
Sign in  

AMS Journals Online

AMS Home  Journals Home  Journal Archive  Subscribe  For Authors  Help  Advanced Search            Search

Full Text View
Volume 29, Issue 9 (September 1999) 

Journal of Physical Oceanography
Article: pp. 2183–2190 | Abstract | PDF (154K) 

The Observed Dispersion Relationship for North Pacific Rossby Wave Motions 

Xiaoyun Zang and Carl Wunsch

Program in Atmospheres, Oceans, and Climate, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 
Cambridge, Massachusetts

(Manuscript received June 3, 1998, in final form September 8, 1998)

DOI: 10.1175/1520-0485(1999)029<2183:TODRFN>2.0.CO;2 

 
ABSTRACT

The phase speeds of ocean surface height variability obtained by analyzing 
the time–longitude sections of altimetric anomalies have been widely 
reported as being generally faster than those of free, first baroclinic linear 
mode flat-bottom Rossby (planetary) waves. In contrast to previous 
analyses, extraction of the different signals in the time–longitude domain is 
performed here by array processing methods better able to separate 
different frequency and wavenumber bands. Although an incomplete 
description of oceanic variability in the North Pacific, real oceanic motions 
with energy levels varying from about 10% to 40% of the total in each 
frequency band are indistinguishable from the simplest theoretical 
description. At higher latitudes, as the linear waves slow, they disappear 
altogether. Nonequatorial latitudes display some energy with frequencies too 
high for consistency with linear theory; this energy produces a positive bias 
if a lumped average westward phase speed is computed for all the motions 
present.

1. Introduction  

Rossby, or planetary, waves are the fundamental low-frequency modes of 
the ocean circulation. In a recent paper, Chelton and Schlax (1996, hereafter 
CS) used observations of sea surface topography from satellite altimetry to 
conclude that there was a systematic discrepancy between the linear theory for 
the zonal phase speed cn of these waves and what they were observing in a 

frequency band between ½ and 2 cycles per year. Their result was immediately rationalized in several ways. Qiu et al. 
(1997), extending a previous study by White (1977), showed that motions that were the sum of a free wave plus a forced 
pattern could produce apparent zonal phase speeds near 2cn. Killworth et al. (1997) demonstrated that the presence of mean 
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zonal flows could affect phase propagation in two ways: through advection and through the modification of the mean 
potential vorticity gradient (the index of refraction for the waves).

The CS analysis was based upon “stacking”  longitude–time diagrams (their footnote number 28). But oceanic motions are 
fundamentally “broadband”  in character in both frequency and wavenumber terms (see, e.g., the spectral estimates of 
Wunsch and Stammer 1995; Stammer 1997a). A rigorous determination of phase velocity in a broadband situation requires 
isolating narrowband frequencies and wavenumbers so as to, among other things, clearly distinguish the phase and group 
velocities in longitude–time diagrams. Apart from the important question as to whether the low oceanic modes are in accord 
with theory, one seeks an understanding of the observed spectral distribution and its breakdown in directionally propagating 
components. Using wavelet transforms, Wang et al. (1998) identified two types of Rossby waves with different frequencies 
and wavenumbers along 25°S. Their particular method was unable to separate eastward- from westward-going motion 
however, and no estimates of uncertainty could be provided.

In this paper, we revisit the CS analysis in the North Pacific Ocean, but employ standard array processing methods to 
produce narrowband frequency–wavenumber estimates. Anticipating the conclusions below, we find some motions at all 
locations that are indistinguishable from the results of the most elementary theory. The remaining energy requires more 
complex explanation.

