
Sign in  

AMS Journals Online

AMS Home  Journals Home  Journal Archive  Subscribe  For Authors  Help  Advanced Search            Search

Full Text View
Volume 29, Issue 10 (October 1999) 

Journal of Physical Oceanography
Article: pp. 2719–2729 | Abstract | PDF (164K) 

Inclusion of Thermobaricity in Isopycnic-Coordinate Ocean Models 

Shan Sun

NASA/Goddard Institute for Space Studies, New York, New York

Rainer Bleck and Claes Rooth

University of Miami, Miami, Florida

John Dukowicz

Los Alamos National Laboratory, Los Alamos, New Mexico

Eric Chassignet

University of Miami, Miami, Florida

Peter Killworth

Southampton Oceanography Centre, Southampton, United Kingdom

(Manuscript received January 15, 1998, in final form March 2, 1999)

DOI: 10.1175/1520-0485(1999)029<2719:IOTIIC>2.0.CO;2 

 
ABSTRACT

Buoyancy anomalies caused by thermobaricity, that is, the modulation of 
seawater compressibility by potential temperature anomalies, underlie a long-
standing argument against the use of potential-density-framed numerical models 
for realistic circulation studies. The authors show that this problem can be 
overcome by relaxing the strict correspondence between buoyancy and potential 
density in isopycnic-coordinate models. A parametric representation of the 
difference between the two variables is introduced in the form of a “virtual 
potential density,”  which can be viewed as the potential density that would be 
computed from the in situ conditions using the compressibility coefficient for 
seawater of a fixed (but representative) salinity and potential temperature. This 
variable is used as a basis for effective dynamic height computations in the 
dynamic equations, while the traditionally defined potential density may be 
retained as model coordinate. The conservation properties of the latter assure 
that adiabatic transport processes in a compressibility-compliant model can still 
be represented as exactly two-dimensional. Consistent with its dynamic 
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significance, the distribution of virtual potential density is found to determine 
both the local static stability and, to a lesser degree, the orientation of neutrally 
buoyant mixing surfaces. The paper closes with a brief discussion of the pros 
and cons of replacing potential density by virtual potential density as vertical 
model coordinate.

1. Introduction  

The shallow-water equations have proven to be a versatile tool for elucidating 
barotropic aspects of ocean circulation dynamics. In “stacked”  or multilayer form 
they have also been used to investigate baroclinic dynamics, albeit under 
circumstances where neglect of compressibility effects and diapycnal mixing 
processes can be defended based on scaling arguments (e.g., Pedlosky 1982; Gill 1982). Numerical solutions of these 
equations have been studied in the oceanic context since the 1960s (e.g., Welander 1966; Holland 1967). Over the years, 
these efforts have led to the development of full-fledged oceanic general circulation models, which are referred to as layer 
models when conceived as exact representations of a set of incompressible and immiscible fluid layers, but otherwise are 
referred to as “isopycnic coordinate”  or simply “isopycnic”  models (e.g., Bleck et al. 1992; Oberhuber 1993). 

Isopycnic-coordinate models are traditionally being formulated in terms of potential (as opposed to in situ) density. There 
are two reasons for this: Potential density surfaces are material under adiabatic conditions, rendering transport processes 
two-dimensional in the oceanic interior, and they approximately correspond to neutrally buoyant surfaces along which most 
of the interior oceanic mixing takes place. This “tradition”  manifests itself in two ways, which we wish to distinguish here 
sharply: (i) coordinate layers are defined as layers of constant potential density and (ii) the dynamic equations treat seawater 
as incompressible; that is, they do not differentiate between the in situ density of the water in each coordinate layer and its 
potential density.

Modeling conventions (i) and (ii) give rise to two problems which, though seemingly disparate, are both related to the fact 
that seawater is compressible—specifically, that its compressibility has a thermobaric component, that is, depends on 
temperature and salinity.

