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ABSTRACT

Recent calculations by Lin and Perrie (1997) on the surface wave spectral energy 
fluxes due to the wave nonlinearity in deep and shallow water appeared after 
previously published works by Krasitski (1993), Shrira et al. (1996), and Kalmykov 
(1993, 1995, 1997), while presenting results that are qualitatively different from 
those obtained previously. This comment is on these obvious differences and why 
it appears that the conclusions of Lin and Perrie cannot be justified.

Surface waves in deep water as well as in shallow water are very well described 
by the four-wave kinetic equation as shown by Hasselmann and Hasselmann (1985) 
and Herterich and Hasselmann (1980). Analogous computation of the five-wave 
kinetic equation for deep and shallow water show that a five-wave contribution is 
very small: only 3%–5% of the four-wave one (Kalmykov 1998). Therefore we can 
conclude that the four-wave kinetic equation still remains dominant for the shallow 
and deep water wave modeling and that all this discussion is of only academical 
interest.

During the past 15 years many studies have been made in this area, some of 
which are not cited by Lin and Perrie (1997), including Parts I and II of the series leading to the present article under 
discussion (Part III). They present results of their own calculations of the spectral transfer rates in a JONSWAP spectrum, 
which are qualitatively different from various previously published results, while offering no explanation for the differences 
found.

The subject of five wave–wave interactions among surface gravity waves is not new. First discussions concerning the 
energy transfer by five-wave interactions in wave spectra took place at Zakharov’s seminar in 1993 in Moscow, where the 
present author made a report (Kalmykov 1993). In experiments, it was first noticed by Su (1982) in the form of a horseshoe 
pattern existing in two-dimensional waves. Then McLean (1982a,b) found theoretically that instability II was a possible 
reason for these three-dimensional patterns. At the same time, this topic was developed by Meiron et al. (1982). They found 
good agreement between the Su (1982) experiment and the theory and were able to give an exact answer: it was a three-
dimensional instability II making these 3D wave patterns. Later, this theme was continued by Stiassnie and Shemer (1984, 
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1987). They derived the five-wave Zakharov’s equation and found that the most unstable 3D wave segments were just those 
observed by Su (1982) and by other authors. This instability II (3D) was triggered by instability I (2D), or the Benjamen–
Feyer instability. Su (1982) observed the wave segments with the scales L2 = 2λ0, where λ0 is the wavelength from the 

spectral peak. McLean (1982a,b) found the coordinate of the most unstable lateral perturbation k1 = (p, q), where p = 0.5 

and q = 1.2; that gives |k1| = 1.3 (ω1 = 1.7) and angle to the x axis of θ1 = 67°. Recently, the five-wave Zakharov’s equation 

in Hamiltonian form was derived by Krasitski (1993, 1994). In recent works (Kalmykov 1993, 1995, 1997), numerical 
estimates of the nonlinear transfer of wave energy by five-wave interactions in the wave spectra were first performed. This 
transfer was directed from the spectral peak (ω0 = 1, θ0 = 0) to the waves of frequency ω1 = 1.7–2.0 and angles θ1 = ±

(60°–70°) from the main direction for different depths. As can be seen in each of the works cited above except for Lin and 
Perrie (1997), we have energy flux from low to high frequency, but not an inverse cascade. In some sense this is evident 
because five-wave interactions do not conserve action, only energy. The most recent paper devoted to this theme is that of 
Shrira et al. (1996), where energy by five-wave interactions is also transferred from low wavenumbers to the higher ones. 

Now let us see the equation in more detail. For the estimation of the nonlinear transfer of energy by five-wave resonant 
interactions, we will use the kinetic equation derived by Krasitski (1993):

 

in which k  is the wavenumber vector, and k = |k |; ω = [gk tanh(kh)]1/2 is the dispersion relation; g = 9.81 m s−2 is the 
gravitational acceleration; h is the depth; W1,2,3,4,5 = W(k1, k2, k3, k4, k5) is the kernel function for arbitrary depth; δ( · ·

· ) is the Dirac delta function;

 

is the spectrum of wave action; and S(k) is the wavenumber spectrum of the surface waves. In order to simplify our 
presentation, we split the integral in Eq. (1) into two parts as follows:

 

where I51 is the first term in Eq. (1) and I52 is the second one. All computations are performed in nondimensional form. 

