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ABSTRACT

Scaling analysis of the oceanic thermohaline circulation has been done under 
two types of surface boundary conditions: (i) Under “relaxation”  conditions 
(sea surface temperature and salinity are relaxed to prescribed values), there is 
a two-thirds power law dependence of the meridional overturning (and the 
poleward heat transport) on the diapycnal diffusivity. For any given external 
forcing, there is only one equilibrium state for the thermohaline circulation. (ii) 
Under “mixed”  boundary conditions (temperature is relaxed to prescribed 
values and a virtual salt flux condition is used for salinity), multiple equilibria 
become possible. For a given thermal forcing, the existence of multiple 
equilibria depends on the relative contributions of diapycnal diffusivity and the 
hydrologic forcing: for each diapycnal diffusivity K, there is a threshold 

freshwater flux Ec = CK2/3 (C is a constant) below which three modes are 

possible with one stable thermal mode, one unstable thermal mode, and a stable 
haline mode and above which only one stable haline mode can exist.

Numerical experiments are also implemented to test the above scaling 
arguments. Consistent results have been obtained under the two types of 
boundary conditions. The relationship derived here focuses attention on the 
need to better understand both the diapycnal mixing in the ocean and the 
strength of the hydrologic forcing at its surface.

1. Introduction  
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The thermohaline circulation plays an important role in poleward heat transport in the ocean and is thus of primary interest 
to climate studies. Stommel (1961) first recognized the possibility of multiple solutions of the thermohaline circulation. He 
found that under certain conditions, there could be three states possible: 1) a stable thermal mode with a relatively fast 
circulation, 2) a stable haline mode with a relatively slow circulation, and 3) an unstable thermal mode. Bryan (1986) proved 
the existence of multiple equilibria of the thermohaline circulation in a numerical model.

The thermohaline circulation is forced from the surface, thus the upper boundary conditions for temperature and salinity 
are of significance. Since there is a strong feedback between the atmospheric temperature and sea surface temperature 
(SST), a relaxation condition for the SST has been widely used (Haney 1971):

 

where T* is the “apparent atmospheric temperature”  determined by the sum of solar insolation, back radiation, latent and 
sensible heat fluxes; Ts is SST; and Γ is inverse of the relaxation time. The strong feedback mechanism allows the SST to be 

maintained around the prescribed T*. 

For salinity, there are several choices. First we can relax the sea surface salinity to a prescribed distribution, analogous to 
temperature:

 

This condition is very easy to use, but it is hardly justified physically because there is no such feedback between S* and 
Ss. Instead, the salinity is related to the SST, which affects the evaporation rate at the sea surface. The second way is to use 

a virtual salt flux condition for salinity:

 

where e − p is evaporation minus precipitation, including runoff, and S is the averaged salinity at the surface. This 
condition is an approximation to the freshwater flux condition, and increasing numbers of ocean models use this boundary 
condition for salinity in studies of the thermohaline circulation. Huang (1993) proposed a more realistic upper boundary 
condition, the so-called “natural”  boundary condition on salinity. Due to the restraint of the free surface requirement, this 
kind of boundary condition is not discussed here, but in terms of the scaling argument below it should be similar to the 
virtual salt flux case. For simplicity, wind stress effects are neglected in the scaling argument and in most of the numerical 
experiments. We call the combination of (1) and (2) “relaxation”  boundary conditions and, in comparison, (1) and (3) are 
called “mixed”  boundary conditions. 

The importance of the diapycnal diffusivity to the thermohaline circulation under the relaxation boundary conditions has 
been discussed and widely examined in numerical models. Welander (1971) derived a scaling relationship for the zonal flow 
based on a vertical advective–diffusive balance and the thermal wind relation. Bryan (1987) postulated this to hold for the 
zonally averaged meridional flow as well; that is, the meridional overturning should have a two-thirds power law dependence 
on the diapycnal diffusivity, even though he only observed an approximate one-third power law in his numerical 
experiments. Marotzke (1997) restrained the diapycnal diffusivity to act only at lateral boundaries and in convection regions 

and found that, when the vertical diffusivity K is below 30 cm2 s−1, the meridional overturning strength is proportional to 

K2/3. He offered a theory to get the relation between the north–south density difference and the east–west density difference, 
and the latter is directly related to the shear of meridional flow and thus the thermohaline circulation. The relation between 
zonal and meridional density gradients can also be found in Hovine and Fichefet (1994). 

The thermohaline circulation under mixed boundary conditions has also been investigated (Weaver et al. 1993; Weaver and 
Hughes 1992; Rahmstorf et al. 1996). Weaver et al. (1993) examined the effect of freshwater fluxes on the stability and 
variability of the thermohaline circulation. They found that the freshwater forcing is the dominant factor in determining 
stability and internal variability. Increasing the relative importance of the freshwater flux versus thermal forcing caused, in 
turn, one stable steady state of the model, two stable states, one stable and one unstable equilibrium, or no stable steady 
states at all. In addition, Huang and Chou (1994) studied the parameter sensitivity of the saline circulation forced by 

freshwater flux alone. When the freshwater flux is increased from 0.01 to 1 m yr−1 with other parameters fixed, the system 
evolves from a steady state with no oscillations to a state of periodic oscillation whose frequency increases almost linearly 



with the amplitude of the freshwater flux. On the other hand, when the freshwater flux is fixed and the vertical mixing 

coefficient is increased from 0.5 to 2.5 cm2 s−1, the system evolves from a steady state to a state of single-period 

oscillation, to a chaotic state, to a single period state, and finally, when the vertical mixing is larger than 2.0 cm2 s−1, to 
another chaotic state.