2. A bit of theory and preliminary observations  

As in CS and in many other references, for the simplest case of linear, flat-bottom motions the dispersion relationship for 

Rossby waves1 can be written

 

Here σ is the frequency, (k, l) is the local Cartesian wavenumber, β is the meridional gradient of the Coriolis parameter, 
and Rn is the Rossby radius of deformation for vertical modes n = 0, 1, 2, . . . ; x, y are local Cartesian zonal and 

meridional coordinates. We make the convention σ > 0, k < 0 so that westward phase speeds cn < 0. (From here on, “phase 

speed”  is taken to be only the zonal component of velocity.) The barotropic mode, n = 0, has a deformation radius of 
thousands of kilometers, while R1 = O(35 km) with smaller values for correspondingly higher vertical modes. Both β and Rn 

are slowly varying functions of y, and these variations have practical consequences for the data analysis. Note that for any 
given mode at a fixed latitude, there is a maximum frequency (shortest period) given by

 

To the extent that waves satisfying Eq. (1) actually exist in the ocean, they manifest themselves at the sea surface by 
appearing along the surface σ(k, l, n). These waves are, in principle, separable by three-dimensional Fourier analysis. But the 
extent of the sea surface signature depends upon the vertical mode structure. In a study of current meter moorings, Wunsch 
(1997) inferred that the surface kinetic energy (surface slope) would be dominated over much of the globe by the first 
baroclinic mode, with higher modes tending to greater importance at low latitudes and near some boundaries. The barotropic 
mode, although often energetically dominant, is eclipsed at the sea surface by the intensification there of the vertical 
structures of the baroclinic modes. The situation for elevation, rather than slope, is less clear [but see the GCM results of 
Fukumori et al. (1998) showing strong barotropic dominance at high latitudes]. First-mode elevation dominance was 
assumed by CS, but one must anticipate contributions from all the modes.

3. Data and data processing  

Here, following CS, we use TOPEX/Poseidon (T/P) altimeter data, from the period 1 January 1993 to 21 September 
1997, edited and corrected as described by King et al. (1994) except for the use of a more recent tidal model. The dataset 
available to CS spanned about three years. Here the five years of data improves both the frequency resolution and the 
statistical reliability. TOPEX/Poseidon provides global sea surface height observations every 9.91 days. Data within an orbit 
cycle were assigned to a common time. This assignment will have a distorting effect on the result, but as will be seen, the 
results suggest it is not of first-order importance. The time mean was removed from each alongtrack point to obtain the 
time-dependent part, then a three block nonoverlapping time average was performed to filter out all motions with periods 
shorter than 59.5 days. The result is an array of elevation anomalies η ′( i, λi, t), where  is the latitude, λ the longitude, and 

t = 1Δt, 2Δt, . . . , 58Δt is a time index, with Δt = 29.7 days. A large, and large-scale, steric component exists at the annual 



period in the altimetric data (see Stammer 1997b); because dynamical effects at one year are of interest here, this 
contribution was not removed, and we rely upon the wavenumber rejection capability of our method to separate the k = 0 
contributions from others.

One of the difficulties with the study of Rossby waves is that the propagation is not only anisotropic, but also 
inhomogeneous. In particular, because the meridional variation of f(y) is not linear and Rn is a function of y (and x), the 

phase velocities are functions of latitude. Phase lines initially aligned with a meridian will “turn”  because the phase velocity is 
greater at low latitudes than at high latitudes (see Schopf et al. 1981). If the ocean occupied the entire globe, the proper basis 
set would be the spherical harmonics. In the present situation we represent the waves as sines and cosines in narrow latitude 
bands in a series of boxes depicted in Fig. 1  and listed in Table 1 . The latitude range is restricted to 0.2° so that the 
meridional changes are negligible. The longitude bands are sufficiently restricted that zonal variations in Rn are slight. 

Seven boxes, chosen somewhat arbitrarily to represent low, middle, and high Pacific latitudes as well as some degree of 
east–west dependence, are used. Consider any box centered at latitude 0. Then within the box, we can think of each 

position of an altimetric time series as though it were part of an array (see Fig. 2 ),

 

where xi(t) is the time series at pseudo-sensor i and analyze it by standard “beamforming”  techniques (e.g., Capon 1969; 

Lacoss 1971; Båth 1974; a brief summary is given in the appendix). An alternative procedure would be direct three-
dimensional least squares fitting of sines and cosines; array processing procedures are, however, efficient and convenient. 