Thus without loss of generality, we take g = k0 = ω0 = 1, with k0 and ω0 as the wavenumber and the frequency at the 

spectral peak in deep water [in shallow water g = ω0 = 1, k0 = k0(ω0(h))]. 

We treat the wave vector in polar coordinates; thus, k  = (ω2, θ) is a vector with amplitude ω2 and angle θ to the x axis. 
According to Eq. (1), it is necessary to satisfy the following resonant conditions for five vectors and frequencies:



 

We adopt the JONSWAP wave spectrum here as the frequency function and angular distribution in the form of K(θ)  

cosm(θ). 

Figure 1  shows the two-dimensional energy transfer from (3) versus frequency. One can see that energy cascades 
from the spectral peak to higher frequencies. Here the first term from (3) is positive and the second term is negative, while 
their sum gives the energy flux from the spectral peak to the high frequency: a direct cascade. Figure 2  shows the same 
three-dimensional energy transfer versus frequency and angle. 

It follows that when the wave energy is transferred by five-wave interactions, it is from the spectral maximum to the 
higher harmonics propagating at angles ±70° from the main direction. For any odd number of wave interactions, the energy 
transfer is a direct cascade from low frequency to high, while for any even number we get an inverse cascade (Zakharov 
1997). The only exception is the case when the waves are almostly colinear (Dyachenko et al. 1994), in which case the 
energy transfer could be represented by an inverse cascade. Those cases can only be realized for swell propagation, but they 
are unstable to any cross-wave perturbations. It follows from the previous discussion where it was concluded that five-
wave interactions are rather three-dimensional than colinear (four-wave interactions). For example, let us take three of the 
five participating waves to be at the spectral peak with frequency and wavenumber as ω0 and k0; a perturbation 

consequently will be ω1 and k1. Then, from (4), we have 3ω0 = 2ω1; therefore ω1 = (3/2)ω0, a direct cascade. 

Furthermore, 3k0 = 2k1 cos(β), thus β will have to be around 50°, an off-main direction propagation. This is very close to 

what we have obtained and the results of other authors cited above. The energy transfer rate for the five-wave interactions 

will only consist of a few percent of four-wave interactions because α = I5/I4 = 2, where  = k0a0 is the wave steepness, 

and I4, I5 are four- and five-wave interactions, respectively. It is reasonable to conclude that four-wave interactions remains 

dominant except maybe for very steep breaking waves or for extremely shallow depth, where the kinetic equation (3) is not 

valid and the KdV equation must be used. As a function of the depth, it is easy to find that α = 2
∞

[1 + 2x/sinh(2x)]−1 

tanh−2(x)  2
∞

/2x2, where x = kh  1 and 
∞

 is wave steepness in deep water. For x = 3.6 (practically deep water) from 

Lin and Perrie (1997), wave steepness 
∞

 = 0.3 (for the sea is typical 
∞

  0.1), and α  0.10, only 10%. It contradicts 

the conclusion of Lin and Perrie (1997) that five-wave interactions have the same value or even dominate over four-wave 
ones. For example, take x = 0.5 from Kalmykov (1995) and assume 

∞
 = 0.3, α  0.2. So, even for such large wave 

steepness of 0.3 and small depth 1.4 m [for f0 = 0.3 Hz (Lin and Perrie 1997) and kh = 0.5 (Kalmykov 1995)] five-wave 

interactions consist of only 20% of the four-wave ones. That five-wave interactions are much smaller than four-wave ones 
is reasonable and is in accordance with the perturbation theory where the higher order terms are less than lower ones. If 
somewhere higher-order terms become equal or greater than lower ones, it means that the equationin this case is not valid. A 
few words about units: The method of computing Eq. (3) is the same as the one in Masuda (1980) for four-wave energy 
transfer. To get units of meters squared for dS/dt one has to multiply nondimensional values of the five-wave energy 
transfer on the figures by the factor:

c5 = S4(ω0)ω16
0g−6,(5)

 

and do the same for four-wave case (Masuda 1980):

c4 = S3(ω0)ω11
0g−4;(6)

 

that is why α = c5/c4 = 2. Furthermore, values of dS/dt for different γ are different, as, for example in Masuda (1980). 

