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ABSTRACT

A characteristic of internal waves reflecting from sloping boundaries is that they 
form fronts that travel with the component of the phase speed of the waves up 
the boundary. The strength of the fronts is assessed by estimating the 
magnitude of nonlinear terms leading to the asymmetry of density gradients at 
the slope when waves travelling in a fluid of uniform buoyancy frequency are at 
nonnormal, or oblique, incidence to the slope. Strong nonlinearities, indicating 
fronts, are found for both supercritical (β > α) and subcritical (β < α) waves 
near critical slopes where the inclination of the boundary to the horizontal, α, 
matches that of the wave group velocity β. They are also found for subcritical 

waves when β is near sin−1[(sinα)/2]. Fronts become weaker as the angle at 
which the wave approaches the slope, the azimuth or incident angle, increases 
from zero (i.e., when waves are nonnormal), but not significantly so until this 
angle exceeds 30°.

1. Introduction  

There is much interest in the processes that lead to mixing at, or near, the sloping 
boundaries of oceans and lakes. This is prompted by observations of enhanced 
rates of dissipation near the Mid-Atlantic Ridge bounding the eastern side of the 
Brazil Basin (Polzin et al. 1997), near seamounts (Toole et al. 1997; Eriksen. 1998), 
and near lake or reservoir boundaries (Imberger and Ivey 1991, 1993), as well as by the higher rates of vertical diffusion of 
tracers that are found in tracer studies near slopes (Ledwell and Watson 1991; Ledwell and Hickey 1995; Ledwell and 
Bratkovich 1995). It is known that internal waves reflecting from sloping boundaries may produce reflected waves that are 
steeper, produce greater shear, and have smaller characteristic Richardson numbers than the incident waves (Eriksen 1982, 
1985), particularly when the slope of the boundary is near-critical, that is, when sinα is approximately equal to σ/N (=sinβ), 
where α is the inclination of the sloping boundary to the horizontal, σ is the wave frequency, and N is the buoyancy 
frequency. A characteristic of waves reflecting from sloping boundaries—at least when they approach “normally,”  that is, 
their group velocity vector lies in a vertical plane that intersects the sloping boundary along a line of greatest slope—is that 
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they produce regions of enhanced density gradient, or fronts, which move up the slope with the advancing wave phase. 
Such fronts produced by waves at normal incidence have been observed in laboratory experiments (Thorpe 1987), and they 
have been studied analytically (Thorpe 1992) and are found in numerical simulations (Slinn and Riley 1998). They are often 
associated with the onset of turbulence and mixing typical of that in gravity currents (Ivey and Nokes 1989; Thorpe et al. 
1991; Taylor 1993; Slinn and Riley 1998). 

While fronts are also evident in measurements within a few meters of oceanic (Thorpe 1992) and lake (Lemmin et al. 
1998) slopes, the orientation (relative to the boundary contours) of the incident waves causing them has not been observed. 
Recent laboratory experiments (Dunkerton et al. 1998) with azimuth angles of about 18° have, however, demonstrated that 
fronts can occur when internal waves approach a slope nonnormally, or “obliquely.”  The purpose of this note is to examine 
analytically what effect nonnormal incidence may have on the steepening of waves at sloping boundaries and, in particular, 
to see whether steeper waves may occur at the boundary if reflection is nonnormal but when the characteristics of the 
incident waves (i.e., β and the wave steepness) are unchanged. The effects of wave breaking and alongslope current 
generation at the slope (Thorpe 1999a) are ignored. 