These studies suggest that the freshwater flux and the diapycnal diffusivity are very important parameters to the 
thermohaline circulation, yet both are poorly known from observations. In the following scaling analysis and numerical 
experiments we attempt to understand the sensitivity of the thermohaline circulation to these two parameters. In section 2, 
the scaling analyses of the thermohaline circulation under two different kinds of upper boundary conditions are provided. In 
section 3 numerical experiments are implemented to compare with the scaling results. Section 4 contains a summary and 
discussion.

2. Scaling analysis  

a. Equations  

Similar to Welander (1971), we start from the following equations: 

(i) the incompressibility condition

 

(ii) the thermal wind relation

 

(iii) the vertical advective–diffusive balance of density

 

where u = ui + j and w are the horizontal and vertical components of velocity respectively, f  is the Coriolis parameter, ρ 
is the density, K is the assumed uniform diapycnal diffusivity of density, and g is the gravitational acceleration. 

Assumption (i) is used widely in oceanic theoretical and numerical studies, and (ii) comes from the geostrophic and 
hydrostatic relations, which are true for the large-scale thermohaline circulation. Assumption (iii) has been invoked by Munk 
(1966) and justified by the correspondence of observed vertical profiles of salinity and temperature to the model (depth 
between 1 and 5 km); in addition, Munk and Wunsch (1998, hereafter MW) have revisited this issue. This assumption was 
used in the scaling argument of Welander (1971) and Bryan (1987). 

From the above equations, we obtain the scaling relations:

 

where U(L) and W(D) are horizontal and vertical velocity (length) scales, respectively, and Δρ is the north–south density 
difference at the ocean surface.

From these we can derive the vertical length scale in terms of Δρ/ρ:



 

which is actually the scale thickness of the thermocline (Samelson and Vallis 1997). 

Thus, the strength of the meridional overturning is

 

Note that M is determined by the meridional velocity , which is related to the east–west density difference, rather than 
the north–south density difference. Since in the thermocline, the velocity components u and  are of the same order and u is 
determined by the north–south density difference, we infer that  has the same order of magnitude. Marotzke (1997) 
provides a discussion, in which the east–west density difference is closely related to the north–south surface density 
difference. However, he assumed vertical mixing only occurs in the lateral boundary regions, which is different from the 
uniform mixing assumed here. To the lowest order, we can assume that (9) is an acceptable estimate for the strength of the 
meridional overturning cell.

The poleward heat transport is very important for climate studies. This can be scaled as follows:

Q = C0ρ0cpMΔT  K2/3,(10)

 

where cp is the specific heat under constant pressure and the north–south temperature difference ΔT is used to represent 

the temperature difference between the deep flow and the surface return flow. We use both maximum M and ΔT to estimate 
Q; however, in the real ocean (a single-hemisphere basin), maximum M occurs with minimum ΔT and maximum ΔT lies in 
the minimum M region. As a result, the maximum poleward heat transport is found in midlatitudes. Thus, a constant factor 
C0 is introduced here to represent this effect. For the simplest case, we can assume that Q reaches its maximum at 

midlatitudes where both ΔT and M are assumed half of their maximum values; thus we could expect an approximate value of 
C0 = ¼. 

Furthermore, assuming a linear equation of state

ρ = ρ0(1 − αT + βS),(11)
 

then the ratio Δρ/ρ0 in (8) and (9) can be replaced by

Δρ/ρ0 = |αΔT − βΔS|,(12)
 

where ΔT and ΔS are north–south temperature and salinity differences. 

b. Relaxation boundary conditions  

In most cases using relaxation boundary conditions in the literature, both Γ and Γs are quite large so that ΔT and ΔS can 

be approximated by ΔT* and ΔS*. This assumption will be used in the following analysis. 

We find it useful to define the horizontal density ratio:

 

In present-day oceans, the water is cold and fresh in polar regions, and warm and salty in equatorial regions;thus 
temperature and salinity have opposite effects on the surface density difference. When R < 1, the temperature dominates the 
density difference, and the densest water is formed and sinks in the polar regions. The thermohaline circulation is in the 



“thermal”  mode. In contrast, when R > 1, the salinity dominates the density difference, and the densest water is formed and 
sinks in the equatorial regions. This thermohaline circulation is in the “haline”  mode. 

Using (13), the depth scale and meridional overturning scalings become

 

With the relaxation boundary conditions, ΔT and ΔS are very close to the constant ΔT* and ΔS*. As a result, the north–
south density difference is nearly fixed, so there is only one thermohaline circulation mode. The above power laws have 
been discussed previously (Welander 1971; Bryan 1987) and are reproduced here as a first step for the case under mixed 
boundary conditions. In addition, the above conclusions will be examined in a numerical model in section 3b. 

c. Mixed boundary conditions  

1) NORTH–SOUTH SALINITY DIFFERENCE 

Under mixed boundary conditions (1) and (3), the north–south salinity difference is no longer fixed; instead, it becomes 
part of the solution we are pursuing.