Because of the “diamond pattern”  in which the satellite ground tracks cover the ocean, we can choose analysis positions 

i, λi within the boxes either with a regular or irregular spacing along and between these tracks. The zonal spacing between 

sensors is vanishingly small near where the descending and ascending arcs intersect. So-called data-adaptive techniques for 
array processing are well known, especially Capon’s (1969) method. These methods are most powerful when arrays are 
small and irregular, and the plane-wave signal-to-noise ratio is large. In the present case, we arrange for the data coverage to 
be fairly uniform and large scale, and the Capon method did not produce better results than did the more robust and 
conventional beamforming method. An attempt to examine high wavenumbers by employing a very disparate array spacing 
and the Capon method will be described briefly at the end.

After filtering, each “sensor”  has an altimetric time series xi(t) at intervals, Δt = 29.7 days, with duration T = 58Δt. To 

stabilize the cross-power estimates (see the appendix), frequency-band averaging was done over three adjacent values that 
thus sets the approximate frequency resolution of the analysis. Let the zonal width of the array (its aperture) be L, and let the 
smallest zonal spacing between any two elements be Δr (in kilometers). Beam forming produces estimates of the power 
density (σ, k, l) in a band of zonal wavenumbers, 2π/L  k  π/(Δr). Each box extends sufficiently far in the zonal 
direction to distinguish the first-mode baroclinic wave from motions at or near k = 0. This k-wavenumber band is separately 
computed for each of the resolved frequencies. Because the meridional aperture is so small, there is almost no resolving 
power in the meridional direction (wavenumber l), which is therefore, indistinguishable from l = 0 in the results. 

4. Results  

a. Area 4  

Consider Area 4, northwest of the Hawaiian chain. Figure 2  depicts positions for which altimetric time series were 
generated, thus defining the array. Figure 3a  shows the so-called beam pattern of the array, which can be interpreted as 
the apparent wavenumber spectrum that would be centered on wavenumber (k0, l0) if there were a monochromatic wave of 

this wavenumber at a fixed frequency crossing the array. Notice that only a very narrow meridional wavenumber band is 
shown because of the lack of resolution in the north–south direction. Figures 3b–f  show the result of the analysis at 
frequencies plotted as log10[ (σ, k, l)/ max(σ, k, l)] with an asterisk denoting the position of the computed maximum. As 

expected, the energy density is generally much larger for negative wavenumbers (westward phase velocity) than for 
eastward going motions. There is a finite background energy at all wavenumbers upon which the peaks are superimposed. 
This background continuum, which generally has more energy than is found in the plane-wave peak, requires separate 
study.

Because the analysis is essentially a two-dimensional (σ, k) one and the l = 0 waves are the fastest ones, Fig. 4  depicts 



the dispersion relations for the barotropic and first baroclinic modes in Area 4, with l = 0 (first baroclinic Rossby radii are 
from Chelton et al. 1998). The observed spectral peaks have been transferred from Fig. 3  to Fig. 4 , and an 
uncertainty estimate is generated from the confidence limits derived by Capon and Goodman (1970) and as described in the 
appendix. An indication of the relative strength of the peak is provided by the circle diameter. The only observed spectral 
peaks are on the longwave branch (wavenumbers below the wavenumber corresponding to the maximum frequency for 
mode 1). With one exception, at a frequency near 0.008 cycles/day (period 123 days), the observed peaks are 
indistinguishable within error estimates from the conventional linear dispersion curves. For the comparatively weak motions 
lying at frequencies σ > σ1−max the motions cannot be explained as linear baroclinic waves. The fraction of the energy lying 

in the observed peak varies from about 43% near 862-day period declining monotonically to about 11% at 157-day period. 

The zonal group velocity vanishes at σ = σn−max, and under some circumstances (e.g., Wunsch and Gill 1976) one 

anticipates an energy density maximum here in a form of resonance. We see no evidence for such motions.

