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ABSTRACT

The pattern of disturbance left by internal wave groups traveling in a uniformly 
stratified ocean is examined. Particular attention is given to the temporal and 
spatial reoccurrence of extreme values of some parameter Q, such as the 
Richardson number or the wave slope, which may determine, for example, the 
onset of wave breaking in the group or the wave group’s refraction of smaller-
scale waves. Extreme values reoccur with a period T, equal to the period of the 
internal waves, and are sustained along a direction that depends on the wave 
frequency, but that, over much of the frequency range from f  (the Coriolis 
frequency) to N (the constant buoyancy frequency) of the internal waves, is 
nearly horizontal. The size of regions in which extreme values are achieved 
depends on the aspect ratio of the region of a wave group, termed the “group 
breaking region,”  V, within which values of Q exceed some threshold Qc. 

Conditions in which regions of past exceedence of Qc (“scars”  left by waves in 

passing wave groups) overlap, so as to be always observed by vertical or 
horizontal profile measurements, depends on the ratio τ/T, where τ is the time 
for which Q > Qc as a wave passes through V. Near-inertial and semidiurnal 

tidal internal waves are more likely to leave overlapping scars and may lead to 
more general mixing of the ocean than, for example, internal wave groups 
generated by tidal flow over small horizontal scale (1–3 km) topography. It is 
suggested that wave groups may be evident, and consequently their effects in 
promoting turbulence may be largest, near the site of internal wave generation, 
just where recent observations suggest is the region of enhanced turbulent 
dissipation in the abyssal ocean.

1. Introduction  

One of the most powerful, and yet elementary, concepts basic to the understanding of the physical properties of waves is 
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that of wave energy traveling in groups of waves at the group velocity. It provides a quite accurate means of predicting the 
time interval between the breaking of surface gravity waves in a local region of the sea surface in deep water (Farmer and 
Vagel 1988) or, more generally, the interval between the reoccurance of extremes, such as high waves, large accelerations, 
or large wave-induced particle speeds, as waves advance in a wave group. The interval is approximately 2T, where T is the 

wave period (Donelan et al. 1972). The explanation is simple: from the linear form of the dispersion relation, σ2 = gk, where 
σ is the wave frequency and k the wavenumber, it follows that the phase speed of the waves, c = σ/k, is twice the group 
speed, cg = σ/ k. The time needed for a wave to advance by one wavelength, λ, through the advancing group to reach the 

position in the group at which its predecessor began to break (and where it too will reach its breaking point) is λ/(c − cg) or 

2λ/T, which, since c = λ/T, is equal to 2T. For simplicity, it is assumed that the group is steady, with breaking setting in at 
the same position in the group as it advances, and that the phase speed of waves does not change as the waves pass through 
the group. The associated assumption that the linear dispersion relation is valid is an approximation, but one which is 
accurate to about 10% (see Longuet-Higgins 1975). The location of the breaking, or extreme value, moves forward with a 
wave crest at the phase speed that, for surface gravity waves, happens to be in the same direction as the group velocity. The 
position at which one wave eventually ceases to break will be within the area in which its successor breaks if the duration of 
breaking τ, the time for which a wave continues to break while advancing at its phase speed, is greater than the wave period 
T. The condition, τ > T, is also necessary for the foam patch of one wave to overlap in space with that of its neighboring 
breaking wave, but it is also necessary that the foam persists for at least a time 2T − τ if foam left by one wave is to last until 
its successor begins to break, thus forming a continuous foam patch. Some of these ideas are shown graphically in Fig. 1 

. They are simplistic, supposing that a wave group is steady, which has implications for its energy supply and loss, but 
provide useful results or predictions that can be compared with observations.

Relations between the occurrence of breaking waves in photographs of the sea surface and of measurements of waves 
breaking at fixed positions can also be derived (Thorpe and Humphries 1980). The number of waves measured as a wave 
group passes a fixed position is twice that actually in the group (e.g., the number that could be counted in a photograph); if 
there are n waves in the group, the time to pass is nλ/cg = 2nλ/c = 2nT, but each wave takes a time T, so the number of 

waves measured is 2n. [In water of finite depth h, where the dispersion relation becomes σ2 = gk tanhkh and hence ½ < cg/c 

< 1, the time taken for n waves to pass is nλ/cg = nT/(cg/c), which lies between nT and 2nT; the number of waves measured 

at a fixed point is between n and 2n.] The presence of wave groups has therefore some effect on the interpretation of 
properties of wave amplitude recorded in different ways (e.g., by stationary or rapidly moving sensors to which the 
photograph more closely corresponds) and may also be important in the assessment of the impact (i.e., number of high 
waves and forces) of waves on fixed structures.