● In haloclinic regions, the slope of a potential density surface is a function of the reference pressure used in defining 
potential density. The sensitivity of this slope to salinity variations is such that a reference pressure yielding 
monotonic variation of potential density with depth everywhere in the World Ocean does not exist. In other words, 
no matter which reference pressure one chooses, a geographic location can always be found where potential 
isopycnals will fold. This obviously interferes with the use of potential density as a vertical coordinate in global ocean 
models.

● Variations of in situ density along potential isopycnals caused by the thermobaric effect give rise to pressure forces 
and circulation systems, which, though weak, cannot safely be ignored in a general circulation model. A 
demonstration of the existence and likely relevance of such pressure forces is given below.

The subsurface circulation in the Atlantic is characterized, in descending order, by northward-flowing upper Antarctic 
Intermediate Water, southward-flowing North Atlantic Deep Water, and northward-flowing Antarctic Bottom Water [Fig. 
6.15 in Open University (1989)]. This double reversal of flow direction corresponds to—and most likely is dynamically 
controlled by—a double reversal of the interhemispheric pressure force with depth, created by the higher compressibility of 
the colder southern water.

To illustrate the existence of this pressure force, we consider two idealized water columns, one salty and relatively warm 
and the other fresh and cold, representing wintertime subpolar North and South Atlantic water columns, respectively. We 
prescribe θ and S in the two water columns as (4.5°C, 34.8 psu) and (−0.5°C, 34.0 psu), respectively; this is illustrated in 
the top two panels of Fig. 1 . The solid curve in the lower panel of Fig. 1  represents the interhemispheric pressure 
difference (in arbitrary units) based on the in situ density ρ, with the barotropic component removed; it indeed shows the 
expected double reversal with depth. The three dashed curves in the same panel show the interhemispheric pressure 
difference obtained by substituting potential densities ρ0, ρ2, ρ4 (potential densities referenced to pressure levels 0, 20, and 

40 MPa, respectively) for ρ at all depths. Owing to the fact that ρr by definition is independent of depth, these curves are 

linear and hence show only a single reversal of the pressure difference with depth. This suggests that a traditional isopycnic 
model, irrespective of which reference level its vertical coordinate is based on, would be unable to simulate the interleaving 
of Atlantic water masses described above.
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The obvious solution to the first problem mentioned—folding of coordinate surfaces—is to generalize the procedure for 
placing layer interfaces in the fluid, that is, to deviate from the notion that interfaces must everywhere coincide with potential 
isopycnals. Experiments with a suitably generalized vertical coordinate, largely based on atmospheric modeling know-how 
(Bleck and Benjamin 1993), are under way and will be reported on at some future date. The purpose of the present paper is 
to suggest ways in which the second problem mentioned, the inability of isopycnic models to simulate thermobarically driven 
circulation systems, can be overcome.

2. Density representation in isopycnic models  

In the following, variables without sub- or superscripts will be used to denote in situ or local conditions (pressure p, 
specific volume α, . . . ), while subscript r will denote potential values achieved after adiabatic (de)compression to 
reference pressure pr. 

If the incompressibility assumption (ii) is what prevents thermobaric effects from being included in isopycnic models, 
then the remedy is obvious: one must liberate oneself from the tradition of letting the definition of the vertical coordinate 
dictate the water density within each layer. In other words, water density in the model must be allowed to vary not only 
from layer to layer, but also within coordinate layers.

The question then becomes: which density-related, x, y, t-dependent variable should be chosen to represent the mass field 
in isopycnic model layers?

One obvious and seemingly safe choice is to set the density within coordinate layers to the in situ water density. 
Unfortunately, this has severe consequences for the accuracy with which the horizontal pressure gradient force can be 
computed in steeply inclined coordinate layers. The argument is as follows.