2. Analysis  

a. The steepening of waves on the sloping boundary  

The analytical method follows that described by Thorpe (1987, 1992). Rotation is neglected (f  = 0). Nonlinear wave 
components with frequency 2σ and wavenumber components (2k, 2l) in the x and y directions, respectively up and along 
the plane slope, are generated by the interaction of an incident wave with wavenumber (k, l, mI) (with the z direction 

upward, normal to the slope) and frequency (σ) and a (first order) reflected wave with components (k, l, mR) and 

conserved frequency σ. [An exact solution is available for the incident wave. The interactions considered here are “sum”  
interactions; the “difference”  interactions generate steady currents and are discussed by Thorpe (1997).] The wavenumbers 
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the incident and first-order reflected waves are given in appendix B (from Thorpe 1997). Correct to first order the density 
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ρ1 = −(2ρ0aks
α
s
β
c
β
N2/gσγ) sin(kx + ly − σt), = ρ0sq1 sin(kx + ly − σt),(1)

 

say, and ak = −σsγ2/[ks
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)2], where s is the steepness of the incident wave, an ordering parameter, and ρ0 is 

a reference density.

Second-order terms are found by reiteration, using the first-order terms to estimate product terms in the equations of 
motion and density conservation, and then solving these subject to the condition that the velocity normal to the slope is zero 
on the slope at z = 0, as described in appendix C. The second-order density perturbation, periodic in x, y, and t, is

ρ2 = ρ0s2q2 sin[2(kx + ly − σt)],(2)

 

at z = 0, where q2 is a function of α, β, and θ.
 

Using (1) and (2), the total density perturbation on the sloping boundary, which varies periodically in x, y and t, is ρ = ρ0

[sq1 sin(kx + ly − σt) + s2q2 sin[2(kx + ly − σt)]. Values of q1 and q2 are found numerically from the analytical solutions. 

The term q2 is <0 for the supercritical waves with α/β < 1. The contribution of the second-order terms with q2 < 0 for α 

near β results in an asymmetry in the density, with a relatively steep fall in density at phase kx + ly − σt = 2nπ, (n = 1, 2, 3, .
. .), and with gradual recovery in between. Correspondingly at fixed times t, an enhanced density rise is found at positions 

kx + ly = 2nπ + σt, and this advances with the wave phase speed as t increases. For subcritical waves with 1 < α/β < 2, q2 > 

0, and the second-order terms again result in an enhanced rise in density, but now at kx + ly − σt = (2n + 1)π, (n = 1, 2, 3, .
. .). 

b. Constant phase lines on the slope  

The orientation of fronts on the sloping boundary is given by the lines of constant wave phase. Figure 1  shows how a 



constant phase surface of an incident wave, inclined at angle β to the horizontal, meets a plane boundary inclined at angle α 
to the horizontal. The intersection is along a line AB. The wave group velocity is at right angles to the phase velocity (Phillips 
1966). The latter is normal to the surface of constant phase, so therefore the group velocity lies in the constant phase plane 
and is in a direction, AE down its steepest slope. The line AB is a constant phase line on the slope for both the incident and 
reflected wave. (AB therefore also lies in a constant phase plane of the reflected wave that, since the wave frequency and 
therefore the inclination β are conserved, is also inclined at angle β to the horizontal.) It is shown by simple geometry in 
appendix A that AB makes an angle  with line AC of greatest slope on the boundary given by

 = tan−1(cosα cotθ + cotβ cscθ sinα),(3)

 

where θ is the angle that BE, the line of intersection of the constant phase plane and a horizontal plane, makes with BC a 
horizontal line in the plane of the slope. The angle θ is also the angle between the projection of the group velocity (direction 
AE) onto the horizontal (DE) and the projection of a line of greatest slope (e.g., AC) onto the horizontal (direction CD). The 
angle θ is therefore the angle of incidence of the internal wave to the slope measured in a horizontal plane. From (3),  = π/2 

when the angle of incidence, θ, = 0. At θ = π/2,  = tan−1(sinα cotβ), but, when  = 0, it is found that

θ = −cos−1(tanα cotβ).(4)

 

There are no solutions to (4) if the waves are subcritical; that is, when α > β. In that case the direction of the wave group 
velocity eventually becomes tangential to the slope as θ increases, and at larger θ there are no waves approaching the slope. 
This is illustrated in Fig. 1b . The slope is again the plane ABC. The incident angle, θ, is that between the directions CD 
and the projection of the group velocity vector onto the horizontal plane, BCD. Three cases are illustrated: (i) θ = 0, when 
EB represents the group velocity vector. As θ increases, the vector rotates about the vertical line BG. (ii) At θ = π/2 it 
becomes FB, where BC is its projection onto the horizontal. As θ increases further, the vector (keeping β constant) 
eventually lies parallel to the slope along the line AB at θ = θc, say (case iii). Further increase in θ places the vector below the 

sloping boundary; no waves can exist for such θ. The limiting value is θc = π/2 + angle CBD, and since sin(CBD) = CD/BD 

= (AD cotα)/(AD cotβ), so

cosθc = −tanβ cotα.(5)
 

Relations (3)–(5) are used in section 3. 

