give exactly the same results as experiment G-10. The main question 
here is rather to determine if the solution provided by the adaptive method is acceptable from an oceanographic point of view 
and if its discrepancies with regard to an uniformly high-resolution experiment are balanced by the gain in CPU time. To try 
to answer this question, we computed for each experiment some statistics over the 5-yr period. They confirm the reasonable 
performance of the AMR method in reproducing the main statistical features observed in the G-10 case. The global pattern 
of the mean circulation is rather similar in the G-AD and G-10 simulations, with a strong central jet penetrating far eastward 
and its associated northern and southern recirculation cells (Fig. 7 ). The transports are almost identical in both 
experiments. However, the penetration length of the jet is reduced by about 10% in the adaptive case. Moreover, the deep 
inertial cells present in the deep layer of the G-10 experiment in the northwest and southwest corners of the domain are very 
weakened in G-AD, by a factor of almost 2. This is explained by the fact that the refinement criterion used in these 
simulations deals only with the solution in the upper layer, which does not present an important activity in these regions. A 
generalized criterion using information from every layer would probably solve this problem, but we think that the derivation 
of such a criterion is out of the scope of this study with this nonrealistic model. However, we will have to formulate such 
generalized criteria when using realistic models.

The mean levels of kinetic energy in each layer are displayed in Table 2 . As can be seen, the adaptive method leads to 
similar values as in the 10-km case, within a range of roughly 10%. This is also the case for the eddy activity. The spatial 
distribution of eddy kinetic energy (Fig. 8 ) is rather correctly reproduced with the AMR method, with a discrepancy of 
typically 10%–20% in the numerical values. We have also examined several other diagnostic variables such as sea surface 
height variability, barotropic and baroclinic structures, and Rossby waves features, which confirm the preceding statement 
that the AMR method leads to the same flow statistics as the G-10 experiment, within a 10%–20% range. 

b. Interest of the AMR for local zooms  

Apart from the problem of long-term integration, the other question we want to address in this study is the interest of the 
AMR method for local prediction, compared to classical nested grid techniques. The barotropic modon experiment presented 
above suggested that AMR could appear as an efficient alternative to these standard methods. To try to confirm this point, 
we conducted nested grid experiments in this multilayered QG model framework. Note that we did not choose here a 40-km 
coarse grid because, as seen previously, it results in dynamics that is very different from the 10-km case. Therefore, nested 
grid experiments with a 40-km coarse grid cannot lead to correct results, which would bias the comparison with adaptive 
simulations. That is why we used a 20-km resolution, which leads to a circulation pattern much more similar to the 10-km 
case than a 40-km grid does. 

Two experiments were conducted. In each case, a 10-km inner grid was located over a region supposed to be of 
particular interest and coupled with a 20-km resolution model covering the whole basin. As can be seen in Fig. 6 , the 
two regions of interest were chosen aside from the mean location of the fine grids in the adaptive simulation. So the major 
part of the fine grids in the AMR simulation will, in general, be located outside those two regions. The area of each region is 
equal to 30% of the area of the global domain, which represents also the mean area covered by the fine grids in the adaptive 
experiment. This was chosen in such a way that the computational costs of each nested grid experiment and of the adaptive 
experiment would be equal. For each case, the simulation was initialized with a solution obtained with a uniform 10-km 
resolution model (experiment G-10 above). Then the nested grid model was integrated over a 30-day period, and the rms 
difference between the reference solution G-10 and the nested grid solution was computed in each layer over the inner 
domain. These results were then compared with those obtained over the same time period by an AMR simulation, working 
with two levels of grid (20 and 10 km) and initialized with the same reference solution. These rms differences are displayed 
in Fig. 9  for the upper layer of the model, but the behavior remains similar for deeper layers. For the first area of interest 
(area A in Fig. 6 , located along the southern boundary), the rms difference at the end of the 30-day period is equal to 
6.3% in the 20-km case, 4.5% in the nested grid case, and 3.5% in the adaptive case. Since the circulation and the eddy 
activity in this region are weak, the coarse-mesh model itself reproduces quite well the circulation obtained with the fine-
mesh model. However, the nested grid approach decreases the rms difference by about 30%, and the adaptive case 
performs even better. The second area of interest (area B in Fig. 6 ) is located in the eastern part of the domain, 
downstream from the central jet, and corresponds to a circulation more active than in the previous case. The results are then 
more spectacular. As a matter of fact, the rms difference at the end of the 30-day period is equal to 19.5% in the 20-km 
case, 15% in the nested grid case, and only 4.5% in the adaptive case. The interest of the adaptive approach for local 
prediction is thus particularly striking in this case. Once again, it seems better to increase the resolution in some critical 
areas, even out of the area of interest, to reduce more efficiently the local numerical error. It is also important to note here 
that only one AMR simulation is required (which represents the same computation effort as one NG calculation) to provide a 
solution comparable or better than NG solutions everywhere in the domain.

