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ABSTRACT

An hierarchy of ocean models is used to investigate the dynamics of the 
eastward surface jets that develop along the Indian Ocean equator during the 
spring and fall, the Wyrtki jets (WJs). The models vary in dynamical complexity 
from 2½-layer to 4½-layer systems, the latter including active thermodynamics, 
mixed layer physics, and salinity. To help identify processes, both linear and 
nonlinear solutions are obtained at each step in the hierarchy. Specific processes 
assessed are as follows: direct forcing by the wind, reflected Rossby waves, 
resonance, mixed layer shear, salinity effects, and the influence of the Maldive 
Islands. In addition, the sensitivity of solutions to forcing by different wind 
products is reported.

Consistent with previous studies, the authors find that direct forcing by the 
wind is the dominant forcing mechanism of the WJs, accounting for 81% of 
their amplitude when there is a mixed layer. Reflected Rossby waves, 
resonance, and mixed layer shear are all necessary to produce jets with realistic 
strength and structure. Completely new results are that precipitation during the 
summer and fall considerably strengthens the fall WJ in the eastern ocean by 
thinning the mixed layer, and that the Maldive Islands help both jets to attain 
roughly equal strengths.

In both the ship-drift data and the authors’  “best”  solution (i.e., the solution to 
the highest model in the authors’  hierarchy), the semiannual response is more 
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than twice as large as the annual one, even though the corresponding wind 
components have comparable amplitudes. Causes of this difference are as 
follows: the complex zonal structure of the annual wind, which limits the 
directly forced response at the annual frequency;resonance with the semiannual 
wind; and mixed layer shear flow, which interferes constructively (destructively) with the rest of the response for the 
semiannual (annual) component. Even in the most realistic solution, however, the annual component still weakens the 
fall WJ and strengthens the spring one in the central ocean, in contrast to the ship-drift data; this model/data 
discrepancy may result from model deficiencies, inaccurate driving winds, or from windage errors in the ship-drift 
data themselves.

1. Introduction  

a. Observations  

Ship-drift climatology indicates that the surface currents in the equatorial Indian Ocean reverse direction four times a year, 
flowing westward during the winter, weakly westward in the central and western ocean during the summer, and strongly 
eastward during the spring and fall (Fig. 1a ; after Mariano et al. 1995). The eastward currents were first pointed out by 
Wyrtki (1973), and they are now commonly referred to as Wyrtki jets (WJs), a convention that we follow throughout this 

paper. Note that the two WJs have roughly the same strength, with the fall one (100 cm s−1) being somewhat stronger than 

the spring one (90 cm s−1). (The data have been smoothed as described in the caption to Fig. 1 . Maximum speeds of the 

unsmoothed data can exceed 120 cm s−1). Direct current measurements at Gan Island (0.5°S, 73°E) support this result, 

showing that the fall jet in 1973 (102 cm s−1) was somewhat stronger than either the preceding or following spring jets (94 

and 84 cm s−1) (Knox 1976; McPhaden 1982). Other data, however, suggest that one or the other of the two jets is 

significantly stronger. For example, drifter climatology indicates that the fall jet (75 cm s−1) is stronger than the spring one 

(50 cm s−1) at 70°E (Molinari et al. 1990). Conversely, geostrophic calculations based on the Tropical Ocean Global 
Atmosphere (TOGA) World Ocean Circulation Experiment (WOCE) XBT data of 1986–89 indicate that the spring jet had 
greater transport than the fall one near 80°E (Donguy and Meyers 1995). Such differences are expected from short data 
records, given that the WJs exhibit significant interannual variability (Knox 1976; McPhaden 1982; Anderson and Carrington 
1993; Reppin et al. 1998). Currently, then, the ship-drift observations are the only dataset that is long enough to estimate a 
reliable WJ climatology.

The total currents in Fig. 1  are dominated by contributions from their time-averaged mean, annual, and semiannual 

Fourier components (>85%). The mean flow is eastward in the interior ocean, attaining a maximum speed of 32 cm s−1 at 
80°E. The maximum amplitude of the annual component occurs at the western boundary due to the annually reversing 

Somali Current, but there is also a significant relative maximum (25 cm s−1) in the central ocean. The maximum amplitude 

of the semiannual component occurs in the central ocean (70 cm s−1), and is nearly three times as strong as the annual 
component there. Higher-frequency contributions do not have an organized structure, and hence appear to be noise. Their 
contribution to the total current, however, is not insignificant. For example, a superposition of the mean, annual, and 

semiannual components in Fig. 1  produces a fall WJ that is about 30 cm s−1 stronger than the spring one; it is the 
higher-frequency components (primarily the 4-month variability) that eliminate this tendency. 

Like the currents, the climatological equatorial zonal wind stress is also dominated by its time-averaged mean, annual, and 
semiannual components [Fig. 2 ; based on 1970–96 Florida State University (FSU) monthly mean winds; Legler et al. 

(1989)]. The mean wind is eastward in the ocean interior and has an amplitude of 0.3 dyn cm−2 at 80°E. The maximum 
amplitude of the annual component (Fig. 2c ) is located near the western boundary, and is associated with the monsoon 
winds off Somalia. There are also two relative maxima centered near 82°E and near the eastern boundary, due to monsoon 
winds extending southward from the east coast of India and along Indonesia, respectively. The semiannual component has 
westerlies in the spring and fall during the transition seasons between the two monsoons, and it has a simple structure with a 
single maximum located in midocean. Presumably, these two wind components drive the corresponding current fields in Fig. 
1 . It is noteworthy, then, that the oceanic response is so strongly dominated by the semiannual component, even though 
the two wind components have roughly equal amplitudes in the interior ocean.

b. Dynamical background  

Idealized modeling studies and data analyses have suggested the importance of several processes in WJ dynamics. These 
processes include direct forcing by the wind, propagating waves, mixed layer shear, and resonance.



In his original paper, Wyrtki (1973) suggested that the eastward jets were directly forced by the equatorial westerlies 
between the two monsoons. Shortly thereafter, O’Brien and Hurlburt (1974) used a two-layer model to demonstrate 
theoretically that a strong eastward jet does develop as a direct response to switched-on westerlies. They also noted that 
Rossby waves reflected from the eastern boundary of their model basin were an important part of the response, tending to 
cancel the directly forced eastward jet two months after the wind onset. The analyses of Knox (1976) and McPhaden 
(1982), based on a current record obtained near Gan Island (0°41′S, 73°10′E), confirmed the importance of direct wind 
forcing. Knox (1976) determined further that the pressure gradient term was a significant part of the zonal momentum 
balance at Gan, indicating the importance of remote forcing by propagating equatorially trapped waves. McPhaden (1982) 
later noted the presence of signals with vertical phase propagation there, an almost certain indicator of wave propagation. 

Cane (1980) studied equatorial currents using a 1½-layer model with a constant-thickness mixed layer embedded in the 
active layer. Wind-driven surface jets were strengthened in his solutions, essentially by concentrating them within the thinner 
mixed layer. Reverdin (1987) reached the same conclusion in his study of Indian Ocean annual variability. He utilized a 
continuously stratified, linear model in which the mixed layer was parameterized as a region of constant density at the top of 
a prescribed background density profile. The WJs were stronger when this region was thinner.