3. Results  

The intensity, or strength, of the density “fronts”  depends on the relative steepening produced by the second-order terms 
and hence on the ratio R = q2/q1. This determines both the asymmetry of spatial gradients, found by differentiating ρ with 

respect to x or y, and the temporal gradients found by time differentiation, both of which introduce a multiplicative factor 2 
to the ratio of the second to the first-order contributions. The variation of R with α/β at α = 5° for various incident angles θ 
is shown in Fig. 2a , for 0.5 < α/β < 1, while the variation of −R (>0) is shown in Fig. 2b  for 1 < α/β < 2. Here |R| 
decreases as θ increases from 0 to 90°. Large values are found near the critical slope where α = β, evidence of the 
dominance of nonlinear terms and the formation of fronts. Values of |R| greater than 10, those for which the size of the 
second-order terms would match the first-order terms for an incident wave steepness of s = 0.1, are found in 0.84 < α/β < 
1.28 when θ = 0°, but only in the narrower range 0.9 < α/β < 1.12 when θ = 60°. 

Large values of |R| are also evident in Fig. 2b  as α/β approaches a value of near 2. These are a consequence of a 
singularity of the interaction component with wavenumber (2k, 2l, m2) and frequency 2σ. The formula for m2 is given in 

appendix C, (C4). This forced component corresponds to a wave inclined at angle sin−1(2σ/N) to the horizontal plane, which 
has the same inclination as the slope. It is therefore “critical,”  with m2 tending to infinity (zero wavenumber), when α = 

sin−1(2σ/N) or, since σ/N = sinβ, when sinα/sinβ = 2. The angle α = 5° in Fig. 2 , and so these critical conditions occur 
when β = 2.498°, or α/β = 2.002. It is particularly noticable at the larger values of θ that the width of the range in α/β for 
which |R| exceeds some given value is smaller at α/β = 2 than at α/β = 1; that is, at fixed β, the range of boundary slopes, α, 
which produce comparable |R| is greater near α = β than near α = 2β. It may be expected that when higher order terms are 
included, new singularities will occur and, at the nth order, will be found when sinα/sinβ = n. 

Figure 3  shows how R varies with θ at fixed values of α/β. For supercritical waves (Fig. 3a ), R decreases with θ, 
tending to zero when θ is near 150°. The orientation of the regions of enhanced density is determined by the intersection of 
the constant phase planes in the internal wave field and the sloping boundary or by the angle  defined by (3). From (2) it is 
found that the angle  is zero when θ = 154.2° (or 153.1°) for α = 5° (or 20°) and β = 5.55° (22.2°), respectively, 



corresponding to the curves in Fig. 3a . These angles θ are where the front, if one existed, would be directly up and 
down the slope but, as seen in Fig. 3a , is where R = 0, so there is no steepening or tendency to form a front. Here R 
increases as θ increases between 160° and 180° (the limit in which the waves are propagating at normal incidence down the 
slope) and here the α = 5° and α = 20° curves are almost identical. 

A similar trend of |R| is found for subcritical waves (Fig. 3b ) as θ increases from 0° to about 150° where |R| again 
tends to zero. This is where the incident subcritical waves become parallel to the boundary at θ = θc. Using (5) it is found 

that at α = 5°(or 20°) and β = 4.55° (18.2°), θc = 155.3° (or 154.5°), respectively. No waves exist for greater θ. 