5. Summary and conclusions  

We have presented in this paper some preliminary applications to numerical ocean circulation models of the adaptive mesh 
refinement method developed by Berger and Oliger (1984). Since most ocean general circulation models use a finite-
difference discretization of the equations, we were interested in testing whether or not this method could add interesting 



potentialities to existing numerical models. Hence, we developed a Fortran-90 package in which the model is seen as a black 
box, and which allows adaptive refinement at little computational cost and without programming effort. The adaptivity can, 
of course, also be inhibited, to perform classical nested grid calculations. Since the concept of the AMR is model 
independent, it can also be combined with other means to improve numerical simulations, such as high-order methods or 
subgrid-scale parameterizations. 

In the present study, we addressed the behavior of this method in the well-known case of the barotropic modon (already 
addressed by other authors with nested grid techniques) and in the case of a multilayered QG box model. From the point of 
view of long-term integration of numerical models, the AMR method proved in the above experiments to allow a significant 
gain in CPU time (by a factor of 3) while conserving the main statistical features of the uniformly high resolution solution, 
within a 10%–20% range. Such a method may thus be of interest for the spinup phase of models, or also for applications 
requiring the computation of approximated statistical properties (this is the case, e.g., of many data assimilation methods 
derived from filtering theory). The results are also interesting concerning the capabilities of the AMR method for local 
prediction. It appears in our numerical experiments that a simulation using the AMR method leads to better local predictions 
than classical nested grid techniques, wherever the region of interest is located.

Even if the present study is deliberately restricted to academic cases, it seems to us that its conclusions are encouraging 
and justify further investigations. However, the generalization of these results to realistic numerical models of the ocean 
circulation is, of course, far from being straightforward. The processes involved by a more complete physics and realistic 
coastlines, bathymetry, and forcings are much more complicated than those encountered in the present numerical 
simulations. Hence several aspects of the method will require particular attention. For example, the definition of the rules for 
refinement will be more complex. The problem of vertical refinement will become of interest in relation with topographic 
effects or representation of particular water masses. It will also be interesting to observe the behavior of the grids: Does the 
AMR perform a kind of monitoring of ocean energetic and turbulent structures (fronts, eddies, . . . ) or are the grids rather 
static, covering well-known important regions (western boundaries . . . )? That is why we are presently implementing this 
method in a primitive equation model of the North Atlantic to address these questions and to form a better judgment on the 
interest of the AMR for ocean modeling.
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Tables  

Table 1. CPU time (in seconds) for the different experiments.
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Table 2. Mean kinetic energy in each layer for each experiment (unit: cm2 s−2).
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Figures  
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Fig. 1. An example of grid hierarchy.
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Fig. 2. Integration algorithm of the AMR method.
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Fig. 3. Numerical solution of the modon problem at three different time steps (CI: 1000 m2 s−1) for the (a) nested-grid 
calculation and (b) AMR calculation. The location of the fine grid is indicated.
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Fig. 4. Evolution with time of the rms error for the different numerical simulations. Upper panel: rms computed over the whole 
domain; lower panel: rms computed over the central inner domain only.
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Fig. 5. Snapshots of the surface circulation for the three experiments: (a) 10-km experiment, (b) 40-km experiment, and (c) 

adaptive experiment. (CI: 10 000 m2 s−1.) 



 
Click on thumbnail for full-sized image. 

Fig. 6. Shaded: mean location of the fine grid in experiment G-AD. Labeled: locations of the two zoom areas for the nested grid 
experiments.
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Fig. 7. Mean circulation in the surface layer (left) and in the bottom layer (right) for the three experiments:(top) 10-km 

experiment, (middle) 40-km experiment, and (bottom) adaptive experiment. [CI: 5000 m2 s−1 (left) and 1000 m2 s−1 (right).] 
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Fig. 8. Eddy kinetic energy in the surface layer (left) and in the bottom layer (right) for the three experiments:(top) 10-km 

experiment, (middle) 40-km experiment, and (bottom) adaptive experiment. [CI: 100 cm2 s−2 (left) and 5 cm2 s−2 (right).] 

 
Click on thumbnail for full-sized image. 

Fig. 9. Evolution with time of the rms difference with regard to the fine grid reference experiment, for the coarse grid, nested 
grid, and adaptive experiments. The rms is computed in the surface layer over the area of interest. Upper panel: area A (south); 
lower panel: area B (east).
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