As noted above, reflected Rossby waves weaken the directly forced interior jet when the wind is switched on. When the 
wind is periodic, however, the Rossby waves can enhance the interior flow if the wind, and hence the directly forced jet, 
reverse direction by the time the reflected waves propagate back into the interior ocean. Indeed, Cane and Sarachik (1981) 
demonstrated that a single baroclinic mode can resonate with the forcing in this way. Let  be the forcing period, L be the 
basin width, and cn be the Kelvin wave speed of the nth baroclinic mode. Then, the response is resonant when

 

where m is a positive integer. According to (1), resonance occurs when  equals a multiple (m) of the time it takes a 
Kelvin wave to cross the basin (L/cn) and a first-meridional-mode (l = 1) Rossby wave to return (3L/cn). [Also see Cane and 

Moore (1981), who obtained an elegant closed expression for such a resonant mode.] Jensen (1993) argued that resonance 
of this sort involving the n = 2 baroclinic mode accounted for the relatively large amplitude of the semiannual response in his 
3½-layer, Indian Ocean model. 

There are now a number of models forced by realistic winds that can simulate circulations throughout the Indian Ocean 
quite well. Typically, however, these solutions have fall WJs that are weaker than the spring ones, particularly in the eastern 
ocean. For example, in Jensen’s (1993) solution to a 3½-layer model, the fall WJ is weaker than the spring one by about a 

third (see his Figs. 4 , 5, and 6 ). In McCreary et al.’s (1993; henceforth MKM)1 solution to a 2½-layer model, the 

strength of the fall jet is typically only 20 cm s−1 or less east of 60°E. In Anderson et al.’s (1993) GCM solution, the 

maximum speed of the spring jet is greater than 120 cm s−1, whereas that for the fall one is only about 70 cm s−1. In 

Vinayachandran’s (1995) GCM solution, the spring and fall maxima are 113 cm s−1 and 95 cm s−1, respectively, but the fall 
one is unrealistically weak in the eastern ocean.

c. Present research  

The goals of this study are to isolate and to quantify the processes that determine the WJs. Specifically, we wish to assess 
how much each of the processes noted above (i.e., direct wind forcing, reflected Rossby waves, mixed layer shear, and 
resonance) contributes to WJ strength. We also investigate the sensitivity of solutions to salinity variations (which affect 
mixed layer thickness), the presence of the Maldive Islands (that can block equatorially trapped waves), and forcing by 
different wind products. Finally, we seek to explain why the semiannual currents dominate the annual ones in the central 
basin, and why the spring jet tends to be stronger than the fall one in models.

For these purposes, we utilize a hierarchy of models that range in complexity from 2½-layer to 4½-layer systems, the 
latter including active thermodynamics, mixed layer physics, salinity variability, and the Maldives. Our approach is to 
progress from simpler to more complex systems, introducing processes in an orderly manner in order to produce a solution 
that simulates the WJs in the ship-drift climatology as closely as possible. 

2. The ocean models  

The models used are nonlinear and linear, 2½-layer, 3½-layer, and 4½-layer systems. The nonlinear ones are all similar to 
the model used by MKM, differing primarily in the inclusion of additional layers and salinity, and the linear ones are similar to 
the model used by McCreary et al. (1996, henceforth MHSS). Here, then, we provide only an overview of the models, 



focusing on aspects that differ significantly from the MKM and MHSS systems.

a. Structures  

Figure 3  illustrates the vertical structure of the nonlinear, 4½-layer model. It consists of four dynamically active layers 
with velocities vi = (ui, i), layer thicknesses hi, temperatures Ti, and salinities Si (i = 1, 2, 3, 4 is a layer index), overlying a 

deep inert ocean with temperature Td = 3°C and salinity Sd = 34.8 psu. The density of each layer is

ρi = ρ0(1 + αtTi + αsSi),(2)
 

where ρ0 = 1 g cm−3 is a typical oceanic density, and αt = −2.5 × 10−4 °C−1, and αs = 8 × 10−4 psu−1 are coefficients of 

thermal and salinity expansion. The layers correspond to either distinct oceanic regions or water-mass types: Layer 1 is the 
surface mixed layer, layer 2 is the region between the mixed layer and the thermocline (essentially the seasonal thermocline; 
MKM’s“fossil”  layer), layer 3 is the thermocline, and layer 4 is upper-intermediate water. Fluid is allowed to transfer 
between layers 1 and 2 and between layers 2 and 3 at velocities w1 and w2, respectively, but no mass exchange is allowed 

across the other interfaces. The systems are thermodynamically active in that Ti, Si, and ρi vary horizontally in response to 

surface heat and buoyancy fluxes, horizontal advection, entrainment, and detrainment. Finally, h1 and h2 are not allowed to 

become thinner than minimum values h1min = 20 m and h2min = 10 m. These minima are necessary to keep the model 

numerically stable, and solutions are not sensitive to their values provided they are sufficiently small. For example, there are 
no significant differences between solutions with h1min = 20 m and 10 m, but the WJs are 10%–15% weaker when h1min is 

increased to 35 m.

To ensure that SST does not become too cold in strong upwelling regions (like off Somalia), the density of the layer-3 
water that entrains into layer 2 is not ρ3, but rather

ρe = ρ0(1 + αtTe + αsS3),(3)
 

where Te = SSTmin(y) − 3°C and SSTmin(y) is the minimum value of observed SST along any latitude line y (see MKM, 

p. 187). This specification of ρe simulates the property that warmer water at the top of the thermocline entrains into layer 2, 

rather than water with the average layer temperature T3. 

The 3½-layer model differs from the 4½-layer one in that velocity shear between layers 1 and 2 is not allowed. It is 
obtained from the 4½-layer model by setting ρ1 = ρ2 = ρ in the pressure gradient fields, u1 = u2 = u, and 1 = 2 = , 

where q = (q1h1 + q2h2)/(h1 + h2). The resulting system consists of three dynamically independent layers, with a 

thermodynamic mixed layer imbedded in the upper active layer. The 2½-layer model is like the 3½-layer one, except that 
layer 4 is dropped. It is obtained from the 3½-layer code simply by setting S4 = Sd and T4 = Td. This system is most similar 

to the MKM model, differing only in the specification of w1 and that h2min  0. Because of the hierarchical arrangement of 

our solutions, salinity effects are excluded from the 2½-layer and 3½-layer models; this is accomplished by setting αs = 0. 

Linear models are also used, because it is possible to separate their solutions into vertical modes and into directly forced 
and reflected-wave parts. They are obtained by linearizing the nonlinear ones about a state of rest in which background layer 

thicknesses, temperatures, and salinities are set to constant values, Hi, T
*

i, and S*
i, and by setting w1 = w2 = 0. 

b. Across-interface velocities  

The across-interface velocities, w1 and w2, are a crucial part of the physics of the nonlinear models, as they determine all 

their vertical-mixing processes. They are represented as the sum of various processes by

 

For our purposes, the key process in these equations is wk, which specifies the entrainment into, and detrainment from, 



the mixed layer. Velocity ws parameterizes subduction of layer-2 water into layer 3, a process that is important primarily in 

the southern Indian Ocean; it is specified as in Eq. (7) of MKM except that here ws is set to zero within 5° of the equator. 

Velocity wr is a correction term that increases h1 until it is thick enough for the bulk Richardson number of layer 1 to be 

greater than or equal to ¼; it is needed only to keep the solution stable along the Somali coast where the current becomes 
very strong during the southwest monsoon. Terms w1c and w2c ensure that h1 and h2 never become thinner than their 

minimum thicknesses. The remaining two terms are proportional to the switch function , defined by  = 1, if h2 = h2min, 

and  = 0, otherwise. They ensure that when h2 = h2min (so that layer 2 is essentially not there), layer-1 entrainment, w′+1 = 

max(w′1, 0), acts at the bottom of layer 2 and subduction ws acts at the bottom of layer 1. 