Transformation from Cartesian (x, y, z) to isopycnic (x, y, αr) coordinates1 under hydrostatic conditions changes the 

pressure gradient term in the horizontal momentum equation (loosely referred to as pressure gradient “force,”  or PGF) into

−α zp = −
αr

M + p
αr
α,(1)

 

where M = pα + gz is the Montgomery potential (Montgomery 1937) and the subscripted  operator denotes 
differentiation in x, y direction with the subscript held constant. A form of the hydrostatic equation convenient for evaluating 
M is

 

In steeply inclined αr layers, the two terms 
αr

M and p
αr
α in (1) can individually become orders of magnitude larger 

than their residual α zp, thereby affecting numerical precision in evaluating the latter. This problem is related to the one 

discovered years ago in models using terrain-following (so-called σ) coordinates (e.g., Janjic 1977), even though it seems to 
be more serious in the present context. Practical tests conducted with the Miami Isopycnic Coordinate Ocean Model indeed 
have shown that the approach based on (1) not only leads to accuracy problems, but to insurmountable numerical stability 
problems (Sun 1997). 

Defining the Montgomery potential in terms of αr instead of α, as in M = pαr + gz, does not alleviate this problem. In this 

case, (1) is replaced by

−α zp = −
αr

M + (αr − α)
αr

p,(2)
 

which again is a two-term expression where both terms have been found to become unacceptably large in case of steeply 
inclined αr surfaces. In fact, the term involving 

αr
p serves as a particularly good indicator of the degeneracy in the PGF 

calculation created by steeply inclined αr surfaces. 

The excessive magnitude of the right-hand side terms in (2) can be attributed to the combination of an αr-based 

Montgomery potential with an α-based hydrostatic equation. In traditional isopycnic models, a two-term representation of 
the PGF is avoided by evaluating the PGF in the form −

α
M where M is defined as in (2) but satisfies the modified 



r
hydrostatic equation M/ αr = p. This PGF expression is exact only if the in situ water density of the ocean being modeled is 

identical to its potential density [referred to earlier as modeling convention (ii)]. It would seem, therefore, that a choice must 
be made in isopycnic modeling between the “σ coordinate error”  and the thermobaricity error. Fortunately, this is not so. 

We will demonstrate that a modified potential density, which we choose to name virtual potential density, matches the in 
situ density in its ability to capture the dynamic aspects of the oceanic mass field in isopycnic models, while avoiding the 
pitfalls in the pressure gradient computation just mentioned. After establishing this result, which has possible implications for 
nonisopycnic models as well, we will explore the applicability of virtual potential density as vertical coordinate in layer 
models. Of particular interest in this context are folding tendencies and the buoyancy neutrality, or lack thereof, of potential 
isopycnals versus surfaces of virtual potential density.

3. Basic definitions  

The equation of state for seawater expresses its density (ρ) (or its reciprocal, α) in terms of the salinity (S), temperature 
(T), and pressure (p). Adiabatic (de)compression to a reference pressure pr causes α and T to change to values denoted 

respectively as potential specific volume (αr) and potential temperature (Tr  θ); these will henceforth be considered as 

primary thermodynamic variables in place of α and T. We can, without loss of generality, use different reference pressures 

for these variables, and choose for conformity with oceanographic practice 1 bar = 0.1 MPa2 (fn 2) as the reference for θ, 
while leaving the choice of reference pressure for αr to be determined as appropriate for specific applications. This 

convention is advantageous in model applications, since θ under this definition is identical in the surface layer to the in situ 
temperature, which is a controlling parameter in air–sea interaction and radiative transfer processes. 

A general functional relation between in situ specific volume and potential specific volume αr(θ, S) = α(θ, S, pr) is

 

which results from integrating the expression for the adiabatic compressibility

 

over the pressure interval (p, pr).
 

We evaluate κ using the equation of state developed by Jackett and McDougall (1995, hereafter JMcD), an approximation 
of the UNESCO formula written in terms of θ instead of T. To give a general impression of the κ variability between the 
surface and the sea floor, we show in Fig. 2  plots of κ0 and κ5 (compressibility at 0 and 50 MPa) over the range −2°  

θ  32°C and 30  S  38 psu. The figure indicates that κ varies by 15% over both the 5-km depth range and the 32-
K temperature range. The variation with salinity is somewhat lower, 3% over the 0.8% salinity range. The variability in p 
is seen to be largely uncorrelated with that in θ and S. 

