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ABSTRACT

A formulation of Sverdrup dynamics is presented based on a reduced-
gravity model in place of the standard approach using the vorticity 
equation. The integral conservation law of momentum is used to 
investigate solutions that may include discontinuities. A surfacing line is 
interpreted as a “shock front”  across which the jump condition derived 
from this conservation law is satisfied.

1. Introduction  

A reduced-gravity model is often used to describe the large-scale wind-
driven ocean circulation. Consider a square basin on a β plane ranging 0  x 

 1 and −0.5  y  0.5 in nondimensional units. The governing equations 
for a steady, planetary geostrophic flow in the oceanic interior can be written 
in dimensionless form as

 

where h is the layer thickness,  is the transport streamfunction, f  = 1 + βy is the Coriolis parameter, τx = sinπy is the 
zonal wind forcing modeling the subtropics, and β and λ are nondimensional parameters. The boundary condition is assumed 
to be

 = 0, h = he = const at x = 1.(3)
 

The standard procedure for solving this problem is to make the vorticity equation (the Sverdrup relation) using (1)–(2) 

Table of Contents:
● Introduction
● The integral conservation
● The possibility of discontinuities
● Inclusion of an outcrop
● The 2-layer model 
● REFERENCES
● FIGURES

Options:
● Create Reference 
● Email this Article 
● Add to MyArchive 
● Search AMS Glossary 

Search CrossRef for:
● Articles Citing This Article 

Search Google Scholar for:
● Toshihiro Sakamoto 



and to integrate it afterward with respect to x subject to (3). The result is

 

(e.g., Welander 1966). 

Parsons (1969) and later Veronis (1973) and Huang and Flierl (1987) extended the above basic model to the case when 
layer outcropping occurs. Friction plays a crucial role in their models because they shed light on the separation of the 
western boundary current so that the governing equations are

 

where  ( 1) is the dimensionless friction coefficient. They determined the position of the surfacing line by matching the 
Sverdrup interior (4)–(5) with the frictional interior layer, which is assumed to be created in relation to outcropping. Instead 
of an explicit form of the solution for the interior layer, they introduced a simple relation, the so-called (semi)geostrophic 
condition, which represents the leading-order balance in the interior layer. This is the reason why the expression for the 
surfacing line is independent of the friction coefficient. It seems paradoxical, however, that the assumption of the existence 
of the interior layer, however thin it may be, is responsible to the derivation leading to the geostrophic condition. Obviously, 
the same procedure no longer works for the inviscid equations (1)–(2). Is the surfacing line found by Parsons an intrinsic 
property of the latter equations?

The potential difficulty arising from Parsons’  approach may stem from the use of the differential equations (6)–(7) to treat 
an outcrop that may give rise to jump discontinuities in the dependent variables. However, such discontinuous solutions are 
possible as “weak solutions”  of the hyperbolic system (1)–(2) provided that a basic integral conservation law is employed 
appropriately. In this short note, we focus on a first integral of motion in order to outline Sverdrup dynamics when 
discontinuities are permitted. Of particular interest is another physical interpretation of the surfacing line from the standpoint 
of the inviscid/hyperbolic problem. It should be noted that integral conservation laws have not been discussed extensively in 
large-scale ocean dynamics. In fact, the major theories on the wind-driven circulation are based on the vorticity equation. 
This is probably because one, except for Dewar (1991), usually assumes the Sverdrup interior to be continuous. 

2. The integral conservation of momentum  

The momentum equations (1) and (2) constitute a hyperbolic system and are already in characteristic form with the 
characteristics y = const and x = const. In particular, (1) can be rewritten as

 

This equation can be integrated with respect to x from the eastern boundary to give

 

This is a first integral of motion, the integral of momentum in the x direction, for the problem under consideration. If (8) 
is integrated from x1 to x2 (0 < x1  x2  1 for definiteness), we have

 



This relation may be regarded as the integral conservation law of momentum in the x direction. We expect that (9) and 
(10) remain valid even when discontinuities occur in the interior; for an outcrop region, however, a special treatment is 
needed as will be discussed later.