Velocity wk is determined by Kraus–Turner (1967) physics according to

 

where

 

is the production of turbulent kinetic energy;

 

is the density jump at the base of the mixed layer; and

 

is the Monin–Obukhov depth. In these equations, h−1 is the layer-1 thickness at the previous time level, Δt is the model 

time step, Q is the net surface heating,  −   is evaporation minus precipitation, u  is the oceanic friction velocity, m = 1 is 

the wind-stirring coefficient, and g = 980 cm s−2 is the acceleration of gravity. The term δρ = 2.5 × 10−7 g cm−3 is 
included in (5c) only to ensure that the denominator of (5a) never vanishes, and it otherwise does not influence the solution. 
According to (5a), layer 1 entrains water from layer 2 when P > 0, and detrains instantly (i.e., in one time step of the 
integration) to the Monin–Obukhov depth hmo when P  0. According to (5c), if h2 is at its minimum thickness h2min, 

layer 1 will entrain water of density ρe from layer 3. 

c. Boundary conditions, forcing, and numerics  

The model basin resembles that of the actual Indian Ocean north of 29°S, and is shown in many figures of MKM. For the 
solutions discussed in section 3d, the basin includes a representation of the Maldive Islands consisting of two parts, the main 
island chain defined by the rectangular region 2°–6°N, 73°–74°E and Suvadiva Island represented by the single grid box 
centered at 0.75°N, 73.25°E. Basin and island boundaries are vertical walls, and no slip boundaries are applied there.

The southern boundary is open; zero-gradient boundary conditions with a damper on ui are applied there (see MKM), 



except for the thermocline layer (layer 3) for which water that enters the basin has a temperature of 15°C and a salinity of 
35.6 psu. Because the southern boundary is open, two correction “wedges”  are included in the southwestern corners of the 
basin to ensure that mass is conserved (see MKM). One of them, located in layer 3, ensures that mass is conserved in layers 
1, 2, and 3; the other, located in layer 4, ensures that mass is conserved in layer 4.

Unless specified otherwise, the wind stress, τ = ρaCD|V|V, used to force the model is the FSU monthly mean 

pseudostress |V|V averaged from 1970 to 1996 (Legler et al. 1989), with ρa = 0.001 175 g cm−3 and CD = 0.0015. In 

addition, monthly climatological fields of air temperature Ta, specific humidity, incoming solar radiation Qr, outgoing 

longwave radiation, and scalar wind wsc derived by Rao et al. (1989, 1991) are used to obtain the surface heat fluxes. The 

fluxes are determined from standard bulk formulae, using model SST (T1) in the calculation for the sensible and latent heat 

fluxes (McCreary and Kundu 1989; MKM). Precipitation P is provided by Legates and Willmott (1990). 

The oceanic friction velocity u  in (5b) is determined from wsc according to u  = γ1/3(C′D(ρa/ρ0) )½wsc, where C′D = 

0.0014, γ(wsc) = 1 + [1 − (wsc/wcr)
3]θ(wcr − wsc), θ is a step function, and wcr = 5 m s−1. Coefficient γ is a factor that 

strengthens u  at low wind speeds. We estimated its form using a year-long record of wind data from the central Arabian 
Sea (Weller et al. 1998).

For the nonlinear models, solutions are obtained by directly integrating the equations of motion for each layer. For the 
linear models, solutions are represented as expansions in vertical normal modes. In this case, equations of motion for each 
mode [like Eq. (3) in MHSS] are integrated numerically, and the total response is then the sum over the solutions for each 
mode. The modal decomposition requires calculating characteristic speeds cn and coupling thicknesses n for each mode. 

They are determined from the stratification parameters, Hi, T
*

i, and S*
i, which are specified to be annual-mean zonally 

averaged values of hi, Ti, and Si along the equator from a corresponding nonlinear solution. The forcing of each mode is τ/

n, so that the nondimensional coefficient n = / n,  = 100 m, measures how effectively each mode couples to the 

wind. Table 1  lists values of Hi, T
*

i, S
*

i, cn, and n for each of the linear models. 

Solutions are obtained on a grid of dimension Δx = Δy = 55 km, and are integrated forward in time with a time step of Δt 
= 1 h for all the models, except for the nonlinear, 4½-layer model for which Δt = 0.8 h. For the nonlinear models, both 

biharmonic and Laplacian mixing are included in all equations to control noise. The biharmonic coefficient is 1021 cm4 s−1, 

the Laplacian coefficients for momentum and temperature are 5 × 107 cm2 s−1, and those for salinity and layer thickness are 

107 cm2 s−1. For the linear models, only Laplacian mixing on momentum is included. 

All solutions are spun up from a state of rest beginning on 15 April. For the nonlinear solutions, initial values for 
temperatures are T1 = observed SST from Rao et al. (1989, 1991), T2 = Te, T3 = 15°C, and T4 = 9°C, those for salinity are 

S1 = S2 = sea surface salinity from Levitus and Boyer (1994) data, S3 = 35.4 psu, and S4 = 35 psu, and those for layer 

thicknesses are H1 = 35 m, H2 = 30 m, H3 = 300 m, and H4 = 400 m. Solutions are integrated for a period of 10 years and 

all figures shown are from year 9 to 10.

3. Results  

In this section, we present a hierarchy of solutions designed to isolate the processes that determine the WJs. Specifically, 
in section 3a we discuss solutions to the 2½-layer models, pointing out influences of direct forcing by the wind, reflected 
Rossby waves, and nonlinearities. In section 3b, we discuss solutions to the 3½-layer models, which have a near-resonant 
response due to the addition of the subthermocline layer. In section 3c, we report solutions to the 4½-layer models, which 
include a surface mixed layer. Finally, in sections 3d and 3e we report on the sensitivity of solutions to the Maldive Islands 
and to forcing by different wind products. To help understand solution properties and to identify key processes, at each step 
in the hierarchy we obtain solutions to both the linear and nonlinear models.

a. Solutions to the 2½-layer models  

1) NONLINEAR SOLUTION 

Figure 4  shows x–t plots of u1 averaged from 1°S to 1°N for the solution to the nonlinear, 2½-layer model (Fig. 4a 



), as well as its mean (Fig. 4b ), annual (Fig. 4c ), and semiannual (Fig. 4d ) components. Both WJs are 

somewhat weaker than the observed ones, attaining maximum speeds of 84 cm s−1 and 83 cm s−1 during the spring and 
fall, respectively (compare Figs. 1a  and 4a ). The fall WJ, however, is much weaker throughout the eastern ocean, 
with a distinct relative minimum near 75°E that is not present in the observations. A striking feature is a summertime velocity 

front that terminates the spring WJ; it develops near 85°E in May, propagates westward at a speed of 36 cm s−1, and 
dissipates near 65°E in August. A similar wintertime front terminates the fall WJ in the western ocean.

The overall structure of the response is captured by its mean, annual, and semiannual components. The mean flow 
strengthens from east to west, a structure quite different from that of the observed annual mean (Fig. 1b ). Isotachs tilt 
upward to the west for the annual component, again in contrast to the observations that have little or no tilt (Fig. 1c ). 

The structure of the semiannual component resembles that of the data, but its amplitude (46 cm s−1) is considerably weaker 

(Fig. 1d );nevertheless, it is still nearly twice as strong as the annual component (26 cm s−1). Higher-frequency 
contributions (not shown) act primarily to sharpen the velocity fronts. They also tend to increase current speeds in the 
vicinity of the fronts, intensifying the WJ maxima somewhat. For example, when only the mean, annual, and semiannual 

components are superposed, the maximum speeds of the spring and fall WJs are 79 and 67 cm s−1. 