Given the power of these ideas, it is remarkable that relatively little attention has been given to the presence and 
consequence of internal gravity wave groups in the ocean; there appears to be no study of their properties that matches that 
of surface waves (e.g., see Trulsen 1989; Banner and Tian, manuscript submitted to J. Fluid Mech. and references therein). 
It is particularly surprising because of the association, noted above, between wave groups and wave breaking (which might, 
for example, dictate the optimum strategy to measure the waves and their breaking) and because, following Munk’s (1966) 
paper on diapycnal diffusion, a large part of the motivation for the study of internal waves has been to assess their role in 
ocean mixing. Knowledge of the statistics of extreme events in the internal wave field is sparce in spite of their importance in 
estimating dispersion or even large transient currents, which might, for example, be applicable to predicting forces on 
offshore structures. Such quantities as mean-square isopycnal slope and mean-square shear can be derived from the internal 
wave spectrum (Garrett and Munk 1972). Richardson number statistics may also be derived (Desaubies and Smith 1982), 
although consequent diapycnal diffusion is very uncertain. Direct recordings of currents and temperature fluctuations have 
been collected for many years and measurements of the Richardson number are now becoming more frequent (e.g., see 
Simpson 1972; Evans 1982; Eriksen 1978; Padman and Jones 1985; Kunze et al. 1990), but a study of the spatial 
distribution, movement, and reoccurence of parameters that might characterize the onset of mixing within the field of 
internal waves, and so elucidate its physical origin, is still lacking.

The slope of the frequency spectrum of internal waves is close to −2 (Garrett and Munk 1975; Munk 1981), while that of 
surface waves beyond the spectral peak is about −4 to −5 (Phillips 1966). Dominant waves in the internal wave spectrum 
are less pronounced than are surface waves except perhaps at tidal or inertial frequencies, and groups are less readily 
detected. Internal wave “swell”  from distant storms has not been identified (but see later reference in this section to the 
radiation of baroclinic tides), and the group structure commonly seen in surface wave swell is rarely reported in 
observations of internal waves of moderate frequency. Early studies of internal waves did, however, point to the presence of 
groups (e.g., Sabinin 1973; Brekhovskikh et al. 1975; Käse and Siedler 1980), but mainly those of the first mode traveling 
horizontally on the seasonal thermocline where their properties are akin to those of surface waves, the vector phase speed c 
and group velocity cg, being parallel. Some of the observed internal waves groups were possibly soliton packets associated 

with a propagating change in thermocline depth (e.g., see Apel et al. 1985; Fedorov and Ginsberg 1986;Ostrovski and 
Stepanyants 1989) and, hence, are more akin to undular bores or hydraulic jumps described by the surface gravity wave 
shallow water theory than to surface wave groups in deep water.



In uniformly stratified water the phase velocity c and group velocity cg of internal waves are normal to one another and, 

as described in section 2, the simple ideas of group behavior derived from surface wave groups do not carry over. Inertial 
gravity wave groups propagate with nonzero vertical components of group velocity. Evidence of upward phase propagation 
and downward group propagation, indicating a surface source for the inertial waves, comes from velocity profilers (Leaman 
and Sanford 1975) and Doppler sonar studies (Pinkel 1983). The observations of phase propagation are consistent with the 
predicted behavior of a group of inertial waves traveling downward. Numerous other observations of near-inertial wave 
groups have been reported, for example, by Pollard and Millard (1970), Mied et al. (1987), and Smyth et al. (1996). 

These observations of near-inertial waves suggest that the groups contain some 3–7 waves. In Mowbray and Rarity’s 
(1967) laboratory experiments demonstrating the propagation of internal waves along group characteristics from an 
oscillating cylinder, the width of the paths or “rays”  is only about twice the wavelength, that is, two waves in the wave 
group; short groups are physically possible. Observational evidence that internal waves in the deep ocean generally propagate 
along raylike paths at an angle to the horizontal, like those in the laboratory experiments, is however meager. The clearest 
evidence comes from observations of internal tidal waves generated by the interaction of the baroclinic tides with the 
topography in local regions at, or near, the shelf break in the Bay of Biscay. The waves have been traced along ray 
characteristics from the shelf break to the bottom of the bay at depths of 3.8 km (Pingree and New 1989; see also New 
1988). There is even evidence of their reflection at the seabed and return, again following ray characteristics, to the upper 
ocean (New and Pingree 1990, 1992). Further evidence of internal tidal ray propagation is discussed by Levine et al. (1983), 
and recent interest in the subject has been aroused by observations by Dushaw et al. (1995), showing that internal tidal 
waves propagate some 2000 km from a source in the Hawaiian Islands (see also Ray and Mitchum 1996). 

Observations by Marmorino (1987) and Marmorino et al. (1987), using towed thermistor arrays, identify the presence of 
groups of 4–10 small-scale internal waves, sometimes with vertical scales less than a wavelength in extent, within the 
seasonal thermocline. Their measurements also provided evidence for the existence of the groups of near-inertial waves, 
within which are the mixing patches with vertical scale of order 10 m, reported by Gregg et al. (1986). Gregg et al. also 

identify puffs, short-lived events (<N−1 in lifetime and with horizontal scales <a few 100 m) thought to be associated with 
internal gravity waves. The patches have horizontal scales of several kilometers and are often tilted to the horizontal, with 
temperature changing along their length and with evident signs of upward vertical migration in time. Pinkel et al. (1991) 
describe the analysis of 10 000 CTD profiles made from FLIP over a period of 20 days in PATCHEX and, in particular, 
examine the properties of the strain field. The 20-m strain field is dominated by inertial and M2 tidal motions. In the 2-m 

strain field “lenses”  of low density are found that sometimes persist for up to 8 h and propagate vertically with respect to the 
density field over tens of meters.