Here, the momentum flux in (10) is denoted by G:

 

which may be called tentatively the geostrophic function. From the integral (9), G can also be written as

 

so that G is determined provided that the wind forcing and the boundary values of h are prescribed. Figure 1  shows 

the distribution of G for two pairs of (λ, he). It is found that negative values of G are seen when h2
e/λ becomes small. If we 

set G = gc  const, the isolines of G are represented in parametric form as

 

We note that y = 0 is also an isoline of G as confirmed from (9), although (13) is invalid there. Actually, the two straight 

lines x = 1 and y = 0 are the asymptotes of (13) on which G = h2
e/2 (see Fig. 1 ). 

In the continuously differentiable part of the basin, the familiar Sverdrup interior can be reproduced from the integral (9) 
straightforwardly. Differentiating (9) with respect to y leads to

hhy − f y − β  = −λ(1 − x)τxy.(14)

 

Comparing this with (2), we have

 

which is indeed the Sverdrup function s given in (4). The corresponding expression for h is immediately obtained again 

from (9) with (15) as

 

and hence proves to be the same as hs in (5).
 

3. The possibility of discontinuities  

From the definition (11) with (13), we have the conservation law of G:

 

or equivalently,

h[hy + X′(y)hx] − f[ y + X′(y) x] − β  = 0,(18)
 



where

 

corresponds to the characteristic speed. Equation (17) is formally in characteristic form in the sense that the characteristic 
x = X(y) carries information from a latitude circle on which boundary values must be prescribed [cf. (8)]. Using (19) and 
(13), the Sverdrup function (15) may be represented as

 

Substitution of (20) into (18) yields

X′(y)(hhx − f x − λτ
x) + (hhy − f y) = 0,(21)

 

which is the linear combination of the original equations (1)–(2); the multiplier (X′, 1) is obviously the direction vector for 
the trajectory x = X(y). It turns out, therefore, that the conservation equation (17) is consistent with the original system (1)–
(2) under the Sverdrup constraint (15). 

The characteristic equation (17) suggests an important hyperbolic property of the Sverdrup interior: Discontinuous 
derivatives of G and hence discontinuities in h and  are possible on the characteristic x = X(y) (e.g., Whitham 1974, chap. 
5). This means that, when discontinuities occur at a point x = X1 (yi) along a particular initial latitude circle y = yi, 

information on those discontinuities propagates along the characteristic curve x = X1(y). From the integral conservation law 

(10), the required “jump condition”  across this characteristic is found to be

[G]X1(y)+
X1(y)− = 0,(22)

 

where y is treated as a parameter. Keeping this idea in mind, we can include an outcrop in the Sverdrup interior 
straightforwardly as will be shown in the next section.

It should be pointed out, however, that discontinuities in the flow must be associated with a delta-function structure of the 
wind forcing in the 1.5-layer model. Here, we avoid this difficulty by implicitly assuming that compensating transport occurs 
in the lower layer; a similar analysis of the 2-layer equations is presented in section 5. 

4. Inclusion of an outcrop  

Since over the outcrop h =  = 0 indicating that gc = 0 in (13), the surfacing line must be the zero contour of G:

 

(see Fig. 1 ). Similarly, a surfacing line for a zonal wind of the general form τx(x, y) is represented implicitly by

 

From this expression, we can confirm some well-known qualitative features of a surfacing line; that is, it shifts eastward 

as h2
e/λ decreases and does not exist where τx  0. We note that the equation for the surfacing line may be derived from 

the zonal momentum equation (1). 

Since there exists only one surfacing line over the basin (see Fig. 1 ) and since h  0 at the eastern boundary, the 
outcrop lies west of the surfacing line. Therefore, we have the following useful rule for determining the location of an 
outcrop geometrically: For the hyperbolic system (1)–(2), outcropping may occur where G  0. In the domain G  0, the 



values of h, , and G must be replaced by 0. Accordingly, the double-valued parts of the solutions for h and  are replaced 
by corresponding jump discontinuities. These discontinuities are acceptable for the reason mentioned in the preceding 
section. In this way, we may avoid the breakdown of the original equations (1)–(2) over the outcrop. In fact, using (15), 
(16), and (23), we can verify that

 

or concisely

[G]X0(y)+
X0(y)− = 0.(26)

 

That is, the jump condition (22) is satisfied across the surfacing line. Now the formal correspondence between the 
present analysis and the matching procedure developed by Parsons (1969) becomes clear. 