Consider a two-box model of the ocean (Stommel 1961), in which a polar box and an equatorial box are well mixed and 
connected by pipes at the top and the bottom. Defining Se and Sp as salinities in the equatorial and polar boxes respectively, 

the salt conservation equations are

 

where Ee, Ep are the evaporation minus precipitation rates in the equatorial and polar box, L2 is the horizontal area of the 

ocean basin, M0 is the volume flux between the two boxes, H is the depth of the ocean, S is the averaged salinity over the 

whole basin, and an overdot denotes the time derivative.

From the above two equations, we can derive an equation governing evolution of the salinity difference, ΔS1 = Se − Sp,

 

To get a more reasonable estimate of the north–south salinity difference in the scaling analysis, we make the following 
assumptions:

 



where ΔS, Ee − Ep, and M are used to represent the corresponding quantities in more complicated models, like numerical 

models, rather than that from a two-box model that is strongly averaged. The above extension from a box model to a more 
realistic model is based on simple linear assumptions, which may differ from the real situation, but as a scaling argument, we 
believe it reflects the lowest order approximation. Thus, ΔS (Ee − Ep) is the salinity (freshwater) difference between 

northern and southern regions, and M is the maximum of the meridional overturning. For convenience, we introduce

E = (Ee − Ep)/2(22)
 

to represent the magnitude of freshwater forcing. Then we have

 

For a steady state, we obtain

 

A similar scaling result has been obtained in Huang and Chou (1994). We can see that ΔS0 is proportional to the magnitude 

of the freshwater forcing and inversely proportional to the strength of the meridional overturning circulation rate.

2) SCALING ANALYSIS AND SOLUTIONS 

With ΔS0 given in (24), we obtain

 

From here we can conclude that, when

 

the density difference is thermally dominant. Alternatively, when the thermal effect is less than the saline effect, the 
density difference is salt dominant.

Substituting (25) into (8), we obtain a quartic equation for D

 

Since the salinity difference is now related to the vertical length scale, the relation between the depth scale and the external 
parameters becomes more complicated.

Introducing the following nondimensional variables,



 

Eq. (27) becomes

|R4 − R3| = F.(30)

 

Using (24), R can be written as

 

which is the horizontal density ratio representing the relative contributions of salt and heat to the surface density. When R 
< 1, the thermal forcing dominates, and we have thermal modes; on the other hand, when R > 1, the freshwater forcing 
dominates, and we obtain a haline mode.

In the limits of R  1, Eq. (30) reduces to the K2/3 power law dependence of meridional overturning on diapycnal 

diffusivity found under the relaxation boundary conditions. If R  1, the Huang and Chou (1994) K1/2 power law 
dependence of meridional overturning upon diapycnal diffusivity for the saline circulation (freshwater forcing only) is 
recovered.

The general solution of Eq. (30) can be obtained through the following two cases: 

(i) Thermal mode(s) equation (R < 1)

R4 − R3 + F = 0.(32)

 

(ii) Haline mode(s) equation (R > 1)

R4 − R3 − F = 0.(33)

 

The solution(s) can be found in the appendix.

The nature of the solution to Eq. (30) depends on the size of F relative to a critical parameter:

 

When F < Fc, two thermal modes and one haline mode are possible; when F > Fc, only one haline mode can exist.
 

The above solutions are based on R, and then we can calculate the meridional overturning by (9) and the poleward heat 
transport by (10). 

Assuming the thermal forcing is fixed (ΔT = const), (34) implies a critical value for the freshwater forcing:

 

Thus, for a given value of K, there is an upper limit of freshwater forcing Ec(K) beyond which no thermal mode can 

exist. Below this value two thermal modes, in addition to the haline mode, are possible for all given conditions.



The reason for such an upper limit on the thermal mode can be understood as follows. The freshwater forcing acts as a 
brake on the thermally driven overturning circulation. For example, with E > 0, we know the maximum meridional 
overturning is smaller than that without freshwater forcing, that is,

 

where MTh is the meridional overturning due to thermal forcing alone. Using (24),

 

For a given thermal forcing ΔT, ΔS0 increases with larger E; thus, when E is large enough, ΔS0 can overcome the density 

effect of ΔT, making the thermal mode impossible. 

We plot the critical line (36) in Fig. 1 . In the region below the critical curve three modes are possible: two thermal 
modes and one haline mode, while in the region above it only one haline mode can exist.

Also, we plot the dependence of the meridional overturning on E and K, respectively (Fig. 2 ). The upper solid line 
corresponds to the stable thermal mode, while the lower solid line is the solution for the haline mode, and the dotted line 

represents the result for the unstable thermal mode. For K = 1 cm2 s−1 (Fig. 2 ), there is a bifurcation point at about E = 

1 m yr−1 beyond which only one haline mode is possible. 

The above arguments are based on the assumption of a specified equator–pole temperature difference. However, since the 
atmosphere and oceans constitute a coupled system, the temperature difference ΔT could change. From (35), a change in 
ΔT will lead to a different critical relation between diapycnal diffusivity and hydrologic forcing. Past climatic states of the 
earth may have had significantly different ΔT and E, and both must be considered in evaluating the possible modes of the 
thermohaline circulation.