2) LINEAR SOLUTION 

To isolate effects due to direct wind forcing and reflected waves, we obtained two solutions to the linear, 2½ layer model, 
one with and the other without a damper in the eastern equatorial ocean. For the solution with the damper, the eastern 
boundary of the basin is extended to 115°E, and there is no forcing in this extended area. The damper is applied in the region 
x > 107.5°E, −7.5° < y < 7.5°, and it relaxes the zonal-velocity and pressure fields of each mode to zero there (see MHSS 
for details). It efficiently absorbs equatorial Kelvin waves so that almost no Rossby waves reflect from the eastern boundary 
back into the ocean interior. Thus, the damped solution is the part of the total (i.e., undamped) solution that is independent 
of reflected Rossby waves, and we refer to it as the “forced”  response. (With this definition, the forced response includes 
effects due to Kelvin waves reflected from the western boundary. Nevertheless, it still is a useful measure of the part of the 
solution that is directly forced by the wind.) Conversely, the difference between the undamped and damped solutions is the 
part that is generated by Rossby waves reflected from the eastern boundary, and we refer to it as the “reflected wave”  
response.

Figure 5a  shows the undamped (total) solution that corresponds to the nonlinear solution in Fig. 4 . Generally, the 
two solutions are similar except for a few explainable differences discussed in sections 3a(4) and 3b(5), and this good 
agreement gives us confidence that conclusions based on the linear solution also apply to the nonlinear one. Figure 5b  
shows the annual and semiannual components of the directly forced (panels a and c) and reflected-wave (panels b and d) 
parts of the solution in Fig. 5a . According to the above definitions, it is also possible to split the mean component into 
directly forced and reflected-wave parts. They are not shown because the reflected-wave part is negligible so that the mean 
response in Fig. 5a  is well approximated by the directly forced part. 

(i) Forced response 

As for the nonlinear solution, the mean current increases westward. This is because the mean circulation is close to being 
in Sverdrup balance, for which u1 is proportional to the zonal integral of (curlτ)y. (In the model, the exact balance is 

prevented by horizontal mixing.) The structure of the annual forced response is rather complex, having a maximum near the 
western boundary and two relative maxima in the central and eastern ocean [Fig. 5b(a) ], a pattern that reflects the 
complex structure of the annual forcing (Fig. 2c ). In contrast, the structure of the semiannual forced response is much 
simpler, with isotachs having little or no tilt [Fig. 5b(c) ]. This simplicity happens because the semiannual winds also have 
a simple structure, consisting of a single maximum located in the central ocean (Fig. 2d ). 

(ii) Reflected-wave response 

From the isotach tilt, it is evident that the reflected-wave response is largely composed of signals with a westward 

propagation speed of about 45 cm s−1 [Figs. 5b(b) and 5b(d) ]. This property identifies them as being primarily l = 1, n = 

2 Rossby waves, which also have a speed of c2/3 = 45 cm s−1 (see Table 1 ). Indeed, the amplitude of the n = 2, 

semiannual reflected-wave contribution is 27.7 cm s−1, whereas that of the n = 1 mode is only 5.7 cm s−1. The total 
semiannual signal appears to propagate somewhat slower in the eastern ocean, largely due to interference with the n = 1 
waves.

(iii) Interference 



For the semiannual component, the reflected waves combine with the forced response to produce a distinct current 
maximum in the central-eastern ocean, and isotachs tilt slightly upward to the west [Figs. 5a(c) and (d)  and 5b(c) and 
(d) ]. For the annual component, however, the isotach tilt of the combination is large throughout the interior ocean [Fig. 
5a(c) ], significantly more than the tilt associated with a pure n = 2 Rossby wave [Figs. 5b(b) and 5b(d) ]. Apparently, 
then, the interference pattern between the annual, forced and reflected-wave responses is sensitive to details of the 
structures of each part, producing a total pattern that does not much resemble either part by itself. As we shall see, the 
annual components of the other solutions in our hierarchy also exhibit a similar sensitivity.

3) STRONG SEMIANNUAL COMPONENT 

The amplitude of the semiannual component in the linear solution is more than twice as large as the annual one throughout 
the interior ocean [Figs. 5a(c) and 5a(d) ]. As noted in the introduction, this dominance is somewhat surprising given that 
the wind components have roughly equal amplitudes in the interior ocean (Figs. 2c and 2d ). 

One cause of this property is direct forcing by the wind since, except for the western-boundary region, the semiannual 
forced response is more than twice as strong as the annual one [Figs. 5b(a) and 5a(c) ]. This property results from the 
different spatial structures of the semiannual and annual wind components, rather than their different frequencies. To 
demonstrate this, we obtained a damped solution forced by a wind field with the same spatial structure as the semiannual 
wind but oscillating at the annual period: The resulting forced response had a zonal structure and amplitude similar to those 
in Fig. 5b(c) . A second cause is that the semiannual, forced and reflected-wave parts interfere constructively at some 

point along the equator, increasing the total response by almost 20 cm s−1, whereas those for the annual component do not 
because of its lower frequency. These properties can be seen in Fig. 5b  in that positive (and negative) regions of the 
semiannual, forced and reflected-wave responses overlap over much of the central ocean, but those for the annual ones do 
not. These reasons also account for the strong semiannual components in the other linear solutions in our hierarchy, and we 
infer that they do so for the nonlinear solutions as well. A third cause involves flow within the mixed layer, and it is 
discussed in section 3c(3). 

4) WEAK FALL WJ 

Note that when the annual and semiannual components of u1 are superposed for both nonlinear and linear solutions, the 

annual component interferes destructively with the semiannual flow during the fall, thereby causing the relative minima of 
total u1 near 75°E and 64°E, respectively (Figs. 4  and 5a ). The linear solution suggests that the weakening results 

from both the directly forced and reflected-wave parts of the annual component, the former having westward flow during 
November and the latter causing the relative minimum near 64°E (Fig. 5b ). 

The annual component tends to weaken the fall WJ in all of our solutions. Interestingly, the structure of this component 
differs considerably among them. In the 2½-layer solutions discussed here, the isotach tilt in the linear solution is half that in 
the nonlinear one [Figs. 4c  and 5a(c) ]. In the solutions with mixed layer shear and the Maldives Islands discussed in 
sections 3c and 3d, its structure is changed even more (Figs. 8b  and 11 ), and in such a way that it affects the WJ 
maxima less.

5) NONLINEAR EFFECTS 

Finally, a comparison of nonlinear and linear solutions indicates that the summertime velocity front in Fig. 4  is 
generated by l = 1, n = 2 Rossby waves reflected from the eastern boundary. Note that both the annual and semiannual 
waves in Fig. 5b  change from positive to negative during May near 90°E, so that their combination produces a Rossby 
wave with the same velocity change as that associated with the front. In the nonlinear solution, this velocity change is 

subsequently sharpened and slowed (from 45 to 36 cm s−1) by the spring WJ to the west of it, thereby forming the front. 
(MKM also noted the presence of a similar front in their solution, concluding that it was an l = 1, n = 2 Rossby wave 
severely slowed by the spring WJ. They also conjectured that this wave caused the weak fall WJ in the eastern ocean of 
their solution. This is clearly not the case in our solution, as Fig. 4  shows no connection between the two features.) The 
other front in Fig. 4  also appears to be a Rossby wave slowed by the fall WJ, but it has no obvious relationship to 
eastern-boundary reflections. Both velocity fronts occur in the 3½-layer, nonlinear solution, and the spring front is present in 
the 4½-layer one. They are the most prominent nonlinear features in all of our solutions. 

b. Solutions to the 3½-layer models  

1) NONLINEAR AND LINEAR SOLUTIONS 

Figure 6  shows x–t plots of total, mean, annual, and semiannual components of u1 along the equator for the solution to 



the nonlinear, 3½-layer model. The maximum speed of the spring WJ is 96 cm s−1, considerably stronger than in the 2½-
layer solution (Figs. 4a  and 6a ). The fall WJ maximum speed actually weakens somewhat, but the relative maximum 

in the eastern ocean strengthens significantly from 36 cm s−1 to 45 cm s−1. The mean and annual components are little 
changed (Figs. 4b, 4c , 6b, and 6c ). Thus, the strengthened WJs result mostly from the intensified semiannual 

component, the amplitude of which increases from 46 to 54 cm s−1. 

