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ABSTRACT

The diffusivity dependence of internal boundary layers in solutions of the 
continuously stratified, diffusive thermocline equations is revisited. If a solution 
exists that approaches a two-layer solution of the ideal thermocline equations in 
the limit of small vertical diffusivity κ , it must contain an internal boundary 

layer that collapses to a discontinuity as κ   0. An asymptotic internal 

boundary layer equation is derived for this case, and the associated boundary 

layer thickness is proportional to κ1/2 . In general, the boundary layer remains 

three-dimensional and the thermodynamic equation does not reduce to a 
vertical advective–diffusive balance even as the boundary layer thickness 
becomes arbitrarily small. If the vertical convergence varies sufficiently slowly 
with horizontal position, a one-dimensional boundary layer equation does arise, 
and an explicit example is given for this case. The same one-dimensional 
equation arose previously in a related analysis of a similarity solution that does 
not itself approach a two-layer solution in the limit κ   0. 

1. Internal boundary layer scaling  

Stommel and Webster (1962) discovered a similarity solution of the thermocline equations with an internal boundary layer 
that could be interpreted as a model of the subtropical main thermocline. The internal boundary layer marks the base of the 
wind-driven motion, as the deeper circulation is driven by vertical diffusion of heat through the internal boundary layer. The 

characteristic thickness of the Stommel–Webster internal boundary layer is κ1/2 , where κ  is a constant vertical diffusivity. 

Originally obtained by a linearized analysis, this scaling was confirmed by Young and Ierley (1986) using matched 

asymptotic expansions. It contrasts with the κ1/3  thickness dependence that follows from the traditional advective–
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diffusive scaling of the thermocline equations (Welander 1971). 

The κ1/2  boundary layer is evidently not peculiar to the particular similarity form studied by Stommel and Webster 

(1962) and Young and Ierley (1986). Salmon (1990) showed that a κ1/2  internal boundary layer should generally arise in 

subtropical-gyre solutions of the thermocline equations, although this result depended on a Taylor-series argument that itself 
relied on an assumption that the vertical convergence in the boundary layer was constant and nonzero. A related discussion 

was given by Pedlosky (1979, p. 422). (As a reviewer has pointed out, these same arguments establish that a κ1/2  scaling 

will generally arise in a stationary boundary layer when the advected scalar is passive rather than active, since constant 

vertical convergence is then generic.) Samelson and Vallis (1997) suggested that the κ1/2  scaling will arise whenever 

isotherm slopes in the thermocline are fixed as κ   0 and reported evidence for a κ1/2  scaling in numerical solutions of a 

closed-basin planetary geostrophic circulation model, despite clear differences between the horizontal structure of the 
numerical solutions and the Stommel–Webster similarity solution. 

The present contribution should be read as a footnote to the articles cited above. In essence, it is a modest extension of 
the argument of Salmon (1990), cast in a different form. The starting point is a two-layer solution of the ideal (κ  = 0) 

equations, in which temperature is discontinuous across the interface between the layers and the detailed structure of the 
wind forcing is not specified. A general internal boundary layer equation is then derived that must be satisfied asymptotically 
by any smooth solution of the diffusive (κ  > 0) thermocline equations that approaches the two-layer ideal solution as κ   

0. This point of view resembles that of Young and Ierley (1986), who interpret the ideal limit of the Stommel–Webster 
solution as a weak (discontinuous) solution of the continuously stratified ideal thermocline equations. Here, it is generally 
assumed that the relevant smooth solutions exist, but one explicit example is given.

2. The two-layer limit  

Following Welander (1971), the dimensionless continuously stratified steady diffusive thermocline equations may be 
written

−f−1MzyMzzx+f−1MzxMzzy+βf−2MxMzzz=κ Mzzzz,(2.1)

 

where M(x, y, z) satisfies

Mz = p.(2.2)
 

The temperature T and velocities (u, , w) may be written as derivatives of M,

 

expressing the hydrostatic, geostrophic, and Sverdrup vorticity balances, where the additional boundary conditions w, M 
 0 as z  −∞ (or w = M = 0 at the bottom z = −HB) have been enforced. The Sverdrup transport relation takes the form

βf−2Mx(x, y, 0) = wE,(2.4)

 

where wE is the Ekman vertical velocity at the base of the surface boundary layer.
 

For general wE < 0, the ideal (κ  = 0) thermocline equations have a two-layer (or “one-and-a-half-layer”) solution, with an 

upper, moving layer of thickness h(x, y) and uniform temperature T = T0 overlying a deep motionless layer of temperature T 

= 0. The thickness of the moving layer is

 



where H0 is the depth of the upper layer at the eastern boundary. For example, such solutions have been considered by 

Parsons (1969) and Veronis (1973) and are equivalent to a ventilated thermocline (Luyten et al. 1983) with a single moving 
layer.