3) STABILITY ANALYSIS 

Next we analyze the stability of the solutions obtained above. We separate ΔS into two parts:

ΔS = ΔS0 + ΔS′,(39)
 

where ΔS0 is the steady solution and ΔS′ is a small perturbation. Similarly, we assume the meridional overturning will 

change correspondingly:

M = M0 + M′.(40)
 

From Eq. (9), we derive

 

By substituting (39) and (41) into (23), we obtain

Δ ′ = AΔS′,(42) 

where



 

For the thermal mode with ¾ < R < 1, A > 0, and thus this mode is unstable. In comparison, for the other thermal mode, 
which has R < ¾, and for the haline mode, which corresponds to R > 1, we have A < 0, so both modes are stable solutions. 

4) APPLICATION TO NORTH ATLANTIC AND NORTH PACIFIC 

The above scaling argument is based upon a square basin. In fact, for a rectangular basin (i.e, Lx  Ly), we can replace 

the horizontal area L2 by LxLy.
 

Given the uncertainty associated with both the diapycnal diffusivity and e − p over the oceans, it is unrealistic to compare 
the current scaling argument with the real oceans in any detail. However, a rough estimate can be made based on presently 
available information. A map of evaporation minus precipitation over the global ocean is plotted in Fig. 2  of Schmitt 
(1995) and is used for the estimate of e − p. Here we focus on the Northern Hemisphere where the North Atlantic and North 
Pacific are isolated and most appropriate for our scaling argument. Due to the effect of the intertropical convergence zone, 
there is more precipitation than evaporation in the equatorial region, thus the maximum e − p lies near 15°N for the North 
Atlantic and 20°N for the North Pacific. The minimum e − p (or maximum p − e) lies in the polar region of both oceans, 

close to 60°N. As an approximation, we take Ly = 5 × 106 m for both oceans and Lx = 6 × 106 m for North Atlantic and Lx 

= 12 × 106 m for North Pacific. Then we estimate ΔT and S for both oceans from the Levitus (1982) climatology between 
the maximum and minimum e − p regions, respectively. We obtain approximate values of ΔT = 18°C, S = 36 psu for the 
North Atlantic and ΔT = 20°C, S = 34 psu for the North Pacific. 

Compared to e − p, the diapycnal diffusivity is perhaps even less well known. Recent observations indicate strong spatial 

variability of diapycnal mixing in the oceans. Ledwell et al. (1993) found that the diapycnal diffusivity is about 0.15 cm2 s−1 
in the upper thermocline in a tracer release experiment, while the diapycnal diffusivity is much larger close to rough 

topography in the abyss (approaches 100 cm2 s−1: Toole et al. 1994; Polzin et al. 1997). The basin-scale budget estimates 

require an averaged diapycnal diffusivity of about 1 cm2 s−1 (Munk 1966; MW). For simplicity, we adopt the canonical 

value of K = 1 cm2 s−1 for both basins in the scaling estimate here; however, the uncertainty of this value should be 
emphasized.

Using the above parameters, we estimate the critical evaporation minus precipitation rate as

EcNA = 0.92 m yr−1(44)

 

for the North Atlantic Ocean and

EcNP = 0.89 m yr−1(45)

 

for the North Pacific Ocean. The critical values of freshwater forcing are surprisingly close for both oceans.

From the Schmitt (1995) global ocean e − p map, we find ENA is about 0.75 m yr−1 for the North Atlantic Ocean and 

ENP is about 1.05 m yr−1 for the North Pacific Ocean. Thus, the estimated freshwater forcing is much stronger in the 

North Pacific than in the North Atlantic. Since ENA < EcNA, the scales suggest that the North Atlantic Ocean is in the 

multiple equilibria regime. Presently, the North Atlantic Deep Water (NADW) is formed in the polar region and exported 
equatorward, characteristic of a thermal mode. In contrast, for the North Pacific, since ENP > EcNP, only the haline mode is 

possible by the scaling argument. This is in line with the lack of deep-water formation in the Pacific polar regions. The 
results are summarized in Table 1 . 

Warren (1983) noted the effects of low sea surface temperature on the diminution of evaporation and suggests that this 
causes the lack of bottom-water formation in the Pacific compared to the North Atlantic. Here we find it is also possible that 
the larger gradient of e − p in the North Pacific inhibits a thermal-mode overturning cell. The stronger freshwater forcing 
and lower critical E value for the North Pacific both favor the single haline mode. Compared to the North Atlantic Ocean, 
even though the higher north–south temperature gradient and lower mean salinity act to increase the critical E value, the 
large size in the zonal dimension surpasses the above effects and leads to a smaller critical value in the North Pacific than the 



North Atlantic. Thus, it is easier to enter the haline mode even with the same freshwater forcing. In addition, there could 
well be significant differences in diapycnal mixing rates in the two basins due to varying bathymetry and tidal forcing (Polzin 
et al. 1997; MW). 

The individual oceans, however, are not isolated systems; moreover there is interaction between the oceans and the 
atmosphere. As a result, there is strong feedback between ΔT, E, and the strength of the thermohaline circulation. Thus, 
parameters ΔT, E, etc. are not givens, but rather are part of the solution of the more complicated coupled system. Hopefully, 
the simple scaling argument given here provides the lowest order estimate of the behavior of the thermohaline circulation. 
Based upon the rough observations available, it is consistent with the current oceanic situation.