4. Conclusions  

The principal conclusions are that

1. when the ratio α/β of the slope angle α to the wave angle β is kept constant, and the wave steepness s is also 
unchanged, the fronts formed by the process of internal wave reflection from a plane boundary will become weaker 
as the angle of wave incidence, θ, defined in section 2a, increases from zero, but not significantly so until θ exceeds 
about 30° (see Fig. 3 ). Fronts will strengthen as θ approaches 180° (Fig. 3 ). The trends are not very sensitive 
to the choice of the inclination of the boundary α if less than about 20°. 

2. Fronts become stronger as α approaches the critical slope β. Fronts are expected to form over a broader range of 
values α/β as θ approaches 0° or 180° (Fig. 2 ). 

3. Subcritical waves with wave angle β near sin−1[(sinα)/n], n = 2, 3, . . . , may also form fronts, although over 
ranges of α/β which probably become relatively narrower as n increases. This is a consequence of the interaction 
between the incident and reflected components generating harmonics, nσ, which themselves become critical (e.g., 
see Fig. 2b ). 

The conclusions are subject to reservations concerning the neglect of higher-order terms in wave steepness s and the 
assumptions inherent in the methodology, particularly that the second-order terms are significantly less than the first, clearly 
invalid when sR is large. The calculations provide at best a strong indicator of the relative conditions favorable for the 
formation of fronts, which laboratory experiments have shown do form when θ = 0° (Thorpe 1987) and 18° (Dunkerton et 
al. 1998). Further study, perhaps by further laboratory work and numerical studies, is warranted. 

The solutions for the density perturbation may be periodic in z, suggesting that high density gradients form above z = 0. 
While this may be so in the solutions, in reality the tendency for internal waves to arrive irregularly or in groups (Thorpe 
1999b) means that the incident and reflected components overlap in space only close to z = 0, and interactions at greater 
distance may be less significant.

The formation of such fronts in the ocean will be affected by the coexistance of many internal waves with a broad 
spectrum of frequencies, and hence a wide range of β, and coming from a range of directions, θ. Fronts are likely to be 
formed only by the largest waves present locally at a given time, and those with near-critical frequencies traveling almost 
normal (i.e., within ±30°) to the boundary. The formation of fronts, and attendant wave breaking and mixing, perhaps with 
the generation of alongslope currents (Thorpe 1999a), will change the density and velocity fields through which higher 
wavenumber waves travel, producing refraction and caustics and promoting conditions akin to surf on the sea shore.
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APPENDIX A  

5. The Orientation of Constant Phase Lines  

Figure 1  shows a constant phase plane of the incident internal wave and its line of intersection, AB, with the sloping 
boundary. AC is a line of greatest slope on the boundary that makes an angle α with the horizontal plane BCD, where D is 
vertically below A. The constant phase surface makes an angle AED = β with the horizontal plane, and the line AB makes an 
angle  with AC. This angle  defines the orientation of constant wave phase lines on the slope. The angle θ defines the 
inclination of the incident wave to the slope. When θ is zero, the wave is normally incident and the incident and reflected 
wave field becomes two-dimensional. When θ = π/2, the incident wave travels parallel to the slope. 

The angle  can be found in terms of other angles as follows. Since angle EDA = π/2, ED = AD cotβ and since angle 
EFD = θ, FD = AD cotβ cscθ. Since angle ADC = π/2, CD = AD cotα. Since FG is parallel and equal to DC, BG = FG cotθ 
= AD cotα cotθ. Hence tan  = BC/AC = (BG + GC)/AD cscα = (BG + FD)/AD] sinα = (cotα cotθ + cotβ cscθ) sinα = cosα 



cotθ + cotβ cscθ sinα. 

APPENDIX B  

6. First-Order Solution  

Exact wave solutions of the equations of motion and density conservation can be found in a fluid in a mean state of rest 
and with uniform buoyancy frequency, N. The equations of motion in a tilted frame of reference are given by Thorpe (1997 
appendix a). The solutions for the three (u, , w) components of velocity in the x, y, z frame of reference and for the density 
perturbation ρ for the incident and reflected waves, which satisfy the boundary condition wI + wR = 0 (subscripts I and R 

stand for the incident and reflected wave, respectively) at the sloping plane z = 0, are uI = (ak/γ)(s
β
c
β
 − rs
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c
α
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)sR (Thorpe 1997). 