The corresponding linear solutions are so similar in structure to their 2½-layer counterparts in Figs. 5a  and 5b  that 
there is no need to display them. Moreover, the amplitudes of all the annual parts (i.e., the total, forced, and reflected-wave 

parts) and of the semiannual forced response are also very similar, typically differing by 1 cm s−1 or less. The only 
significant difference between the two linear solutions is that the amplitude of the semiannual component of the 3½-layer 

solution is larger by 18 cm s−1 (73 cm s−1 as compared to 55 cm s−1), and this increase is due almost entirely to stronger 

reflected waves. Of this increase, about 8 cm s−1 is due to stronger reflected waves for the n = 2 baroclinic mode, and 6 

cm s−1 results from n = 3 reflected waves not present in the 2½-layer model. The remaining 4 cm s−1 is due to n = 1 
reflected waves: they tend to weaken the semiannual component in both solutions, and their amplitude is decreased in the 
3½-layer solution. 

2) RESONANCE 

The property that only the reflected-wave part of the semiannual response strengthens, suggests that resonance may be 
the cause of the increase. To investigate this possibility, we obtained a series of test runs for a single mode, varying its 

characteristic speed cn from 20 to 400 cm s−1 every 5 cm s−1. For each solution, forcing was the semiannual component of 

the FSU winds and the coupling thickness n was fixed to  = 100 m. Figure 7  plots the resulting maxima of zonal 

velocity along the equator on 15 November (the date of the fall maximum) for the total currents, u1max (thick curve), and 

for the reflected-wave parts, u′1max (thin curve). The figure also plots equatorial zonal velocity for the reflected-wave parts 

of each test solution at 78°E, u"
1 (thin-dashed curve), a location near the maximum of the semiannual flow in both the 2½-

layer and 3½-layer solutions; this curve is useful for discussing how resonance affects jet strength. 

The two solid curves exhibit two distinct peaks: a primary one centered near cn = 165 cm s−1, and a secondary one near 

cn = 95 cm s−1. (The thin-dashed curve has only one peak because maxima of the reflected-wave parts for cn values 

centered about 95 cm s−1 are localized near 85°E, and so are missed at 78°E.) Note that the peaks do not appear in the 
difference between the two solid curves (a measure of the directly forced response), which remains relatively constant for 
all cn. Therefore, the peaks are associated entirely with the reflected-wave parts, a compelling indication that resonance is 

their cause.

As mentioned in the introduction, Eq. (1) provides a theoretical criterion for resonance based on the Cane and Sarachik 
(1981) idealized solution. In our model, the width of the basin at the equator is L = 6327 km. When  is the semiannual 

period, (1) yields cn = 163 cm s−1 when m = 1, and cn = 82 cm s−1 when m = 2, both resonant speeds close to the values 

determined from Fig. 7 . The resonance peaks, however, are much broader than they are in the Cane and Sarachik (1981) 
solution (see their Fig. 1 ); this is because our model does not assume the long-wavelength approximation, has a realistic 

shape, and is viscid. Jensen (1993) obtained a similar suite of solutions but found a smaller resonance speed of 140 cm s−1 
for the m = 1 peak, apparently because his basin width was 8° narrower than ours. 

Values of c2 for the 2½-layer and 3½-layer models are 134 and 162 cm s−1, respectively (Table 1 ), so that the n = 2 

mode is closer to the resonance peak in the latter model than it is in the former. Mode-2 contributions to the reflected-wave 

parts of solutions can be determined from Fig. 7  by the relation 2 = 2u"
1(c2); it yields 0.87 × 29 = 25 cm s−1 and 

0.71 × 47 = 33 cm s−1 for the 2½-layer and 3½-layer models, which accounts for the increase in amplitude of the n = 2, 

semiannual component noted above (8 cm s−1). Likewise, the amplitudes of the n = 3 and n = 1 reflected-wave responses 

estimated from Fig. 7  are 3 = 3u"
1(c3) = 6 cm s−1 and 1 = 1u"

1(c1) = −6 and −2 cm s−1 for the 2½-layer and 

3½-layer models, respectively, accounting for the aforementioned amplitude increase due to the n = 3 (6 cm s−1) and n = 1 

(4 cm s−1) semiannual components. We conclude that the semiannual component strengthens in the linear, 3½-layer model 
because c2 is shifted closer to the resonance peak and because some of the forcing is shifted from the n = 1 mode, which is 



well off the resonant peak (c1 = 323 or 375 cm s−1), to the n = 3 mode, which is much closer (c3 = 118 cm s−1). 

Does a shift toward resonance also account for the strengthening of the WJs in the nonlinear, 3½-layer solution? Such an 
inference is not straightforward, since it is not possible to separate cleanly the nonlinear solutions into forced and reflected 
parts. Moreover, properties of reflected Rossby waves can be significantly modified in the nonlinear model [section 3a(5)]. 
On the other hand, the tilt of the summertime velocity front in Fig. 6  is somewhat less than it is in Fig. 4 , indicating 

an increase in its propagation speed from 36 to 43 cm s−1; this supports the idea that n = 2 Rossby waves are propagating 
faster in the nonlinear, 3½-layer solution, and hence that the n = 2 semiannual response may be closer to the resonance peak. 
To test this idea further, we carried out a suite of test solutions using the nonlinear, 3½-layer (and 4½-layer) models, by 
varying Td from 0°C to 7°C. For each of the solutions, the maximum value of equatorial u1 for the semiannual components 

was noted, and a value for c2 was calculated as for the linear models. These data points are indicated in Fig. 7  by ×’s 

(and ’s), and they follow curves similar to the linear, resonance curves. 

c. Solutions to the 4½-layer models  

1) NONLINEAR SOLUTIONS 

Figures 8a  and 8b(a)  show x–t plots of equatorial u1 for solutions to the nonlinear, 4½-layer models without and 

with salinity, respectively. In the solution without salinity, the WJs are 10–20 cm s−1 stronger than they are in the 3½-layer 

solution, attaining maximum speeds during the spring (106 cm s−1) and fall (97 cm s−1) comparable to the observations, but 
the fall jet is still weak in the eastern ocean. In the solution with salinity, the fall WJ is strengthened by as much as 30 cm 

s−1 in the central and eastern ocean, in much better agreement with the data. 

In the latter solution, the mean component differs from those in Figs. 4  and 6 , attaining a maximum value near 82°
E and decreasing westward, as in the observations [Fig. 8b(b) ]. This structural change is significant because the mean 
maximum is now located near the location of the WJ maxima, and consequently it strengthens the WJs by roughly 25 cm 

s−1, 13 cm s−1 more than it does in the other solutions. The structure of the annual component is also altered considerably, 
the isotach tilt being absent or reversed in the western ocean, but its amplitude remains nearly unchanged [Fig. 8b(c) ]. In 

contrast, the amplitude of the semiannual component is 15 cm s−1 greater than it is in the 3½-layer model, and its structure 
is changed only in that its maxima are shifted westward by about 10° [Figs. 6d  and 8b(d) ; see section 3c(3)]. (The 
components for the solution without salinity, not shown, are similar to those in Fig. 8b , differing mostly in that the 

semiannual amplitude is weaker, and the annual one is stronger, by about 5 cm s−1.) 