1) PHASE SPEED 

By definition, the (zonal) phase speed of a wave is c = σ/k, the slope of the dispersion curve. For those frequencies and 
wavenumbers in Fig. 4  lying on or near the dispersion curves, the observed and theoretical phase speeds are in accord 
within the uncertainty limits. At higher frequencies (or absolute wavenumbers), the observed frequencies are systematically 
higher than the first baroclinic dispersion curve would permit. The average slope of the empirical dispersion curve is higher 
than the theoretical mean slope and one thus has a positive phase speed bias. If we rule out the possibility that the waves are 
barotropic motions with too low a phase speed, then one could fairly conclude that these waves are moving faster than 
theory permits.

Equally appealing, however, would be their description as motions not simply consistent with linear dynamics. Many 
sources of such motions are known, including wind forcing, instabilities, nonlinear self-interactions, etc. On smaller scales 
(mesoscale), the existence of baroclinic motions not satisfying linear dispersion relations has been known for a long time 
(e.g., The MODE Group 1978). Thus, if all the motions lying within a finite frequency band are used to compute an 
apparent overall phase velocity, irrespective of the physics present, there is clearly a bias toward large values. But the 
separation into distinct frequency and wavenumber regions shows that much of the motion is not in conflict with the 
simplest linear theory.

b. Other areas  

The frequency–zonal wavenumber spectra for the remaining areas analyzed here are shown in Fig. 5 . In Area 1 (Fig. 
5a ), most peaks are located at k = 0. These motions have zonal scales larger than the array aperture and can be due to 
large-scale barotropic motions or steric forcing on large zonal scales (annual cycle heating) or both. Only two peaks are not 
located at k = 0 and they agree very well with the dispersion curve for first baroclinic Rossby waves, but carry only about 
10% of the energy. Here again, a lumped apparent phase speed would be biased high.

As shown in Fig. 1 , the latitudes of Areas 2 and 3 are the same, east and west respectively of the Hawaiian chain. The 
frequency–zonal wavenumber spectra for these areas are shown in Figs. 5b,c . As indicated in Table 1 , long first 
baroclinic mode waves propagate faster in the western parts of the basin. This zonal change of phase speed is a result of the 
deepening of the thermocline in the west (Chelton et al. 1998). At the annual frequency band, Area 3 is dominated by a first 
baroclinic Rossby wave, whereas Area 2 is dominated by a signal indistinguishable from zonal uniformity (k = 0), which is 
presumably the steric contribution alluded to above. One explanation for this difference (e.g., Chelton and Schlax 1996) is 
that the Hawaiian Ridge generates a westward moving train of annual-period Rossby waves. Figures 5b and 5c  show 
that at low frequencies the observed spectral peaks are located either very close to the baroclinic dispersion curve (around 
20% of the total energy) or at the axis, k = 0. At frequencies higher than σ1−max, the observed spectral peaks are situated 

between the barotropic and first baroclinic Rossby wave dispersion curves.

As the latitude increases, the maximum frequency and the phase speed of the lowest baroclinic mode (the fastest 
baroclinic mode) decrease. Whatever baroclinic motion is present above σ1−max, it cannot be a linear flat-bottom mode. Even 

where the waves are present in linear theory, they become much more susceptible to the various effects described by 
Killworth et al. (1997) and others. 

White (1977) inferred the existence of annual-period baroclinic Rossby waves in the tropical Pacific and suggested that 
they are generated by the annual-period wind forcing. Here we find that only Areas 3 and 4 show such waves significantly 
present. Other regions are dominated by energy indistinguishable from k = 0 and which may be spectral leakage from the 
annual period.