Groups of short internal waves at depths of 200–350 m in the ocean thermocline have recently been observed from FLIP 
in water some 1 km deep by Alford and Pinkel (manuscript submitted to J. Geophys. Res.). Statically unstable overturns 
occur preferentially within the wave groups, particularly those having downward group velocity, suggesting a surface 
source.

One condition that may favor the occurrence of wave groups is that the generation processes are intermittent, or at least 
unsteady. This will generally be the case for internal waves (Thorpe 1974). Even the rhythmic generation by topography–
barotropic tide interaction is subject to spring–neap, if not diurnal, variations. A further contributing property is that regular 
internal wave trains become unstable (Borisenko et al. 1976; Thorpe 1977). The photograph shown by Benjamin (1967) is a 
graphic illustration of the breakdown of a regular surface gravity wave train into irregular short wave groups. A further 
contributor is that internal waves strongly interact with each other (Phillips 1966; Martin et al. 1972). It is possible that this 
property, occurring at second order between triads of waves, has a greater effect on the development and stability of 
internal wave groups than it does for surface waves, where four waves are generally needed for interaction (Phillips 1960; 
Hasselmann 1962;Longuet-Higgins 1962). Other factors, such as parametric instability, critical layers, wave caustics, and 
wave–wave interaction, may also contribute to the occurrence of groups, as well as to the propagation and breaking of wave 
packets (Henyey and Pomphrey 1983;Broutman and Grimshaw 1988; Winters and D’Asaro 1992). Perhaps the relatively 
sparse attention given to internal wave groups is due to a supposition that, unlike surface wave groups, which may be 
continually forced by the wind (although a robust theoretical discussion of wave group generation by wind is yet to be 
developed), internal wave groups will soon interact, change their form, or disintegrate as they leave and propagate away 
from their localized energy and momentum sources. It is, however, in regions close to viable sources of internal waves that 
enhanced diapycnal mixing occurs in the deep ocean (see section 4) and, if this is to be understood, the consequences of 
wave groups should be examined more closely.

Knowledge of the conclusions that may be drawn from the properties of groups of surface waves raise a number of 
questions relating to internal waves, for example, how do the zones of extreme values associated with the waves propagate, 
what is their horizontal and vertical distribution, how are their temporal and spatial properties related, and are they more 
likely to be observed in measurements at fixed locations than in towed measurements? In the analysis (section 2) and 
discussion (section 3 and 4) that follows, we suppose that internal wave groups can exist in the ocean and examine the 
possible consequences.



2. Groups of internal inertial gravity waves  

a. Propagation  

It is supposed that there are groups of plane, or two-dimensional long-crested, internal inertial gravity waves in the ocean. 
We shall suppose that wave groups move as discrete packets or rays of finite length through the water rather than assuming 
that they are formed simply by the superposition of waves of slightly different frequencies or the modulation of long wave 
trains. The structure assumed for a group is sketched in Fig. 2 . It is elliptical with axes aligned in the directions of group 
and phase velocity. We consider the associated movement and reoccurrence of the extreme quantities or parameters, which 
may, for example, be large density purturbations, large wave slopes, high shears, large strains, or low Richardson numbers, 
as the wave groups propagate. The generic term “breaking”  will be used to describe the condition in which a prescribed 
quantity, Q, exceeds some specified value within a wave. The group breaking volume will be that region of fluid in a group 
in which Q exceeds the specified value Qc whenever a wave is present within that region. As discussed in section 3b, this 

will not be synonymous with the region in which the wave is generating, or losing energy to turbulence even, for example, 
when Qc is the critical value of the Richardson number, the value at which a steady laminar stratified shear flow becomes 

unstable, or even when the specified value is that at which turbulence sets in within the wave.

For simplicity, the buoyancy frequency is supposed to be a constant N. The Coriolis frequency is f, and an exact solution 
for the waves can be found with dispersion relation

σ2 = (N2k2 + f2m2)/(k2 + m2),(1)

 

where (k, m) is the wavenumber vector of the wave in the x, z coordinates and σ is the wave frequency (Gill 1982, 
section 8.4). If

c = {σ/K}[sinθ, −cosθ](2) 

represents the phase vector of the waves, then the group velocity cg = ( σ/ k, σ/ m) is found to be

cg = {(N2 − f2) sinθ cosθ/Kσ}[cosθ, sinθ].(3)

 

Here K = [k2 + m2]1/2 is the wavenumber and λ = 2π/K is the wavelength. If 0 < θ < π/2, this solution corresponds to an 
upward propagating group of waves traveling at angle θ to the horizontal with k = K sinθ, m = K cosθ and might, for 
example, represent internal waves generated by flow over bottom topography (see Bell 1975). The group velocity is parallel 
to the wave crests and therefore normal to the direction of phase advance, the latter at an angle (π/2 − θ) below the 
horizontal; the vector product, c · cg, is zero. Since (1) and the k–m and K–θ relations give

σ2 = N2 sin2θ + f2 cos2θ,(4)

 

near-inertial waves with σ near f  have near-horizontal group velocity, with θ near zero. If χ = 1 + f2/(N2 tan2θ), then σ2 = 

χN2 sin2θ. 