5) COMPARISON WITH BOX MODEL RESULTS 

Marotzke (1990) used a two-box model similar to Stommel (1961), in which he defined the following nondimensional 
variables:

 

where HS is the equivalent salt flux, and KM is the linear proportionality coefficient between the interbox flow and the 

density difference. He found for FM < 0.25, three steady states exist, including one haline mode and two thermal modes. For 

FM > 0.25, only one haline mode is possible. In addition, for RM < 0.5 or RM > 1.0, the solution is stable, and for 0.5 < RM 

< 1.0, the solution is unstable. Therefore, in the multiple equilibria region (FM < 0.25), there is one stable thermal mode, one 

unstable thermal mode, and one stable haline mode, and when FM > 0.25, there is only one stable haline mode. 

Huang et al. (1992) studied the structure and stability of the multiple equilibria of the thermohaline circulation using 2 × 2 
and 3 × 2 box models. They defined the following nondimensional number

 

where Γ is the Rayleigh relaxation coefficient. In the 2 × 2 box model, for 0 < p < pc, three solutions exist:one stable 

thermal mode, one unstable thermal mode, and one stable haline mode; for p > pc, only one stable haline mode exists. Here 

pc is the nondimensional critical freshwater forcing. Note the similarity between the upper panel of Fig. 2  in this article 

and Fig. 5  in Huang et al (1992). 

Our scaling analysis is consistent with the above box models in the following aspects: under certain conditions, three 
solutions are possible, which include one stable thermal mode, one unstable thermal mode, and one stable haline mode; 
otherwise only one stable haline mode is possible. Compared to Marotzke (1990), the criteria on R (=βΔS0/αΔT) for the 

stability is different, we get an unstable solution for 0.75 < R < 1 through the scaling argument, which corresponds to the 
range 0.5 < R < 1 in Marotzke (1990). As in Marotzke (1990) and Huang et al. (1992), we obtain an upper limit of the 
freshwater forcing (or equivalent salt flux) beyond which no steady thermal mode is found.

In contrast to the box models, we include the Coriolis parameter, basin dimensions, and more importantly the two 
uncertain variables: diapycnal diffusivity and freshwater forcing. For a given set of parameters, the scaling analysis permits 
an estimate of how the thermohaline circulation will behave, which is unattainable with the box models. The role of 
freshwater forcing has been studied extensively in the box models, but the effect of diapycnal diffusivity cannot be examined 
due to the strong numerical diffusion intrinsic to these models.

3. Numerical experiments  

a. Model description  



Experiments utilizing the GFDL MOM2 were conducted to explore the validity of the scaling arguments in section 2. The 
details of the model can be found in Bryan (1969) and Pacanowski (1995). The special features of these experiments are as 
follows.

The model domain is a sector basin of 60° × 60°, and the horizontal resolution is 3.75°. There are 15 levels vertically, 
with thickness from 50 m at the top to 500 m at the bottom; the total depth is 4500 m.

The horizontal and vertical momentum viscosity coefficients are Ah = 1.0 × 106 m2 s−1 and A  = 20 cm2 s−1, 

respectively. For the tracer equations, the eddy transport parameterization of Gent and McWilliams (1990) and 

isopycnal/diapycnal mixing is used, and no background horizontal diffusion is needed. We take KISO = KITD = 500 m2 s−1, 

where KISO is the isopycnal diffusion coefficient and KITD is the downgradient diffusivity of the isopycnal thickness. 

Diapycnal (vertical) diffusivity is the key factor in the experiments, and is varied from 0.1 to 5 cm2 s−1. 

b. Relaxation boundary conditions  

The first layer temperature and salinity are relaxed to the SST and SSS climatology (Levitus 1982) with a relaxation time 
of 30 days (see Fig. 3 ). Two group of experiments were implemented, one group without any wind stress and in the 
other the zonally averaged annual climatological surface wind stress of Hellerman and Rosenstein (1983) is used. In both 

groups of experiments, diapycnal diffusivities were 0.1, 0.25, 0.5, 1.0, 2.0, and 5.0 cm2 s−1 with all other parameters fixed. 

The 0.1 cm2 s−1 experiments were run for 12 000 years, the 5.0 cm2 s−1 experiments are run for 4000 yr, and all others 
8000 years. Equilibria were reached in each experiment(with the surface averaged upward heat flux oscillating less than 

about 0.05 W m−2). 

The experiments with and without wind stress are consistent with the scaling argument (Fig. 4 ). When the diapycnal 
diffusivity is very small, wind stress plays an increasingly important role in the thermohaline circulation since the penetration 
depth forced by the wind stress becomes greater than that caused by buoyancy effects. In contrast, when the diapycnal 

diffusivity is as large as 0.5 cm2 s−1, the wind stress makes almost no difference to the thermohaline circulation under the 
relaxation boundary conditions.

When Bryan (1987) examined the sensitivity of the thermohaline circulation to the vertical diffusivity, he derived the two-
thirds power law through scaling arguments, but only got an approximate one-third power law dependence in the numerical 
experiments. One reason is that the experiments were run only to 1200 years, which, for most of the experiments, is not 
long enough to reach equilibrium. In addition, the diapycnal mixing due to the action of the horizontal diffusivity on sloping 
isopycnals could also affect the thermohaline circulation. Wright and Stocker (1992) used a two-dimensional (vertical–
meridional) model to examine the sensitivity of the thermohaline circulation to the vertical diffusivity. For the North Atlantic 

Ocean, they found M  K1/3 with wind stress and M  K1/2 without wind stress. Their model applied to the Pacific and 

the Indian Oceans obtained M  K2/3. Marotzke (1997) restricted all vertical mixing to the boundaries and found M  

K2/3. Here we obtain the two-thirds power law dependence in a three-dimensional OGCM with uniform vertical mixing. 