Now, for 0 < κ   1, suppose that there exists a solution of the diffusive thermocline equations (2.1) that matches the 

two-layer solution (2.5) except near z = −h(x, y) where a smooth transition across an internal boundary layer of finite 
thickness replaces the discontinuity. The analysis below shows that any such solution must asymptotically satisfy an internal 
boundary layer equation following from (2.1). 

To derive this general internal boundary layer equation, it is convenient to introduce the stretched boundary layer 
coordinate , where

 = δ−1(z + h(x, y))(2.6)

 

is the vertical distance from z = −h scaled by the unknown boundary layer thickness δ. The appropriate matching 
conditions on T outside the internal boundary layer are then T  T0 as   +∞ and T  0 as   −∞. In order to write 

the corresponding boundary conditions for M  in a form that is independent of δ, it is necessary to rescale M in the 

boundary layer by the substitution

M(x, y, z) = δ2T0A(x, y, ),(2.7)

 

where the absence of order-1 and order-δ contributions to M is consistent with the requirement that M vanish for z < −h 
when κ  = 0, and with the matching conditions on T. Then Mzz = T0 A , and the boundary conditions for A are

 

The matching conditions on w are w  (z/h + 1)wE = δ( /h)wE as   +∞ and w  const as   −∞. The first of 

these matches the wind-driven vertical velocity above the internal boundary layer, while the second will give the diffusively 
driven abyssal upwelling velocity beneath the boundary layer, which must vanish along with the abyssal M as κ   0. 

Since Mx = δT0(A hx + δAx), to first order in δ these are

 

consistent with (2.8) and (2.9), where c is a constant and use has been made of (2.5). 

With the substitution (2.7), the resulting equation for A is

 

Balancing the diffusive term against the leading-order advective terms in (2.12) leads to δ2  κ . Thus, the internal 

boundary layer in the two-layer limit should generally have thickness proportional to κ1/2 . Presumably, an appropriate 

solution of (2.12) exists. In general, it is not immediately clear how to solve (2.12). The leading horizontal advective terms 
contain first-order horizontal derivatives, and appropriate lateral boundary conditions must be determined. Note that it is the 
need to match to constant temperatures above and below the boundary layer that determines the rescaling (2.7) and 

ultimately requires δ  κ1/2 . 



Since the form (2.7) fixes the isotherm slopes independently of δ (Tx/Tz = hx, Ty/Tz = hy, to leading order), this result is 

consistent with the scaling argument of Samelson and Vallis (1997), who presented numerical evidence for a κ1/2  thickness 

in the central subtropical gyre of a planetary geostrophic circulation model and suggested that the κ1/2  thickness should 

arise whenever isotherm slopes are fixed as κ   0. Because of the relative horizontal uniformity of the fluid immediately 

above (“subtropical mode water”  analog) and below (abyssal fluid) the internal boundary layer in the numerical solutions of 
Samelson and Vallis (1997), the two-layer model can reasonably serve as an approximation to the numerical solutions near 
the internal boundary layer, despite the existence of a strongly stratified portion of the ventilated thermocline near the 
surface.

3. A one-dimensional equation  

One might expect that the substitution (2.7) would lead to an asymptotic boundary layer equation involving only  
derivatives of A in the limit δ  0, corresponding to the thermodynamic balance wTz  κ Tzz. However, this does not 

happen. The horizontal advective terms of order δ−1 that arise from the substitution (2.7) vanish identically from (2.12), but 
the leading-order horizontal advective terms that remain in (2.12) are still of order 1, the same order as the leading-order 
vertical advective term. Consequently, the thermodynamic balance does not, in general, reduce to wTz  κ Tzz as κ   0. 

This might be anticipated from the observation that the vertical velocity itself vanishes in this limit.

Special solutions of (2.12) may still be sought in which horizontal advection does vanish, either identically or to leading 
order. The matching conditions for A are themselves independent of x and y. In the case of (2.10), this reduction is possible 
because the Sverdrup relation enforces a proportionality between hx and wE/h at each point. This suggests the substitution A

(x, y, ) = B( ) in (2.12), or M(x, y, z) = δ2T0B( ). If the resulting equation for B( ) were independent of x and y, then a 

one-dimensional boundary layer theory would exist in the two-layer limit. This substitution gives

 

Comparison with (2.1) shows that this is a vertical advective–diffusive balance in which the term Mx is replaced by Mzhx, 

a consequence of fixing the isotherm slopes to first order. The equality in (3.1) can in general be satisfied only if the quantity 

κ f2/(βhxT0) is constant since the latter is clearly independent of  while by assumption B depends only on . From (2.5),

 

but inspection shows that h/wE is not generally constant. Thus, an asymptotic one-dimensional internal boundary layer 

theory for the two-layer limit of (2.1) does not exist in general. A solution may still exist that approaches the two-layer 

solution in the limit κ   0, and, if it exists, it must have δ  κ1/2 , but the corresponding internal boundary layer will in 

general not be independent of horizontal position; that is, it will remain intrinsically three-dimensional. 