Since (1) is exact, the phase speed does not change with wave amplitude and, as for surface gravity waves in section 1, it 
is again assumed that the wave phase speed is constant and, in particular, does not change as the waves pass through a 
group.

b. Groups passing fixed points  

It is instructive to begin by considering the relation between the number, n, of waves in a wave group and the number, nr, 

which would be recorded as the group passes a fixed point positioned in the ray path along which the group is propagating. 
If the width of the group is W (see Fig. 2 ), then n  W/λ. The time taken for the group to pass the fixed point is L/cg, 

where L is the length of the group in the direction of its group velocity cg, so the number of waves recorded as the group 

passes is nr  L/cgT, where T is the wave period. The ratio nr/n  (L/W)(c/cg) since c = λ/T. Substituting from (1) and (3), 

nr/n  (L/W)χ tanθ/(1 − f2/N2), or (L/W)tanθ if f   N. The number of waves recorded depends on the aspect ratio L/W of 

the group and the propagation direction θ, or, by (4), the wave frequency σ. In general, nr will not be equal to n. 



c. Propagation and repetition of extreme values  

Some of the breaking properties of internal wave groups have already been examined (Thorpe 1988). The path of the 
wave group is prescribed by the group velocity and defines the movement of the region in which the waves are present. 
Within this region is the group breaking volume V in which “breaking”  occurs (Fig. 2 ); V is the volume within which Q 
> Qc when waves are present, and the surface of V is where Q = Qc. Breaking (Q > Qc) occurs along the length of lines of 

constant phase within V (see Fig. 3  and later discussion). For sake of argument, we suppose that the x–z section of V is 
elliptical, with major and minor semiaxes of length A and B orientated in the directions of cg and c, respectively, as shown in 

Fig. 3b . (This ad hoc assumption is discussed in section 3c). Individual waves break as they enter the volume V, which 
itself migrates with the wave group. Since the wave group, and therefore V, moves at right angles to the wave crests, waves 
enter V, and commence breaking, at the wave frequency σ. Unlike surface gravity waves in deep water, the interval between 
the onset of breaking of successive waves is therefore equal to the wave period T. 

The vector cb, which defines the motion of the center of the zone of breaking in individual waves, for example, position X 

in Fig. 2 , is determined by the advance of the lines of constant wave phase and by the movement along the wave crest 
of the point at which breaking occurs, the latter determined by the wave group; X moves with the lines of constant phase at 
velocity c and along the lines of constant phase at velocity cg, hence cb = c + cg. [These results are the particular case of a 

more general theory in which the parameter c · cg/c2 determines the breaking interval and the vector cb; Thorpe (1988).] 

The inclination of the vector cb to the horizontal is

 = −tan−1[f2 cotθ/N2].(5)

 

When f   N, as is usually the case in the upper ocean,  is very small unless σ is very close to f, that is, when the waves 

are near inertial. For example, if σ = f(1 + δ), where δ  1, and if f   N, then tan  = −(f/N)/(21/2δ1/2), which is of order 

unity if δ  (f/N)2/2. Unless the wave frequency is very close to inertial, the center of regions of wave breaking will 
therefore follow paths that are very close to horizontal, even though the wave group and individual waves move vertically 
through the ocean.

Since the waves grow as they enter a group, the location within a wave of the position at which Q = Qc will not remain 

exactly at constant phase but may move ahead of the constant phase lines as the wave amplitude grows. The location in a 
wave at which Q falls below Qc may correspondingly fall behind the lines of constant phase. The movement of X may 

therefore differ slightly from the lines of constant phase if, for example, the properties of Q within individual waves are not 
symmetrical about, say, the wave crest. This effect however adds a complexity to the analysis, which cannot be resolved; 
the volume of fluid in which breaking (Q > Qc) occurs at any instant will depend on the distribution of wave amplitudes in 

space and time within the wave group, and this is presently unknown. It is, moreover, an effect that will be small provided 
the location of Qc follows close to a line of constant phase. For simplicity, we shall therefore assume that the region within 

an individual wave where breaking occurs is narrow in phase or that the width in the direction of the phase velocity is much 
less than wavelength, and is close to a line of constant phase. The assumption is equivalent to that of redefining the breaking 
region in an individual wave at any time as the line of constant phase in V (where Q > Qc), which advances at the wave 

phase speed from the point at which Q first equals Qc as the wave enters the group breaking volume, as sketched in Fig. 3 

. If, for example, the parameter Q is wave amplitude a, that is, the vertical displacement of isopycnals at the wave crests 
from their mean position, the breaking region will be that swept out by the wave crests when their amplitude exceeds the 
given critical value.

If τ is the duration of breaking or the time for which an individual wave continues to break, then the length of the minor 
axis is

2B = cτ(6) 

since τ is just the time that it takes for an individual wave to pass through the breaking region at phase speed c. 