The poleward heat transports in the above numerical experiments are plotted in Fig. 5 . Note that a least square method 
fitting of the numerical experiments gives

 

which is used in the scaling argument given in (10). We can see that an approximate two-thirds power law dependence is 
obtained, as given in the scaling argument, for the case without wind stress. For the case with wind stress, especially in the 
low diffusivity experiments, the Ekman cells, driven by the wind stress, can carry a portion of the total poleward heat flux. 
As a result, the experimental results deviate from the two-thirds power. Note, however, that the two-thirds power law in the 
poleward heat transport is not as close as in the meridional overturning.

One significant difference between the model formulation here and the earlier work (Bryan 1987; Wright and Stocker 
1992; Marotzke 1997) is the inclusion of the Gent and McWilliams (1990) isopycnal tracer mixing scheme, which eliminates 
the false diapycnal diffusivities caused by horizontal diffusion, especially in places where the slope of the isopycnals is large, 
like western boundary current and convection regions. We believe this explains why the meridional overturning so closely 
obeys the two-thirds power law dependence on the vertical diffusivity derived in the scaling analysis. 



c. Mixed boundary conditions  

Here we use a relaxation condition for temperature (same as in the upper panel of Fig. 3 ) and a virtual salt flux 
boundary condition for the salinity with a simple“linear”  profile of evaporation minus precipitation. No wind stress is applied. 
The freshwater forcing is defined for a basin confined between the equator  = 0 and a northern boundary  = n by the 

expression

 

then the maximum and minimum of e − p are W0 (at  = 0) and −2W0 (at  = n = 60°), respectively; therefore, we 

have

E = 1.5W0(49)
 

to represent the magnitude of the freshwater forcing, as defined in the scaling argument. This E will be used in the scaling 
estimate for comparison with the numerical experiments. When E > 0, the freshwater forcing opposes the thermal forcing; 
when E < 0, polar water is salty, deep water can form only close to the northern wall, and we obtain only the thermal mode. 

Three groups of hysteresis experiments are shown, with K = 0.3, 0.5, and 1.0 cm2 s−1. In order to find the bifurcation 
point of the freshwater forcing, we first run the model to an equilibrium with E  0. From there we increased E very 

slowly (0.1 or 0.05 m yr−1 per thousand years). Due to the slow rate of change of the forcing, the model remains in quasi 
equilibrium, and we can see the response of the model to the different freshwater forcings while the thermal forcing is 
basically fixed.

For each group of experiments, there is an upper limit of E beyond which the thermal mode does not exist. If we continue 
to increase the freshwater forcing past this point, the thermohaline circulation will stay in the haline mode. When we 
decrease E starting from a haline mode, the ocean stays in the mode until flushing, a phenomenon peculiar to the haline 
mode, occurs. In the numerical runs, the model cannot reach equilibrium in the haline mode. Over a long period, the polar 
deep ocean becomes warmer and saltier. With cold and fresh water overlying the warm and salty deep water in the polar 
basin, an instability sets in and very strong convection occurs, which releases the heat accumulated for hundreds or 
thousands of years (Marotzke 1990; Huang 1994). However, even with flushing we can see that under certain conditions, 
there are two modes possible:one thermal mode and one haline mode, which is consistent with the scaling and stability 
analysis.

In order to gain confidence in the quasi-equilibrium effects displayed in the above experiments, we conducted a series of 

experiments, where K = 0.5 cm2 s−1 and with different values of E. We start the first experiment from E = −0.15 m yr−1 
and an initially homogeneous state. After 4000 years of integration, we obtained a quasi equilibrium. We start the next 
experiment from this final state with another E and run it to another equilibrium. When the E is large enough, the upper limit 
of the freshwater forcing is passed and the ocean enters a haline mode. Since there is no steady equilibrium for a haline 
mode, we run the model for at least one flushing period; that is, we stop the experiment in the haline mode after at least one 
flushing event. Then we begin to decrease E to a specified value and continue our experiments. The results are plotted in 
Fig. 6  (the “ ”  points in the figure). We can see that they are pretty close to the quasi-equilibrium experiments and we 

obtained two modes for a value of E = 0.45 m yr−1. 

Through the above experiments, we find that for each K, there is an upper limit on E for the existence of a stable thermal 
mode below which two modes are possible, as predicted by the scaling analysis. We plot the different critical E versus 
diapycnal diffusivity in Fig. 7 . The numerical experiments are consistent with the scaling argument, though quantitatively 
there is a difference. The linear equation of state assumed in the scaling argument could cause such a distortion since the full 
state equation used in the numerical models is highly nonlinear (the thermal expansion coefficient α is a strong function of 
temperature). Convection plays an essential role in deep-water formation and the top-to-bottom density difference is 
important for convection. Thus, it is crucial to determine the role of temperature and salinity in the vertical density 
distribution in the convection region. For the thermal mode, convection occurs in the polar region where the temperature is 

low and, thus, α is small (about 1.0 × 10−4 K−1 at 4°C); since we use a universal value 2.0 × 10−4 K−1 in the scaling, the 
magnitude of the meridional overturning for the thermal mode, as well as the magnitude of the critical freshwater flux, are 
overestimated.