Finally, to get a physically consistent solution, the constant he may be determined from the prescribed total volume 

(Parsons 1969). In Fig. 1 , the values of he have been chosen so that the total volume is unity. 

Therefore, we are successful in reproducing the surfacing line in Parsons’  model using the inviscid equations (1)–(2) 
subject to (3) without further approximations. The integral conservation law of momentum (10) is employed in order to take 
into account discontinuities in the solution. We have shown that the surfacing line must lie on one of the G contours and 
appears as a “shock front”  across which the jump condition (26) is satisfied. 

5. The 2-layer model  

The 2-layer planetary geostrophic equations corresponding to (1)–(2) are

 

where p is the depth-independent pressure and an obvious notation is used for the quantities for each layer. The boundary 
condition is

 

With the moving lower layer, the Sverdrup function (4) means the barotropic transport, that is,

1 + 2 = s,(32)
 

so that the smoothness of the Ekman pumping is guaranteed.

Adding the upper-layer equations, (27) and (28), to the lower-layer equations, (29) and (30), gives

 

respectively, where H is the total depth. These equations are already in characteristic form, as in the case of the reduced-
gravity equations, leading to the following integral conservation laws of momentum:



 

where

 

In the nonoutcrop region, px and py may be eliminated from (27) and (28) using (33) and (34), respectively. Integrating 

the resulting equations, we have

 

where

 

which is the 2-layer analog of G in (11). Again, we assume that these integral conservation laws hold even for 
discontinuous solutions. If it is also assumed that h1 and 1 are at most as singular as the step function, the above integral 

constraints yield the following jump conditions:

 

An outcrop may be included in the present 2-layer system by defining a surfacing line as a front across which (42) is 
satisfied.

From the definition (40) with (38), we have the conservation law of G2:

 

where X(y) satisfies



 

Hence, when H is finite, characteristic curves for G2 cannot always be determined in advance because (44) depends on 

the solution h1. 

As a simple example, we consider the case when the lower layer is assumed to be in no-motion unless otherwise it 
outcrops. That is, the solution is given by

 

in the compensated region [cf. (4) and (5)] and

1 = 0, h1 = 0(47)
 

in the outcrop. We must replace the double-valued part of this solution by a suitable front, that is, a surfacing line x = X0
(y). Applying (45)–(47) to the jump condition (42), we have

 

hence the surfacing line is represented by

 

Figure 2  illustrates some surfacing lines for different values of H calculated numerically using (49). The value of he 

for each case is chosen so that the total volume of the upper layer is unity under the assumption that the outcrop lies west of 
the surfacing line, as before. For H = 20, the configuration of the surfacing line is in good qualitative agreement with that for 
the reduced-gravity model as expected. As H decreases, the outcrop shifts southward and can even be detached from the 
northern boundary. Kamenkovich and Reznik (1972) carried out perturbation analysis of 2-layer planetary geostrophic 
equations in order to obtain asymptotic solutions in powers of 1/H. They correctly predicted the northwestward deflection 
of the separated boundary current near the northern boundary. We note that (49) is exact for any H provided that the 
submerged portion of the lower layer is completely compensated, although compensation may be imperfect in reality when 
H is small. 
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Fig. 1. Contours of G for (a) λ = 0.13, he = 0.785 and (b) λ = 0.53, he = 0.51 (β = 0.55 in common). Also shown is the asymptote y 

= 0 denoted by the dotted line. The region of negative values is shaded.
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Fig. 2. Surfacing lines in the two-layer model for different values of H when the lower layer is perfectly compensated: (a) H = 20, 
(b) H = 10, (c) H = 5, and (d) H = 3. 
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