Figure 4  sketches the “scars”  left by “breaking regions”  as individual waves pass through a wave group “breaking 
volume”  that has moved vertically and horizontally through the x–z plane to its present position marked by dashed lines and 
marked “V.”  The time between breaking is T, and the group breaking volume V moves with the group, so the distance 
between sites of the onset of breaking in successive waves, AC in Fig. 4 , is cgT. The vertical separation between A and 

B is therefore cgT sinθ, and (using the sine rule in triangle ACD in Fig. 4 ), the vertical distance of C above AB (or the 



length CD) is dz, where dz = cgT sin(θ −  )/cos . Using (3) and (5), this can be written

dz = λ(1 − f2/N2) sinθ,(7)

 

where λ = 2π/K is the wavelength. Similarly, the horizontal distance between the breaking regions at A and C is AC cosθ, 
or

dx = λ(1 − f2/N2) cos2θ/χ sinθ.(8)

 

To a first approximation the length of the loci of the centers of the breaking regions (i.e., X in Fig. 2 ) is determined by 

the duration of breaking τ and by the speed of the breaking zone cb. The x component of cb is N2 sinθ/Kσ, so the projection 

onto the horizontal of the line AB marking a breaking zone in Fig. 4  is l′x = N2τ sinθ/Kσ, which can be written

l′x = λ(τ/T)/(χ sinθ).(9)

 

However, as can be seen in Fig. 4 , the movement of the waves through the elliptical volume V describe volumes in 
space of rather greater horizontal extent than the line AB. The total horizontal extent lx of the breaking regions is found by 

calculating the difference between the maximum and minimum values of the x coordinates of points of intersection of a line, 
which is at angle θ to the x axis that advances at speed c and represents a wave phase line within the ellipse V, itself moving 
at velocity cg;

lx = l′x[1 + (A/B)2 cos2θ sin2θχ2]1/2.(10)

 

Similarly, the vertical extent of the breaking region caused by individual breaking waves is

lz = λ(τ/T) sinθ[(A/B)2 + (χ − 1)2/(χ2 cos2θ)]1/2,(11)

 

using (6). 

The scars left by the breaking regions of successive waves overlap in the horizontal if lx > dx, that is, if

 

In this case a vertical profile with a microstructure probe would sample at least one region in which breaking had 
occurred or is still present. Similarly, if breaking regions are to overlap in the vertical, as illustrated in Fig. 4b , so that a 
horizontal tow would sample at least one region in which breaking had occurred (no gaps as illustrated in Fig. 4a ), then 
lz > dz, or

 

Finally, for scars to overlap with one another as illustrated in Fig. 4b , the maximum extent of a scar in the direction of 
cg, 2A, must exceed AC; that is, 2A > cgT. This can be written A/B > cgT/cτ or

τ/T > (cg/c)/(A/B).(14)
 

d. Groups passing a fixed vertical or horizontal sampling arrays  

It is of interest to establish what could be detected as a group of internal waves propagates past a fixed vertical 
instrumented mooring or a position at which, for example, repeated CTD or microstructure profiles are being taken. Figure 
5a  shows the elliptical breaking region, V, at a time t being carried with velocity cg past a fixed vertical line at constant 

horizontal position, x = 0 (e.g., the horizontal location of the measuring array). The major axis of the ellipse passes through a 



fixed point, z0, on the vertical line, which does not propagate vertically. Figure 5b  shows the breaking volume and the 

breaking waves in z–t space. It is easily shown that the shape of the breaking region here is again elliptical. The vertical 
dimension of the breaking region at time t is the length of the intersection of V with the z axis shown in Fig. 5a . The 
constant phase lines of breaking waves propagate downward at speed cz = −σ/m, or cz = −σ/(K cosθ). [This is not the 

vertical component of the phase speed c, given in (2); lines of constant phase are given by kx + mz − σt = const and 
intersect x = 0 at z = (σ/m)t + const, where m = −K cosθ.] Lines of constant phase intersect the t axis (z = 0) at the wave 
period T. If successive waves break at a fixed depth z, the interval between breaking is also T. The breaking region, V, in 

Fig. 5a  moves past the vertical line at speed cgx = (N2 − f2)cos2θ sinθ/Kσ, and its horizontal width is lx, so the time taken 

to pass is Tz = lx/cgx or

 

The maximum z at which V and the vertical line, x = 0, intersect is at z − z0 = B/cosθ, so the vertical scale of the breaking 

region is Lz = 2B/cosθ, = cτ/cosθ using (6), or

Lz = λ(τ/T)/cosθ,(16)
 

since c = λ/T. Simultaneous breaking of waves may occur at two levels if the duration of breaking (the period for which 
the waves shown in Fig. 5b  “break,”  exceeds T). The maximum duration is given by Lz divided by absolute value of the 

speed of the constant phase lines, cz; that is, cτ/cosθ/(K cosθ/σ) = τ. A necessary condition for breaking to occur 

simultaneously at two levels is τ > T. The number of waves that will be observed to break as the group passes is 
approximately Tz/T + 1. 

The corresponding times and lengths as V is carried upward through a horizontal line or array of instruments are

Tx = χτ[1 + A2 tan2θ/B2]1/2/(1 − f2/N2)(17)

 

and

Lx = λ(τ/T)/sinθ.(18)
 

3. Discussion  

a. Recurrence of extreme events  

The discussion in section 2 has implications for the measurement of extreme events in internal waves. The number of 
waves observed as a group passes a fixed measurement point. Compared to the number in a group, nr/n is approximately 

equal to (L/W)(c/cg) (section 2b) and therefore depends on the group aspect ratio L/W. The conditions for sampling breaking 

in vertical profiles (12), horizontal profiles (13), or for groups to produce a continuous scar zone in which breaking has 
occurred (14) all depend on the generally unknown aspect ratio A/B of the group breaking volume, V (or on its eccentricity, 

e = [1 − B2/A2)1/2]. 