Weaver et al. (1993) investigated the effect of the freshwater fluxes on the behavior of the thermohaline circulation. They 



concluded that the freshwater forcing is the dominant factor in determining the model’s stability and internal variability. 
Increasing the relative importance of freshwater fluxes versus thermal forcing led to, in turn, one stable steady state of the 
model, two stable states, one stable, and one unstable equilibrium, or no stable steady states. If the freshwater forcing is 
sufficiently strong, self-sustained oscillations exist in the deep-water formation rate, which last thousands of years. We can 
find the transition from a multiequilibria region to a single haline mode region when we increase the magnitude of the 
freshwater forcing, and this is basically consistent with our scaling argument. However, in contrast to Weaver et al. (1993), 
the criteria to determine the behavior of the thermohaline circulation is a nondimensional number defined by (28), which 
includes not only the freshwater forcing versus thermal forcing, but also the effect of diapycnal diffusivity and the 
dimensions of the basin. For a given basin, the diapycnal diffusivity also determines the behavior of the thermohaline 
circulation. Weaver et al. (1993) investigated the use of different vertical diffusivities. In one experiment a value of K = 0.5 

cm2 s−1 was set throughout the water column, in another K was made to increases from 0.3 cm2 s−1 at the surface to 1.3 

cm2 s−1 at the bottom of the model ocean. No major differences were observed. However, from Cummins et al. (1990), we 
deduce that the value of diapycnal diffusivity in the thermocline is more important than that in the deep ocean. As the above 
two values of vertical diffusivity are very close, it is not surprising that Weaver et al. saw little difference, as far as the 
behavior of the thermohaline circulation is concerned, even though the T–S structure in the deep ocean could be very 
different. As suggested by the scaling analysis and the numerical experiments presented here, not only the freshwater 
forcing but also the diapycnal diffusivity play important roles in determining the stability and variability of the thermohaline 
circulation under mixed boundary conditions.

Rahmstorf (1995) investigated the sensitivity of the North Atlantic thermohaline circulation to the input of freshwater 
using a global ocean circulation model coupled to a simplified atmospheric model. In his experiments, moderate changes in 
freshwater input induced transitions between different equilibrium states, leading to substantial changes in regional climate. 
His experiments provide a map of the equilibrium states and bifurcation points of the Atlantic thermohaline circulation as a 
function of freshwater flux. The saddle-node bifurcation first described by Stommel (1961) is confirmed in the Rahmstorf 
(1995) experiments. Beyond the bifurcation point, the North Atlantic Deep Water (NADW) circulation cannot be sustained. 
Below the bifurcation point, at least two states are found: one is characterized by the absence of NADW, one with NADW. 
Qualitatively, the experiments in Rahmstorf (1995) are consistent with the scaling analysis in this article. In addition, given 
the sensitivity of thermohaline circulation to the diapycnal diffusivity deduced in the present scaling argument, it is highly 
likely that the bifurcation point in the coupled GCM will be sensitive to the diapycnal (vertical) diffusivity used.

Also, we can define the poleward heat transport as in (10) for the multiple solutions we obtained under the mixed 

boundary conditions. For the stable thermal mode, we choose C0 = 1/3 as given in (47); for the haline mode, however, C0 = 

1/3 seems to overestimate the poleward heat transport because, unlike the thermal mode in which the convected water can 

sink to the deep ocean (3000 or 4000 m) and the deep water is nearly homogeneous, the convection can only reach to 1000 
m in the haline mode. Thus, the low-latitude-formed “deep”  water is a thermocline water mass, and the temperature 

difference between these waters and the surface return flow is greatly reduced. For simplicity, we choose C0 = 1/6 in the 

haline mode for the scaling analysis.

For K = 0.5 cm2 s−1, the results are plotted in Fig. 8 . Similar to that under relaxation conditions, the results from 
numerical experiments are consistent with the scaling analysis. It is obvious that the stable thermal mode transports heat 
poleward far more efficiently than the haline mode.

4. Discussion and conclusions  

From the scaling argument, we conclude that the thermohaline circulation behaves differently under two types of upper 
boundary conditions. Under “relaxation”  boundary conditions, there is only one equilibrium. Under “mixed”  boundary 
conditions, multiple equilibria are possible. The states formed under mixed boundary conditions can be distinguished by a 

simple relation between the diapycnal diffusivity and the hydrologic forcing for a given thermal forcing. When K > CE3/2, 

there are two thermal modes and one haline mode. When K < CE3/2, there is only one haline mode. In addition, through 

stability analysis, we find that of the two thermal modes arising when K > CE3/2, only one is a stable solution. The haline 
mode solution is always stable.

In the numerical experiments, a two-thirds dependence of meridional overturning on diapycnal diffusivity is obtained 
under the relaxation boundary conditions. Under mixed boundary conditions, there is an upper limit on the freshwater 
forcing for a given diapycnal diffusivity beyond which only a haline mode is found. Below that limit we have two modes 
possible: one thermal mode and one haline mode. The dependence of the critical E on the diapycnal diffusivity also obeys a 
two-thirds power law given by the scaling argument. Similar scaling dependence is obtained for the poleward heat transport. 