Within the equatorial band from 10°N to 10°S, CS (their Fig. 5 ) found that apparent westward phase speeds were 
smaller than the theoretical value. At these latitudes, one expects that higher modes should become more prominent, and this 
is observed in current meter records (e.g., Wunsch l997) and in data from profiling devices (e.g., Eriksen 1981). The 
unaccounted-for-presence of high modes is consistent with a negatively biased value for c1. Furthermore, around the 

equator eastward propagating Kelvin and mixed Rossby–gravity wave modes become possible. The equatorial band is thus 
worthy of special attention, and it will not be further discussed here.

c. The short-wavelength limit  

High-resolution methods permit one to use irregularly spaced arrays to seek waves whose wavelengths are set by the 
Nyquist wavelength of the shortest lateral separation. Robustness of the results is dependent upon signal-to-noise ratios and 
the actual array configuration. An attempt was made in Area 4 to determine the wavenumber spectrum at wavenumbers 
beyond those corresponding to σ1−max, the short-wavelength branch. No statistically significant peaks above the background 

energy could be found, and we will not discuss these results any further.

5. Discussion  

We find a significant fraction of the energy present in the North Pacific Ocean is consistent with the linear Rossby wave 
dispersion relation Eq. (1). The remaining energy is not so consistent, and we believe that the results of CS are readily 
explained through the general mechanisms, if not all the details, described by Qiu et al. (1997), Killworth et al. (1997), and 
the wider literature on generalizations to more complex conditions of the linear theory. One has in part an interference 
pattern of free motions consistent with linear physics, superimposed upon forced motions of various types. In any fixed 
wavenumber band, there exist some motions with frequencies lying above the dispersion curve for first baroclinic modes. 
These motions produce lumped westward phase speeds that are generally too high for the linear theory. It is almost a 
semantic distinction as to whether the motion is best described as linear Rossby waves with the “wrong”  frequency, or 
simply as oceanic motions not satisfying the dispersion relation. At most latitudes, there is significant energy that does 
appear consistent within present error estimates with the linear dispersion relationship.

The question raised by CS as to why cn is too large now becomes instead the question of why frequencies become 

preferentially too high as wavenumber magnitudes increase. Presumably the answer to this question is some combination of 
the answer given by Killworth et al. (1997), the mode coupling of the barotropic and baroclinic modes known to occur in 
some regions (e.g., Wunsch 1997), and the space–time structure of the atmospheric forcing. Many reasons can be found 
for the existence of motions inconsistent with the first baroclinic mode of a resting flat-bottom ocean, including the presence 
of the barotropic mode, higher baroclinic modes, advection, topography, and forcing.

At higher latitudes, as the waves slow, and ultimately disappear at frequencies accessible with existing datasets, nonlinear 
effects as well as background distortions of the potential vorticity gradient (e.g., Killworth et al. 1997) can dominate the 
spectrum; eventually there is no evidence for linear waves at all.

The T/P dataset is now over six years in length and growing. With more data available, the analysis is being extended 
globally and to higher latitudes as part of a continuing effort to produce a fully quantitative estimate of ocean variability 
(Zang 1999, Ph.D. thesis in preparation). Eventually greater stability and higher-frequency resolution for the results will be 
obtained.
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APPENDIX  

6. Beam Forming  

Beamforming techniques are a “delay and sum”  form of processing in the Fourier frequency–wavenumber domain. Data, 
xi(t), at each position are temporally bandpass filtered, by ordinary fast Fourier transform, in a narrow band surrounding 

temporal frequency σ, generating the Fourier transforms i(σ). All cross-power combinations Pij(σ) = ‹ i(σ) j(σ)*›  are 

formed (the asterisk denotes complex conjugation and the angle bracket average is estimated by frequency-band averaging). 
Denote the vector separation between positions i, j as Δrij. The estimated dominant wavenumber present is obtained from 

the maximum over all plausible wavenumbers, k  of



 

and the “beam pattern”  is the field  over k  evaluated in the presence of a single, monochromatic plane wave exp(ik0 · r 

− iσt). Unlike methods based upon multidimensional fast Fourier methods, the spatial separations Δrij can be quite irregular. 

Oceanographic applications of this and related methods may be seen, for example, in Wunsch and Hendry (1972) and 
elsewhere.

The basic frequency resolution of this form of analysis is given by the reciprocal of the data duration, reduced by the 
frequency-band averaging as in an ordinary power density spectral estimate; the highest frequency estimated is given by the 
normal Nyquist criterion (data are uniformly spaced in time). Wavenumber resolution is similarly determined by the zonal 
array dimension with the spatial Nyquist determined, theoretically, by the smallest available zonal spatial separation. Because 
the data positions need not be uniformly spaced, the actual practical Nyquist wavenumber is dependent upon the signal-to-
noise ratio.