In the Mowbray and Rarity (1967) laboratory experiments, an oscillating cylinder produced groups containing some two 
waves. With this in mind, it is plausible to think of a wave group having an extent in direction cg equal to the product of cg 

and the period during which waves in the group are generated Tg, and a dimension in the c direction nλ, where n is the 

number of waves in the group produced by the wave generator. If we now suppose that the areas of the group and the 
group breaking volume V have similar aspect ratios, then L/W  A/B = Tgcg/nλ = (ng/n)(cg/c), where ng = Tg/T is the 

number of wave periods for which the forcing of the waves in the group continues. From section 2b it follows that nr = ng; 

the number of waves recorded as the group passes a fixed point is equal to the number generated in a fixed location. In the 
laboratory experiments, ng was usually long to achieve near-steady conditions, but in the ocean forcing is generally transient. 

Tidal forcing varies over the spring–neap tides or with a timescale of some 14 days so that ng may be of order 20. With 



localized forcing (e.g., at the shelf break or at an isolated ridge), n will be much smaller, of order 1–3 [e.g., see Pingree and 

New’s (1989) observations]. Now cg/c = {[1 − (f/σ)2][(N/σ)2 − 1]}1/2 tends to zero as σ tends to f. For the M2 tide (σ = 

1.4 × 10−4 s−1) at 45° latitude (f  = 1.03 × 10−4 s−1) and when N = 10−3 s−1, we find θ is equal to 5.5° and cg/c  4.8, so 

A/B may be of order 40. For near-inertial waves the aspect ratio is even less certain. Inertial wave forcing by storms 
(Pollard 1970) may continue for say, 0.5–3 days, or 1–5 wave periods, and, given that the number of waves observed is 3–

7, this suggests that n/ng may be of order unity. If 1.001f  < σ < 1.01f  at 45° latitude and N = 10−3 s−1, then 0.26° < θ < 

0.84° and 1.34 > cg/c > 0.43. It follows that, unless σ is very close to f, cg/c is of order unity, and consequently A/B may be 

of order unity. Observational evidence, however, suggests that the horizontal extent (proportional to A since θ  1) of 
inertial wave packets may be tens of kilometers in extent while their vertical (proportional to B) extent is of order 1 km or 
less (Marmorino et al. 1987), so A/B  10–20. The assumption of a localized source, as in the Mowbray and Rarity 
experiments, is most probably in error; storms move during inertial waves generation, leaving a wake of inertial waves. A 
third class of waves in which a group structure may be apparent are those generated as internal lee waves by oscillating tidal 
flow over small horizontal scale (1–3 km) topography (Bell 1975; Thorpe 1996). For example, internal waves may be 
generated during part of a tidal cycle when the flow  along a continental slope with inclination α to the horizontal lies in the 
range

 

where l is the wavenumber of the topographic roughness and β is the angle between the topography and the downslope 
direction. Typically, 2–5 internal gravity waves may be generated over the period of a few hours when (19) is satisfied, with 
A/B  1 and θ in the range 5°–20°. 

Table 1  shows values of θ, χ, A/B, and  for these inertial, tidal, and lee waves, as well as the ratio nr/n, the number 

of waves recorded as a group passes a fixed observation point divided by the number of waves in the group, and the values 
that must be exceeded by τ/T for (12), (13), and (14) to be satisfied. The inclination of the breaking vector to the horizontal 
for near-inertial waves is large and sensitive to the precise value of σ/f. Far more waves than exist in a group will be 
recorded at a fixed point if inertial or tidal waves propagate past it, but the number of waves n in lee wave groups may be 
undersampled by point measurements. Extreme values persisting in inertial or tidal waves for times >0.15T will result in 
observations of simultaneous layers overlying one another in the vertical (12), at least one being encountered in horizontal 
sections through the group (13), and regions in which given values has been exceeded as a group passes are generally 
connected to each other (14), favoring rather uniform mixing if Qc is the breaking condition. Lee wave groups require 

extrema to persist for more than a wave period (i.e., τ > T) for detection always to be found in vertical (12) or horizontal 
(13) sections, while τ must be significantly greater than T if fluid regions in which extrema have been reached are to be 
connected to one another. Here turbulence, if it occurs, is more patchy, with isolated layers.

b. Wave breaking  

Here Qc has been defined as a value of some parameter that is exceeded within the group breaking volume V. It might, for 

example, be some value of shear. Groups of larger-scale internal waves moving through a background or ambient field of 
shorter waves may enhance the local shear, or modify the density field, in such a way that the shorter waves themselves 
break (Thorpe 1989). The zones and scars left by such breaking are identical to those within which Q exceeds Qc, provided 

that the small-scale wave spectrum is initially isotropic (i.e., before the arrival of the larger-scale wave group) and not 
patchy on the scale of the larger waves.

Even when Qc characterizes the condition for the onset of instability in an internal wave, care is needed in identifying the 

regions in which Qc is exceeded with those in which turbulence may be found. Turbulence does not set in immediately. 