2) MIXED LAYER SHEAR 

Recall that the nonlinear, 4½-layer models differ from the 3½-layer one in that they allow shear between layers 1 and 2 
(i.e., between the mixed layer and the seasonal thermocline), which suggests that the strengthened currents in Figs. 8a  
and 8b  result from the directly forced response being concentrated within a shallower layer. In support of this idea, 
maxima of equatorial u (defined in section 2a) for both 4½-layer solutions reduce to values similar to those in the nonlinear, 
3½-layer solution. In addition, Fig. 9  plots upper-layer thickness, h1 + h2, for the 3½-layer solution (Fig. 9a ) and h1 

for the two 4½-layer solutions (Figs. 9b and 9c ). As expected, a comparison of the thickness and velocity panels among 
the three solutions shows that currents are stronger in regions where the upper layer is thinner.

The thinning of h1 is particularly apparent in the nonlinear solution with salinity for the fall WJ, when it is thinner than in 

the solution without salinity by 50 m over much of the central-eastern ocean (Figs. 9b and 9c ). This marked thinning 
results from precipitation  during the summer and fall, which reduces or even reverses the production of turbulence P [Eq. 
(5b)] and increases the density jump at the bottom of layer 1, Δρ′. Both of these effects act to decrease wk [Eq. (5a)], 

thereby slowing or even reversing entrainment into layer 1. In this way, then, the eastern equatorial Indian Ocean is similar 
to the western Pacific warm-pool region, where strong precipitation forms a thin surface layer that traps momentum close 
to the surface (Vialard and Delecluse 1998; Soloviev et al. 1998). 

3) LINEAR SOLUTION 

The corresponding linear, 4½-layer solutions (not shown) also have much stronger WJs than the linear, 3½-layer solution 
does. Interestingly, their first three modes sum to produce a response very similar to the linear, 3½-layer solution, a 
similarity that holds for their mean, annual, and semiannual components as well. Thus, the stronger WJs result from the 
additional contribution of the n = 4 mode. The vertical structure of the currents associated with the n = 4 mode is described 



by the eigenvector 4 = (1.0, −1.04, 0.009, −0.0001) for the solution with salinity, and is essentially the same for the 

solution without salinity. Note that 4 has appreciable values only in layers 1 and 2 and with opposite signs. Thus, the mode-

4 currents generate a shear flow in the upper two layers and have virtually no effect in the deeper layers. In addition, Rossby 

waves do not exist for this mode because its characteristic speed (c4 = 23 cm s−1) is so low that even the annual frequency 

is higher than the Rossby wave high-frequency limit (Moore 1968; McCreary 1985); consequently, the mode-4 response has 
no reflected-wave part at all, and it is entirely directly forced. These properties provide additional support for the idea that 
the WJs are stronger in the nonlinear, 4½-layer solutions, simply because the mixed layer allows an additional directly 
forced, shear flow above the thermocline.

In both the nonlinear and linear solutions, the semiannual component is strengthened considerably by the shear-flow 
contribution, but the annual one is not. In the linear solution, this happens because contributions from mode 4 and modes 1–
3 interfere constructively for the semiannual current, with highs and lows coinciding over much of the basin, whereas they 
interfere destructively for the annual response. We infer that the difference happens in the nonlinear solution for similar 
reasons; that is, the additional shear flow interferes constructively only for the semiannual response.

Finally, it is worth mentioning that, although the semiannual component associated with modes 1–3 is virtually unchanged 
from that in the 3½-layer solution, its modal composition is quite different. In the 4½-layer solution, there is little 
contribution from mode 3 ( 3 = 0.08 for the solution with salinity) and more from mode 2 ( 2 increases from 0.71 to 

0.91). Therefore, in comparison to the 2½-layer solution, 14 cm s−1 of the increase in the total semiannual component (18 

cm s−1) results from c2 being shifted closer to the resonance peak, the remaining 4 cm s−1 being due to a weaker n = 1 

contribution.

4) COMPARISON TO OBSERVATIONS 

Levitus and Boyer (1994) and Levitus et al. (1994) data provides evidence that the mixed layer in the real ocean is thinned 
by precipitation, much as it is in our model. Figure 10  shows mixed layer thicknesses estimated from the data in two 

different ways: by the depths where temperature is 1°C less than SST h′m (Fig. 10a ) and where density is 0.000 25 g 

cm−2 greater than the surface density hm (Fig. 10b ). (Note that the density change associated with the temperature 

criterion is the same as that for the density criterion when αt = −2.5 × 10−4 °C−1.) The two thicknesses differ mostly in the 

eastern Indian Ocean where hm is significantly thinner than h′m throughout the year, particularly during October and 

November when it is thinner by nearly 50 m. We interpret this difference to indicate the presence of a thin mixed layer of 
fresher water due to the heavy precipitation in the eastern Indian Ocean, a structure similar to that in the western Pacific 
(Sprintall and Tomczak 1992; Murtugudde and Busalacchi 1998). 

The overall structure of the upper-layer thicknesses in the solutions (Fig. 9 ) compares favorably with the data, the 

fields in the upper two and bottom panels of Fig. 9  corresponding to h′m and hm, respectively. Even some details agree, 

with h′m being thickest in the eastern ocean during June and November, being shallowest during March, and having a band 

of high thicknesses that extends across the basin during the fall (upper panels of (Figs. 9a  and 10a ). In addition, 
salinity reduces the mixed layer thickness the most in the central and eastern ocean during October and November in both 
the solution and the data (Figs. 9b, 9c , and 10b ). 

d. Influence of the Maldive Islands  

1) NONLINEAR SOLUTIONS 

Figure 11a  shows x–t plots of equatorial u1 for a solution to the 4½-layer model with salinity in a basin that includes 

the Maldives (see section 2c). In contrast to the solution without the Maldives [Fig. 8b(a) ], the spring WJ maximum 

(near 80°E) is weaker by almost 20 cm s−1 and the fall maximum (near 65°E) is weaker by about 5 cm s−1. Note also that 
the spring WJ is weaker everywhere west of the islands (73°E) whereas the fall jet is less affected there.

The general decrease in amplitude of both WJs is caused by the mean and semiannual components (Figs. 11b and 11d 

), which are weaker than their counterparts in Fig. 8b  by about 5 and 10 cm s−1, respectively. Modifications to the 
relative strength of the jets result from changes in the annual component (Fig. 11c ), namely, its reduction in amplitude 
east of the islands and the time delay of extrema west of the island, which is more than 2 months in the central ocean. Both 



of these changes tend to weaken the spring WJ and to strengthen the fall one.

2) LINEAR SOLUTIONS 

To help understand how the Maldives influence wave propagation, we obtained a set of solutions to the linear, 4½-layer 
models with and without the Maldives, forced by the semiannual and annual components of the wind confined either west of 
65°E or east of 78°E. The solutions indicate that the islands have little effect on the transmission of Kelvin waves, consistent 
with the conclusions of Yoon (1981) and Cane and du Penhoat (1982). In contrast, Rossby waves are affected much more, 
with some energy being reflected and some transmitted. Additionally, in order to pass the Maldives, the portion of an 
incoming Rossby wave signal north of 2°N must first be channeled to the southern edge of the islands (at least to 2°N) via a 
western boundary current on their eastern side; as a result, the structure of the transmitted signal is altered significantly. 