So-called high-resolution methods, such as that of Capon (1969), are analogous to maximum entropy and related methods 
that rely upon strong assumptions about the nature of the signal present—in this particular case, upon the assumption that 
monochromatic plane waves dominate. If the assumption is true, one can obtain strong results.

Assuming the sensor outputs to be stationary Gaussian processes, Capon and Goodman (1970) showed that the random 
variable (σ, k, l) is a multiple of a chi-square variable with 2M degrees of freedom, where M is the number of frequency 
bands averaged. In the present study, there are thus about six degrees of freedom. The uncertainty limits in zonal 
wavenumbers in Fig. 4  represent those wavenumbers where the background energy surrounding the apparent peak is 
larger than or equal to the lower limit of the 95% confidence interval.

Tables  

Table 1. Areas chosen to analyze the frequency–wavenumber spectra. Zonal and meridional ranges, first baroclinic Rossby 
radius of deformation R1 (Chelton et al. 1998), theoretical fastest phase speed of the first baroclinic long Rossby wave C1−max = 

−βR2
1, and the minimum period of the first baroclinic Rossby waves in each region T1−min = 2π/σ1−max. 
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Figures  
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Fig. 1. Rectangles are the seven areas chosen to study the frequency wavenumber spectrum of sea surface height variability. 
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Fig. 2. Array geometry in Area 4. The position of each “sensor”  is marked by a star and corresponds to a position on the 
TOPEX/Poseidon subsatellite track.
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Fig. 3. The beam pattern (a) (see appendix) for the array in Fig. 2 . The frequency wavenumber spectra (σ, k, l) for Area 4 
at angular frequencies (periods), σ/2π (in cycles/day) (T = 2π/σ in days) for (b) 0.0151 (66), (c) 0.0133 (75), (d) 0.0116 (86), (e) 0.0099 
(101), (f) 0.0081 (123), (g) 0.0064 (157), (h) 0.0046 (216), (i) 0.0029 (345), and (j) 0.001 16 (862) cpd (days). The contour levels are the 
same in each panel and vary from 0 to −0.9 in steps of −0.3. The units of east–west wavenumber and north–south wavenumber 
are cycles per 1000 km and cycles per 1 km, respectively. The observed spectral peak in each frequency band is marked by a star. 
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Fig. 4. Frequency–zonal wavenumber spectra of Area 4. The peak in each frequency band in Fig. 3  is indicated by a dot 
here. The magnitude of each peak is denoted by the size of the circle around that peak. The dash–dot and solid curves denote 
the barotropic and first baroclinic Rossby wave dispersion curves with l = 0, respectively. At the lowest frequencies, the 
barotropic curve is visually indistinguishable from k  = 0. Uncertainty estimates are derived from the 95% confidence interval 
(Capon and Goodman 1970) for the peak values; see the appendix. The zonal wavenumber interval represents those 
wavenumbers where the background energy surrounding the apparent peak is larger than or equal to the lower limit of the 
confidence interval.
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Fig. 5. Same as in Fig. 4  except (a) for Area 1, (b) Area 2, (c) Area 3, (d) Area 5, (e) Area 6, and (f) Area 7. 

 

 

1 Platzman (1968) provides a history of what have come to be called Rossby waves.

 

Corresponding author address: Xiaoyun Zang, Program in Atmospheres, Oceans, and Climate, Dept. of Earth, Atmospheric and Planetary 
Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.

E-mail: xiaoyun@pimms.mit.edu, cwunsch@pond.mit.edu 



 

 

 

© 2008 American Meteorological Society Privacy Policy and Disclaimer 
 Headquarters: 45 Beacon Street Boston, MA 02108-3693  
  DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 
 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718 
Allen Press, Inc. assists in the online publication of AMS journals.  

 