Small disturbances first undergo amplification before overturning, and in an unsteady flow turbulence may well set in when 
the threshold parameter is significantly greater than critical. In a steady flow turbulence resulting from Kelvin–Helmholtz 

instability persists for a time from its generation until its decay (in a turbulent–laminar transition) of about 24N−1, where N is 
the local buoyancy frquency, or about 4 buoyancy periods (Thorpe 1973). This is longer than the duration of “puffs”  
estimated by Gregg et al. (1986), suggesting that their source may not be Kelvin–Helmholtz instability but perhaps 
convective overturn (more likely in waves with frequency σ well above f; Thorpe 1999, manuscript submitted to J. Phys. 
Oceanogr.). The region, V, defined as the breaking region may identify the location and time in which turbulence will set in, 
but turbulence may persist after V has passed, just as foam or turbulence may persist after the passage of a breaking wave 
crest over the sea surface. Turbulence may be maintained in a local region by successive waves of a group breaking there 
provided the turbulence generated by the first continues until the second arrives. If Kelvin–Helmholtz instability is the source, 



the time interval, 24N−1, and the period of reoccurrence of breaking, T, implies that internal waves with σ/N < 0.25 (e.g., θ 
< 13.3°, if f/N = 0.1) will not generate turbulence that is sustained from one wave until the next unless a further source of 
energy is available, for example, shorter waves which surrender their energy on meeting the turbulent patch. It should not, 
however, be assumed that turbulence generated by the breaking of internal waves will be limited in scale to one wave; 
although the breaking of surface waves is usually associated with instability and foam occurring at or near the crest of one 
wave, it is conceivable (though unlikely; Thorpe 1999, manuscript submitted to J. Phys. Oceanogr.) that several waves may 
take part “collectively”  in internal wave breaking. The “scars”  left by single waves will then underestimate the zone of 
turbulence.

c. The shape of the breaking region V  

It has been assumed that V is elliptical with axes parallel to cg and c. This is a special case since the central point of 

individulal waves crossing V move along the semimajor axis. This is not so for ellipses with other orientations. If, for 
example, the axes are horizontal, the central point of individual waves crossing V move along a trajectory through the ellipse 
(i.e., relative to the ellipse, which itself moves with speed cg) between the points at which waves enter and leave it. This is a 

straight line joining points at which lines of slope θ touch the ellipse. Their inclination to the horizontal is γ  tan−1

[(−B2/A2) cotθ]. The new inclination of the breaking vector cb to the horizontal, 1, now depends on the aspect ratio of V 

and is given by tan 1 = [(cg/c) sinθ sin(θ + γ) − sinγ]/[(cg/c) cosθ sin(θ + γ) + cosγ]. Corresponding values are given in 

Table 1 . They are identical to  when V is circular, that is, when A = B, and less negative for near-inertial waves. 

4. Conclusions  

Breaking surface waves generate an intermittently produced, but continuously maintained, layer of turbulence at the sea 
surface, provided that the mean interval between breaking waves passing a fixed position is sufficiently short and the 
turbulence sufficiently long-lived (Thorpe 1995). In mid water in the deep ocean there is little evidence turbulence is often, if 
ever, sustained. For example, Gregg et al. (1986) find turbulent patches in the California Current cover 8%–36% of the 
water column, the percentage depending on the threshold level used. Dissipation is consequently low. Mixing is particularly 
weak over midlatitude plains (Kunze and Sanford 1996), although it may be larger near islands (Osborn 1978). Recent 
observations in the Brazil Basin (Polzin et al. 1997), however, show that higher dissipation does occur over areas of rough 
topography, there the Mid-Atlantic Ridge, and that levels of diapycnal diffusion much exceeding molecular are then found 
almost throughout the water column. It appears possible that internal waves generated by tidal flow over the rough ridge 
topography, either as baroclinic tides or as higher-frequency lee waves (see section 3), are the energy source for the 
enhanced mixing (W. Munk 1997, personal communication), but little direct information is yet available of the nature of the 
propagating waves or the intermittency of the events leading to the onset of turbulence.

The discussion in section 3a shows that internal tides are more likely to result in more general mixing with connected 
regions of extreme values or breaking with less patchiness than lee waves at the same τ/T values. Turbulence generated by 
Kelvin–Helmholtz instability is, however, unlikely to be maintained from one breaking wave to the next (section 3b). The 
theory offers an explanation of the difference between the persistent patches of turbulence observed in near-inertial waves 
and puffs in internal gravity waves observed by Gregg et al. (1986) and the spatial variations in turbulent patch structure, 
particularly the upward vertical migration since  is negative, of the patches of turbulence in inertial waves propagating with 
a downward component of group velocity from the sea surface. Wave groups may also help explain the vertical migration of 
low-density lenses observed by Pinkel et al. (1991). Perhaps these are “extreme values,”  here of the distortion to the density 
field associated with wave groups?