Here sI = sin(kx + ly + mIz − σt), cR = cos(kx + ly + mRz − σt), etc., and ak = −σsγ2/[ks
β
c
β
(s
α
c
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 − rs

β
c
α
)2] where s is the 

incident wave steepness Am; A is the amplitude of the incident internal wave with vertical wavenumber m = kIsα + mIcα. The 

steepness is a crucial measure of the waves, isopycnals being vertical in the internal wave field if s = 1 (Thorpe 1987). The 
first-order density perturbation on the slope is (ρI + ρR) at z = 0, and is given by (1). 

APPENDIX C  

7. Second-Order Solution  

The equations for the second-order velocity (u2, 2, w2) and density ρ2 components can be reduced to two equations for 

w2 and ρ2 by elimination of u2 and 2:

 

where 2 = 2/ x2 + 2/ y2 + 2/ z2, and I1 = I(uR) + R(uI) with the operator I = uI / x + I / y + wI / z; R is 

similarly defined, and, I2, I3, and I4 are found by substituting the incident and reflected components , w, and p, 

respectively, defined in appendix B. Since the incident and reflected wave solutions are exact, all the I, I and R, R product 
terms vanish identically leaving only the I, R products. The terms in ρ2 in (C1a) and (C1b) are eliminated to give an equation 

for w2 in terms of the products of derivatives of the first-order terms. This has the solution

w2 = W1{cos[2kx + 2ly + (mI + mR)z − 2σt] − cos[2kx + 2ly + m2z − 2σt]},(C2)
 

which satisfies w2 = 0 at z = 0, where W1 is a function of α, β, and θ and is proportional to s2(σ/k). Here

 



m2=−2k[s
α
c
α
+{(1−4s2

β
)[4s2
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β
−s2

α
)]}1/2] ÷ (4s2

β
 − s2

α
).(C3)

The solution w2 is subsituted into (C1b) to give an equation for ρ2. This is integrated to give second-order density terms 

periodic in x, y and t: −ρ2 = 1 sin[2kx + 2ly + (mI + mR)z − 2σt] + 2 sin[2kx + 2ly + m2z − 2σt], where 1 and 2 are 

easily calculated, but long, analytical functions of α, β, and θ, and are proportional to s2ρ0. There are also second-order 

density terms independent of x,y and t, but which are sinusoidal in z (Thorpe 1987); however, these do not contribute to the 
density variations along the slope with which we are concerned here. The x,y, t periodic second-order density term can be 

written ρ2 = ρ0s2q2 sin[2(kx + ly − σt)] at z = 0. 
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Fig. 1. (a) A diagram defining the notation and showing a constant phase plane of an internal wave and its intersection with an 
inclined plane forming a boundary to the fluid. The constant phase plane is inclined at an angle β to the horizontal and meets the 
plane boundary ABGC (stippled), inclined at angle α to the horizontal, in the line AB. The line AE, marked cg, is in the direction of 

the group velocity. (b) A diagram showing how, as the incident angle θ increases, the internal wave group velocity vector cg 

eventually becomes parallel to the sloping boundary ABC along the line AB. Shown are (i), θ = 0; (ii), θ = π/2; and (iii), the 
eventual limiting direction. The line marked θ = 0 is parallel to CD and is the projection of EP onto the horizontal plane BCD. 
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Fig. 2. The variation of the ratio R of second- and first-order density terms with α/β for α = 5° at various incident angles θ 
indicated on the graph, for (a) supercritical waves, 0.5 < α/β < 1.0, and (b) with −R, subcritical waves, 1.0 < α/β < 2.0. 
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Fig. 3. The variation of the ratio R with θ when α = 5° and 20° and when (a) waves are supercritical with α/β = 0.9 and (b) waves 
are subcritical with α/β = 1.1. 
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