The influence of the Maldives is particularly striking for the annual component, because they reflect part of the strong, 
annually reversing flow south of Sri Lanka (the Indian Monsoon Current) back into the eastern ocean along the equator and 
shift another part to be close to the equator west of the islands. This process accounts for most of the changes in structure 
of the annual component noted above. Effects of the Maldives are less noticeable for the structure of the semiannual 
component because the forcing excites low-order Rossby waves that are largely confined to, and symmetric about, the 
equator. As discussed next, however, they do alter the resonance properties of the system.

To investigate the effect of the islands on resonance, we repeated the series of test runs described in section 3b(2) when 
the basin included the Maldives. The thick-dashed curve in Fig. 7 , 1max, plots maxima of equatorial zonal velocity on 15 

November from this series, and so is analogous to u1max (thick curve in Fig. 7 ). A comparison of the two curves shows 

that the Maldives weaken the response near the stronger resonant peak by 13 cm s−1. To check the influence of each part of 
the Maldives, we also obtained similar series that consisted only of the main island chain and only of Suvadiva Island (see 
section 2c). With only the main island chain, 1max is almost unchanged from u1max, and is even somewhat larger near 73°E 

due to the channeling effect noted above. With only Suvadiva Island, 1max is less than u1max but at most by about 5 cm 

s−1. Thus, both parts of the Maldives reduce resonance but Suvadiva Island does so more strongly, as might be expected 
since it lies well within the equatorial waveguide.

3) COMPARISON TO SHIP-DRIFT DATA 

The total, mean, and semiannual components in the nonlinear solution compare reasonably well with the ship-drift 
observations (except for their having somewhat weaker amplitudes), but the annual component does not (Figs. 1  and 11 

). It differs mostly in the eastern ocean where it is almost eliminated by reflected waves, but also in the western ocean 
where it is shifted in phase by 1 month (Figs. 1c  and 11c ). This model–data discrepancy may indicate that the locally 
forced response is underestimated in our solution. Alternatively, it may point toward errors in the ship-drift data: windage 
error can be as large as 3% of the wind speed (McPhaden et al. 1991), resulting in current-speed errors of the order of 15 

cm s−1 in the central-eastern ocean. As discussed next, it may also result from inaccuracies in the FSU winds. 

e. Forcing by other wind products  

All previous solutions have been forced by FSU winds. To explore the sensitivity of our solutions to the driving winds, we 
obtained two other hierarchies of solutions, similar to the above except forced by monthly mean ECMWF (averaged from 
1980 to 1988) and Hellerman and Rosenstein (1983) wind stresses. Both sets lead to the same conclusions about WJ 
dynamics as discussed above. The strengths of the WJs, however, differ considerably among the three sets: When forced 

by ECMWF winds, the solution to the 4½-layer model with salinity and the Maldive Islands has a spring WJ of 120 cm s−1 

at 83°E and a fall jet of 100 cm s−1 at 75°E. When forced by Hellerman and Rosenstein (1983) winds, the response has a 

spring jet of 90 cm s−1 at 77°E and a fall jet that is about 75 cm s−1 in the central and western ocean, but is unrealistically 
weak in the eastern ocean. Similar tests have been carried out by Anderson and Carrington (1993) using a 16-level GCM, 
and they reveal similar sensitivities. In their solution forced by Hellerman and Rosenstein (1983) winds, the fall WJ was 
considerably weaker than the spring one. When the forcing was by the U.K. Meteorological Office (UKMO) wind product, 
however, the fall jet was actually somewhat stronger than the spring one. These significant differences emphasize the 
necessity of improving the accuracy of wind measurements in the equatorial Indian Ocean.

4. Summary and discussion  

In this paper, we report an hierarchy of solutions that isolates processes important in WJ dynamics. At each step of the 
hierarchy we obtain both nonlinear and linear solutions, the latter allowing us to separate solutions into contributions from 
individual baroclinic modes and into directly forced and reflected-wave parts. Because the wind is dominated by its mean, 



annual, and semiannual components (Fig. 2 ), it is also useful to separate solutions into these frequency components as 
well. Indeed, these three components contain all the basic jet physics, the higher-frequency ones generally producing 
localized responses associated with fronts [section 3a(5)]. The next three paragraphs summarize the major conclusions for 
each frequency component.

All our solutions develop eastward mean currents, in response to the westerly mean winds (Fig. 2b ). Their structures, 
however, change markedly depending on whether the model has a mixed layer. Without a mixed layer, currents increase to 
the west (Figs. 4b  and 6b ), essentially a nonlocal, Sverdrup flow proportional to the zonal integral of (curlτ)y. With a 

mixed layer, the maximum current occurs near 75°–80°E, in much better agreement with the observations [Figs. 8b(b) , 

11b , and 1b ]. In these solutions, the flow structure is similar to that of τx itself (Fig. 2b ), an indication that the 
governing dynamics are predominately local. Moreover, because the location of the mean maximum is now close to the 
longitude of the WJ maxima, the mean flow contributes considerably more to jet strength (increasing from about 12 to 25 

cm s−1). 

The structures of the annual components also change markedly among the various solutions. Without a mixed layer, 
isotachs tilt upward toward the west [Figs. 4c , 5a(c) , and 6c ]. This tilt is considerably more than that associated 
with a pure Rossby wave, and hence results from interference between the directly forced and reflected-wave responses. 
With a mixed layer, the isotach tilt is absent in the western ocean because of the strengthened directly forced response there 
[Fig. 8b(c) ]. With the Maldive Islands, the annual response is almost eliminated in the eastern ocean, and its phase is 
shifted by more than 2 months in the central ocean (Fig. 11c );as a consequence, the annual component tends to 
strengthen the spring WJ and to weaken the fall one less than it does in the solution without the Maldives, thereby allowing 
them to have more equal strengths.

The amplitudes of the semiannual components generally strengthen in progressing up the hierarchy, and the linear 
solutions identify the processes that cause this change. The increase between the 2½-layer and 3½-layer solutions happens 
because the semiannual, reflected-wave response is strengthened by a shift toward resonance (Fig. 7 ): Because of the 
change in background stratification, c2 is shifted to be close to the resonance speed, and some of the contribution from the n 

= 1 mode (which is well off resonance) is shifted to the n = 3 mode (which is much closer to resonance). The increase 
between the 3½-layer and 4½-layer solutions is due to the additional contribution of mixed layer shear (the n = 4 mode in the 
linear model), which confines the directly forced currents closer to the surface. With salinity, the fall WJ is strengthened in 
the eastern ocean, owing to precipitation in the summer and fall: This buoyancy flux weakens, or even eliminates, mixed 
layer entrainment, thereby thinning the mixed layer even more. Only when the Maldives are included does the semiannual 
amplitude decrease, due primarily to a weakening of resonance.

The highest solution in our hierarchy, the nonlinear solution to the 4½-layer model with salinity and the Maldive Islands 
(our “best”  solution), compares most favorably with the ship-drift observations (Figs. 1  and 11 ). We utilize the other 
solutions in the hierarchy to estimate the relative contributions of the directly forced and reflected-wave responses to this 
solution. It is sufficient to estimate their contribution to the solution’s mean and semiannual components since they sum to a 

maximum of 78 cm s−1, accounting for more than 80% of the WJ strength (Fig. 11 ). The 3½-layer solutions suggest 

that the semiannual reflected-wave response contributes 25 cm s−1 and that the directly forced response (without mixed 

layer shear) is 41 cm s−1, with 12 cm s−1 from the annual mean and 29 cm s−1 from the semiannual component. (To 
estimate the split of the semiannual component into directly forced and reflected-wave parts, we assumed that their 
amplitude ratio was the same in the nonlinear solution as in the linear one.) The difference in WJ strength between the 3½-

layer and 4½-layer solutions measures the contribution of mixed layer shear to the directly forced response; it is 27 cm s−1, 

with 13 cm s−1 and 14 cm s−1 from the mean and semiannual components, respectively. The Maldive Islands weaken the 

semiannual reflected-wave and annual-mean responses by approximately 10 cm s−1 and 5 cm s−1, respectively. Overall, 

then, the reflected-wave response contributes 25 − 10 = 15 cm s−1 to the total (19%), the directly forced response without 

mixed layer shear contributes to 41 − 5 = 36 cm s−1 (46%), and mixed layer shear provides the remaining 27 cm s−1(35%). 