Our interest in the relation between internal wave groups and mixing, or the generation of extreme values, was rekindled 
by observations of layers of nearly uniform density and with typical vertical and horizontal scales of 0.5 and 1 km, 
respectively, in the relatively uniformly stratified water underlying the seasonal thermocline, and over the sloping bottom, at 
the sides of Lake Geneva (Thorpe and Lemmin 1998). The observations made from a small submarine in summer 1997 
suggested that the layers, which were often isolated single layers, might be a consequence of breaking, or nearly breaking, 
internal waves, amplified in reflection from a sloping bottom. We found their isolation intriguing. Could they be explained as 
a consequence of the low-frequency, subcritical, wave reflection of internal wave groups? The answer from Table 1  
appears to be “yes,”  provided the waves have properties similar to those described here as lee waves. It is likely that near-
breaking conditions are sustained for times τ, shorter than the period T of the waves, so that only one layer of extreme 
values will be produced and observed.

The results emphasize the importance of the ratio τ/T and that, unless “breaking”  or the extreme values is maintained for 
periods of time which approach the wave period, the consequent patches of breaking will be disconnected and separated in 
space and time. The analysis demonstrates the importance of some poorly known properties of internal gravity waves that 
deserve further study, particularly the existence of groups and the size and shape of regions of extreme values.
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Tables  

Table 1. Values of the inclination of the wave group propagation direction to horizontal, θ; χ [= σ2/(N2 sin2
θ)]; the aspect ratio, 

A/B of breaking volume; V the inclination of the wave breaking vector cb; first ( ) when the axes of V are parallel to cg and c and 

second ( 1) when they are horizontal and vertical (see section 3c); ratio of group speed to phase speed cg/c; ratio of the number 

of waves recorded as a group passes a fixed observation point to the number of waves in the group nr/n; and the values that 

must be exceeded by τ/T for (12), (13), and (14) to be satisfied, respectively, all when f/N = 0.103. 
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Fig. 1. The propagation of surface gravity waves in a wave group and their breaking. For simplicity, a steady state is assumed 



in which the wave group continues to contain breaking waves indefinitely and there is no mean flow. The full lines shows the 
positions of waves propagating in the x direction as a function of time t, beginning or ending as they enter or leave the group 
marked by dotted lines. The slope of the full lines is c, the wave phase speed. The group propagates at the group speed cg (the 

slope of the dotted lines), also in direction x, and for surface waves in deep water, cg = c/2. The dashed lines, moving forward 

with the wave group, show the location of the region of breaking (or extreme) waves, marked as bold lines within the group. The 
speckled regions show the location of foam left by the breaking waves. In (a) the duration of breaking τ is < T, and the foam 
patches persist for a time Tf less than 2T − τ. The patches of foam produced by successive waves do not overlap in space or time. 

In (b), 2T > τ > T, and τ  Tf. Here there are times, 2T − τ long, when no waves break, but at least one wave breaks at any position 

x as the group passes. Photographs might show no wave breaking, but a fixed wave-breaking detector would record at least one 
breaking wave. Foam patches overlap in both space and time. If Tf were less than 2t − τ, foam patches would overlap in space but 

not in time.
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Fig. 2. An internal wave group of dimensions W and L lies within the section marked by the dotted line at a fixed time t and 
moves with velocity cg along a ray path in x–y space. Lines of constant wave phase are marked by full lines and advance with 

velocity c. The breaking region V is marked by the dashed contour. Within V some quantity Q associated with the wave field will 
exceed some specified value Qc as the waves pass through. Sections AA and BB show the amplitude of Q in directions normal to 

and along the lines of constant phase, respectively. The value Qc is exceeded only in regions surrounding the bold lines of 

constant phase in V. The point X at the center of a line of constant phase within V moves with velocity cb = c + cg. 
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Fig. 3. (a) Instantaneous regions of “breaking,”  Q > Qc, within the internal waves lying within the group breaking region V. The 

width of the regions is determined by the shape of the waves within volume V of the wave group. (b) The constant phase lines 
marking the center of the “breaking”  regions. The vector cb indicates the velocity of advance of the breaking zone and is in a 

direction  above the horizontal. It is assumed that V is elliptical with semimajor and minor axes A and B, respectively, as shown. 
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Fig. 4. The “breaking regions”  produced by a wave group that has moved through the x–z plane drawn at time t. These regions 
will not be “active.”  Only in the limited volume of the wave group breaking volume V will the specific value of Q exceed Qc at the 

time t (see Fig. 2 ). The dotted lines show the region swept out by the group breaking volume V. Stippled areas mark the 
volumes within which waves have broken (i.e., where Q was greater than Qc) as they passed through V. Here A and C mark the 



 

 

points at which successive waves enter the volume V and B is the point where the wave, entering at A, leaves V. In (a) the 
regions in which breaking has occurred do not overlap in space. In (b) regions overlap in space. In both cases illustrated, two 
waves break simultaneously. In (a) there are positions z between the breaking waves where no breaking occurs at time t, although 
there are no such positions in x; the possibility of a horizontal towed section through V detecting “breaking”  is less than that of 
a vertical free-fall profiler.
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Fig. 5. (a) The propagation of the breaking volume past a fixed vertical line at x = 0. The major axis of the elliptical section of V 
moves through the point z = z0. (b) The dashed line shows the position of V in the t–z frame of reference. The lines represent 

lines of constant phase moving downward and “breaking”  (shown by thicker lines) within V. 
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