The scaling analysis and the numerical experiments are consistent for both types of upper boundary conditions. Thus, it is 



reasonable to deduce the lowest order solution using the simple scaling relation. More importantly, in contrast to the box 
models, we have included the Coriolis parameter, diapycnal diffusivity, and freshwater forcing (for mixed boundary 
conditions only) in the scaling argument. Under the more physical “mixed boundary conditions,”  the sensitivity of the 
thermohaline circulation to two very uncertain variables, namely, diapycnal diffusivity and freshwater forcing, is defined by 
an algebraic relation. The importance of E has been previously discussed by Weaver et al. (1993) and others, while the 
significance of the magnitude of the diapycnal diffusivity to the stability of the thermohaline circulation has not received 
much attention yet.

Through scaling analysis and simple numerical experiments, the north–south temperature difference, the magnitude of the 
freshwater forcing, and the diapycnal diffusivity are found to be the most important factors in determining the stability and 
variability of the thermohaline circulation, of which the latter two are not well known so far. This requires us to develop a 
much better understanding of these two still challenging fields. The diapycnal (vertical) mixing processes have been under 
increased observational investigation recently. Ledwell et al. (1993) used a tracer release experiment to estimate a diapycnal 

diffusivity of 0.1–0.15 cm2 s−1 in the upper thermocline, which agrees with the small diffusivity estimates for internal wave 
processes (Gregg 1989; Polzin et al. 1995). In contrast, Toole et al. (1994) and Polzin et al. (1997) find that the diapycnal 
diffusivity in the abyss is far from uniform as traditionally assumed, instead, strong vertical mixing above rough topography 

can exceed 10 cm2 s−1, which is two orders of magnitude larger than the thermocline diffusivity found by Ledwell et al. 
Our analysis indicates that an improved knowledge of both diapycnal mixing and hydrologic forcing is necessary to 
understand the stability of the thermohaline circulation.
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APPENDIX  

5. Solution of the Equation |R4 − R3| = F 

 

Here we solve the above equation in the form of (32) and (33), respectively, to obtain the thermal mode(s) and haline 
mode solutions.



The quartic equation (32),

R4 − R3 + F = 0,(A1)

 

can be reduced to solving the following two quadratic equations:

 

where y is the arbitrary root of the following cubic equation:

 

It is readily shown that, when F < 27/256, there are two solutions to (A2)–(A3). When F > 27/256, no thermal mode is 
possible. Thus, the criteria F = 27/256 determines the existence of thermal modes. 

Similarly, for Eq. (33), and it can be derived that there is always one and only one haline mode solution given any external 
conditions.

Tables  

Table 1. Comparison of the North Atlantic and North Pacific Oceans.
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Fig. 1. Critical curve Fc = 27/256 with the parameters as α = 2.0 × 10−4 K−1, β = 8.0 × 10−4 psu−1, ΔT = 20 K, S = 35 psu, f = 1.0 × 

10−4 s−1, L = 6.0 × 106 m, and g = 9.8 m2 s−1. In the region below the critical curve, three modes are possible: two thermal modes 
and one haline mode, while in the region above it, only one haline mode can exist.



 
Click on thumbnail for full-sized image. 

Fig. 2. Solutions of meridional overturning rate under mixed boundary conditions for (a) fixed K = 1.0 cm2 s−1 with changing E 

and (b) fixed E = 1 m yr−1 with changing K. The upper solid line corresponds to the stable thermal mode, while the lower solid line 

is the solution for the haline mode, and the dotted line represents the result for the unstable thermal mode. For K = 1 cm2 s−1, 

there is a bifurcation point at about E = 1 m yr−1, beyond which only one haline mode is possible. The parameters are defined in 
Fig. 1 . 
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Fig. 3. The prescribed SST and SSS fields for the experiments under relaxation boundary conditions. Here we have 
approximately ΔT = 20 K and ΔS = 2 psu. 
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Fig. 4. Meridional overturning rate from scaling analysis and numerical experiments under relaxation boundary conditions. The 
“×”  and “ ”  represent the numerical results without and with wind stress, respectively. The solid line represents the scaling 
argument results, where the meridional overturning rate is proportional to the two-thirds power law of diapycnal diffusivity, with 
ΔS = 2 psu and other parameters the same as in Fig. 1 . 
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Fig. 5. Poleward heat transport from scaling analysis and numerical experiments under relaxation boundary conditions. The “×”  
and“ ”  represent the numerical results without and with wind stress, respectively. The solid line represents the scaling argument 
results, where the poleward heat transport is proportional to the two-thirds power law of diapycnal diffusivity and with 
parameters the same as in Fig. 4 . 
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Fig. 6. Meridional overturning rate from scaling analysis and numerical experiments under mixed boundary conditions with K = 

0.5 cm2 s−1. Here the thick lines represents the results from scaling analysis, the line with arrows is the response of the numerical 
model to the very slowly changing freshwater forcing, and the circles represent the single numerical experiments for different E 
forcing. Arrow directions represent the freshwater change with time in the process of integration. No wind stress is applied in 
this experiment.
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Fig. 7. Critical freshwater from scaling analysis and numerical experiments under mixed boundary conditions. The solid line is 
for scaling results and the circles are from the hysteresis numerical experiments.
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Fig. 8. Poleward heat transport from scaling analysis and numerical experiments under mixed boundary conditions. The solid 
lines are for scaling results (heavy line for the stable thermal mode and thin line for the haline mode), “ ”  are from the numerical 
experiments in the thermal mode, and “×”  are for numerical experiments in the haline mode. For all the numerical experiments and 

the scaling argument, K = 0.5 cm2 s−1. 
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