In our best model solution as well as the ship-drift data, the semiannual response is more than twice as large as the annual 
one, even though the wind components have similar amplitudes (Figs 2c and 2d ). One cause is the different structures of 
the semiannual and annual winds, the more complex structure of the latter generating a weaker oceanic response [section 3a
(2i)]. Another is that the semiannual reflected-wave and directly forced parts interfere constructively over much of the 
interior ocean whereas the annual ones do not, an indication of the semiannual component being near resonance [sections 3a
(2ii) and 3b(2)]. Finally, the addition of a mixed layer strengthens the semiannual response but not the annual one, because 
the shear flow interferes constructively (destructively) with the rest of the response for the semiannual (annual) component 
[section 3c(3)]. 

Even in our best solution, the annual component differs considerably from the observed one (Figs. 1c  and 11c ). 



Moreover, it still tends to weaken the fall WJ (and strengthens the spring one) in the central ocean, in contrast to the ship-
drift observations in which it has the opposite effect. This discrepancy may result from model deficiencies (e.g., reflected 
waves are overemphasized, or the directly forced response is too weak), from windage errors in the ship-drift data (section 
3d), or from inaccuracies in the winds themselves (section 3e). These results suggest reasons why fall jets are relatively 
weak in the other models mentioned in the introduction: Either they lack a proper mixed layer, ignore salinity, have no 
Maldive Islands, or force their models with Hellerman and Rosenstein (1983) winds, which produce a particularly weak fall 
WJ in the eastern ocean.

In conclusion, by comparing our hierarchy of solutions to the ship-drift climatology, we have been able to assess the 
importance of various processes in WJ dynamics. Consistent with previous studies, we have confirmed that, although direct 
forcing accounts for most of the WJ strength, reflected waves and resonance also contribute 19%. In addition, we have 
demonstrated that precipitation has a major influence on the fall jet through its effect on mixed layer thickness, strengthening 

it by as much as 30 cm s−1 in the eastern ocean. It is likely that further progress in understanding WJ dynamics cannot be 
made without additional observations. For example, an obvious need is to measure the annual evolution of the mixed layer in 
the eastern, equatorial ocean. Equally important, given the large discrepancies in existing wind products, more accurate 
winds are essential.
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Table 1. Values of various constants associated with the linear models. Units are indicated in parentheses. No salinity values 
are listed for the 2½-layer and 3½-layer models because salinity is neglected in these models. Values for the 4½-layer model 
without salinity are enclosed in brackets.
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Fig. 1. Longitude–time plots of equatorial zonal currents U averaged from 1°S to 1°N, determined from the ship-drift 
climatology of Mariano et al. (1995): The total flow (a: top left) together with its time-averaged mean (b: top right), annual (c: 

bottom left), and semiannual (d: bottom right) components. The contour interval is 5 cm s−1, and regions where the flow is 

stronger than 30 cm s−1 are shaded. The observations have been smoothed zonally by a 1–2–1 filter. The data is available online 
at ftp://playin.rsmas.miami.edu/pub/cg.
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Fig. 2. Longitude–time plots of equatorial zonal wind stress τx averaged from 1°S to 1°N, determined from the FSU 

pseudostress climatology for the period 1970–96 with ρa = 0.001 175 g cm−3 and Cd = 0.0015: The total wind (a: top left) together 

with its time-averaged mean (b:top right), annual (c: bottom left), and semiannual (d: bottom right) components. The contour 

interval is 0.05 dyn cm−2, and regions of eastward winds (positive values) are shaded. 
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Fig. 3. A schematic diagram illustrating the layer structure of the 4½-layer model. It consists of four active layers with 
thicknesses hi, velocities vi, temperatures Ti, and salinities Si, overlying an inert deep ocean with temperature Td and salinity Sd. 

Thicknesses h1 and h2 are not allowed to be smaller than minimum values, h1 min and h2 min. Water is allowed to transfer 

between layers with velocities w1 and w2. 
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Fig. 4. Longitude–time plots of u1 averaged from 1°S to 1°N for the nonlinear, 2½-layer model, showing the total flow (a: top-

left) together with its mean (b: top-right), annual (c: bottom-left), and semiannual (d: bottom-right) components. The contour 

interval is 5 cm s−1, and regions where the flow is stronger than 30 cm s−1 are shaded. 
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Fig. 5a. As in Fig. 4  except for the linear, 2½-layer model. 

 
Click on thumbnail for full-sized image. 

Fig. 5b. Longitude–time plots of u1 averaged from 1°S to 1°N for the linear, 2½-layer model, showing the directly forced and 

reflected-wave responses for the annual component (a: top left and b: top right) and for the semiannual component (c: bottom left 
and d: bottom right).
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Fig. 6. As in Fig. 4  except for the nonlinear, 3½-layer model. 
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Fig. 7. Plots of u1max (thick curve), u′1max (thin curve), u"
1 (thin-dashed curve), and 1max (thick-dashed curve) vs cn. The 

four quantities are defined in the text, the first three in section 3b(2) and the fourth in section 3d(2). 
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Fig. 8a. Longitude–time plots of u1 averaged from 1°S to 1°N for the 4½-layer model without salinity. Both spring and fall WJs 

are stronger than they are in the 3½-layer solution. The fall jet, however, is still very weak in the eastern ocean (especially east of 
85°E).
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Fig. 8b. As in Fig. 4  except for the 4½-layer model with salinity. It differs from the solution without salinity (Fig. 8a ) 

primarily in that the fall WJ is enhanced by up to 30 cm s−1 in the eastern ocean. 
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Fig. 9. Longitude–time plots of equatorial h1 + h2 for (a) the 3½-layer model, and of equatorial h1 for the 4½-layer models (b) 

without salinity and (c) with salinity. All the fields are averaged from 1°S to 1°N. Regions where the fields are thicker than 80 m 
are shaded. Currents are strengthened in regions where the layer thicknesses are shallow.
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Fig. 10. Longitude–time plots of equatorial mixed-layer thicknesses estimated from Levitus and Boyer (1994) and Levitus et al. 

(1994) data in two different ways as described in the text: using temperature only h′m  (a: top panel), and using both temperature 

and salinity hm  (b: bottom panel). Compare hm  and h′m  with the solutions’  thickness fields in the upper two and bottom panels of 

Fig. 9 , respectively. Regions where the fields are thicker than 60 m are shaded. 
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Fig. 11. As in Fig. 4  except for the 4½-layer model with salinity and the Maldive Islands. In comparison to the solution 
without the Maldives (Fig. 8b ), the spring and the fall WJs have more comparable strengths, the semiannual component is 
weaker, and the structure of the annual component is altered considerably.

 

 

1 Regrettably, serious errors were introduced into the text of MKM at the time of printing. An erratum can be found after page 248 of Progress in 
Oceanography, 1994, Volume 33, Number 3. 
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