If the expression (3.2) were constant, the equation (3.1) would reduce to the equation ultimately solved by Young and 
Ierley (1986) in their asymptotic analysis of the similarity solution discovered by Stommel and Webster (1962). This can be 
seen as follows. Set

 

and let

 

Then (3.1) is



FF" = F ,(3.5) 

and the boundary conditions (2.10) and (2.11) are

F(   +∞)   , F′(   −∞)   0,(3.6) 

where prime denotes derivative with respect to the argument. The two conditions (3.6) are sufficient for the third-order 
equation (3.5) since the first also imples F′(   +∞)   1. The abyssal upwelling velocity is determined by the value c, 
where F(   −∞)   c, since w(   −∞)   cδwE/h. 

The equation (3.5) with the boundary conditions (3.6) is solved by Young and Ierley (1986) in their analysis of the 
Stommel–Webster similarity solution (with the sign of  reversed). Their solution yields c = 0.875 74. Note that the 
Stommel–Webster similarity solution is not of “two-layer”  type: it retains zonal temperature gradients above and below the 
internal boundary layer even in the limit κ   0. Near the internal boundary layer, the two-layer model is a more accurate 

representation of the numerical solutions of Samelson and Vallis (1997) than is the Stommel–Webster similarity solution 
because of the large zonal temperature gradients in the latter and the dependence of the thermocline depth in the numerical 
solutions on horizontal position, which roughly follows the two-layer solution.

As an explicit example of a two-layer solution with this type of internal boundary layer, consider (2.5) with H0 = 0 and wE 

= af2(x − xE), where a is a constant. In this case, wE/h is constant, and (3.1) is independent of x and y and has the form 

(3.5), with boundary conditions (3.6). This is a two-layer solution with a one-dimensional internal boundary layer that has 

thickness δ  κ1/2  and is independent of horizontal position. In this case, the thermodynamic balance in the boundary 

layer does reduce to wTz  κ Tzz. 

Although (3.5) is formally valid only if δ from (3.3) is constant, as in the preceding example, it may still provide a useful 
approximation to M if δ is only approximately constant. If

(δx, δy)/δ  δ,(3.7)
 

then (3.5) will be the correct leading-order approximation, and (3.7) will in turn be satisfied if

| (wE/h)|/(wE/h)  δ.(3.8)
 

That is, the accuracy of the approximation will be controlled by the extent to which the vertical convergence wz in the 

two-layer solution is horizontally uniform. This requires that the fractional variations in wE and h either be separately small or 

cancel to first order. The condition (3.7) can be recast in terms of wE and H0 using (2.5). If wE is independent of x and y, 

and H0 is sufficiently large, then the approximation will be accurate. If wE is independent of x, and h(x) − H0  H0, then the 

approximation may be inaccurate.

4. Related examples  

Salmon and Hollerbach (1991) obtained some special solutions of the thermocline equations that are relevant to the present 
discussion. In one class of solutions (their “S12”), the temperature changed abruptly across an internal boundary layer, as in 

the solution discussed above. In a second class of solutions (their “S13”), the potential vorticity changed abruptly across an 

internal boundary layer, while the temperature field remained smooth as κ   0. For each of these classes, they presented 

specific examples for the special case in which the boundary layer is located at a constant depth, independent of horizontal 
position [their Eqs. (8.1)–(8.9) and (8.10)–(8.12), respectively]. In both of these specific examples, the thickness of the 

internal boundary layer was κ1/2 , as in the solution discussed above. 

It is especially interesting that a κ1/2  boundary layer appears also in their second example, for which the jump is in 

potential vorticity rather than temperature. An extrapolation of the argument given above would seem to suggest that the 

boundary layer thickness should be proportional to κ1/3 , as in the traditional advective–diffusive scaling, since the potential 

vorticity fTz = fMzzz (rather than temperature T = Mzz) must be matched outside the boundary layer, and this would appear 



 

 

to lead to a factor δ3 in the scaling (2.7). In this case, however, M in the boundary layer may have contributions of zero, 
first, and second order in δ, along with the third-order term associated with the potential vorticity matching. Thus, the 

simple extrapolation is misleading, and the boundary layer again scales with κ1/2 . 
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