Figure 2  shows dS/dt as a symmetrical and smooth function due to the fine grid used later in computation and the 
contribution of singular points, contrary to the first 1993–95 its estimates on coarse grid and without singularities, but the 
general outlook and orders of values remains the same. The complete version of this paper is not cited because it is in review 
(submitted to Global Atmosphere and Ocean System). In conclusion, it must be said that it appears that the results presented 
by Lin and Perrie (1997) cannot be justified. 

REFERENCES  

Dyachenko, A. I., Y. V. Lvov, and V. E. Zakharov, 1994: Five-wave interaction on the surface of deep fluid. Physica D., 87, 233–261.. 



Hasselmann, S., and K. Hasselmann, 1985: Computation and parametrizations of the nonlinear energy transfer in a gravity wave spectrum. 
Part I: A new method for efficient computation of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15, 1369–1377.. Find this 
article online 

Herterich, K., and K. Hasselmann, 1980: A similarity relation for the nonlinear transfer in a finite depth gravity-wave spectrum. J. Fluid 
Mech., 97, 215–224.. 

Kalmykov, V. A., 1993: Numerical calculation of the nonlinear transfer of energy in the spectra of surface gravity waves by 5 wave 
resonant interactions. Dokl. Akad. Nauk Ukraini, 8, 101–104.. 

— —, 1995: Estimates of energy transfer in the spectra of surface gravity waves by nonlinearity of high order. Dokl. Akad. Nauk Ukraini, 
11, 87–89.. 

— —, 1997: Numerical calculation of nonlinear transfer of energy in spectra of surface gravity waves from the five wave resonant 
interactions. The Air-Sea Interface Radio and Acoustic Sensing, Turbulence and Wave Dynamics, M. A. Donelan, W. H. Hui, and W. J. 
Plant, Eds., University of Miami, 161–166.. 

— —, 1998: Energy transfer in the spectrum of surface gravity waves by resonance five wave–wave interactions. Amer. Math. Soc. Transl., 
182, 83–94.. 

Krasitski, V. P., 1993: 5 wave kinetic equation for surface gravity waves. Mar. Hydrophys. J. 6, 17–25.. 

— —, 1994: On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech., 272, 1–20.. 

Lin, R., and W. Perrie, 1997: A new coastal wave model. Part V: Five-wave interactions. J. Phys Oceanogr., 27, 2169–2186.. 

Masuda, A., 1980: Nonlinear energy transfer between wind waves. J. Phys Oceanogr., 10, 2082–2093.. 

McLean, J. W., 1982a: Instabilities of finite amplitude gravity waves. J. Fluid Mech., 114, 315–330.. 

— —, 1982b: Instabilities of finite amplitude gravity waves on water of finite depth. J. Fluid Mech., 114, 331–341.. 

Meiron, D. I., P. G., Saffman, and H. C. Yuen, 1982: Calculation of the steady three-dimensional deep water waves. J. Fluid Mech., 124, 
109–121.. 

Shrira, V. I., S. I. Badulin, and C. Khariff, 1996: A model of water wave “horse-shoe”  patterns. J. Fluid Mech., 318, 375–404.. 

Stiassnie, M., and L. Shemer, 1984: On modification of Zakharov’s equation of surface gravity waves. J. Fluid Mech., 143, 47–67.. 

— —, and — —, 1987: Energy computations for evolution of class I and II instabilities of Stokes waves. J. Fluid Mech., 174, 299–312.. 

Su, M. Y., 1982: Three-dimensional deep-water waves, Part 1. Experimental measurement of skew and symmetric wave patterns. J. Fluid 
Mech., 124, 73–108.. 

Zakharov, V. E., 1997: The statistical theory of shallow water waves. Amer. Math. Soc. Transl., 182, 167–197.. 

Figures  

 
Click on thumbnail for full-sized image. 

Fig. 1. Nonlinear transfer of energy (two-dimensional) (3) for Pierson-Moscovitz spectrum (γ = 1, m = 2); units are 
nondinemsional (g = k0 = ω0 = 1): I51 dotted line, I52 dashed line, and I51 + I52 solid line. 
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Fig. 2. Nonlinear transfer of energy (three-dimensional) (3). 
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