The Bjerknes circulation theorem emphasizes the distinction between barotropic fluids, whose density depends only on 
pressure, and baroclinic fluids, where this is not the case. According to the theorem, buoyancy forces can drive circulation 
systems only in baroclinic fluids; that is, fluids whose density is affected by variables other than pressure—temperature and 
salinity in the oceanic case. In order to isolate the components of density variability that are capable of creating circulation-
inducing buoyancy contrasts from those that are dynamically passive, we proceed now to split κ into a pressure-dependent 

component κ(p) and a residual thermobaric component, which we will abbreviate here by κ(θ), even though it may exhibit 

some salinity and pressure dependence as well. Judging from Fig. 2 , κ(p) is at least one order of magnitude larger than κ
(θ). A density field from which the effect of the κ(p)-related compressibility has been removed can therefore be expected to 
be much closer to the (genuine) potential than to the in situ density field. Thus, if a way can be found to remove the effect 

of κ(p) from the oceanic density field, we will be able to substantially reduce the size of the term p
αr
α in (1) (and of the 

term 
αr

M at the same time). 



Substituting κ(p) + κ(θ) for κ in (3) leads to

 

where

 

describes the (de)compression effect attributable to the p-dependent component of compressibility alone: Ar(p) is the term 

whose effect on the dynamic equations we are trying to remove.

The next step is to combine the other two factors on the right-hand side of (5) into

 

The variable α* so defined would be identical to the conventional potential specific volume αr(θ, S) if compressibility were 

a function of p alone, that is, if there were no thermobaricity. We can also say that α* is the potential specific volume a 
water parcel assumes during adiabatic (de)compression to pressure pr if its θ, S, p-dependent compressibility coefficient is 

replaced by one for standard salinity and potential temperature. Borrowing from the practice of expressing atmospheric 
buoyancy variations caused by water vapor in terms of a “virtual”  temperature, we will refer to α* as virtual potential 
specific volume, the reciprocal of virtual potential density. 

Even though α* depends on both p and pr, we choose for simplicity not to refer to it as α*
r, given that virtual potential 

densities referenced to different pressures pr, ps only differ by a constant factor Ar(ps). In other words, α* surfaces 

associated with different reference pressures are congruent.

It is worth pointing out that the problems addressed in this paper do not appear in the atmospheric context. The 
compressibility of an ideal gas is κ = c /(cpp). Thus, to the extent that the atmospheric constituents can be treated as ideal 

gases and the dependence of cp and c  on the water vapor content can be neglected, the atmosphere is an example of a fluid 

where κ = κ(p). 

4. Practical implications  

Analysis in terms of thermobaric effects provides a unified perspective on several of the generally perceived limitations of 
potential density-based reference frames that arise when water mass variability in θ and S is involved. The key problem areas 
addressed here are

1. impact of thermobaricity on the dynamic balance, specifically the horizontal and vertical components of the pressure 
gradient force;

2. the representation of static stability, and the problem of isopycnic surface folding;

3. the deviations from buoyancy neutrality of isopycnic lateral displacements.

a. Polynomial approximation of κ  



For practical model use, we generated a least squares polynomial approximation to (4), based on the state equation of 
JMcD, in the ranges of −2°  θ  32°C, 30  S  38 psu, and 0  p  55 MPa. After considerable experimentation, 

we settled on a polynomial of third degree in θ, quadratic in p, linear in S, and including the composite terms θS, θp, θ2p, 
and θSp. 

Setting κ = κ(p) + κ(θ), the 11-term polynomial so defined splits into

κ(p) × 105 = c1p2 + c2p + c3(8)

 

and

κ(θ) × 105 = c4θ
3 + c5θ

2 + c6θ + c7S′ + c8θS′ + c9θp + c10θS′p + c11θ
2p,(9)

 

where S′ = S − 35 psu, κ is in MPa−1, and p is in MPa. The coefficients c1, . . . , c11 are shown in Table 1 . The 

accuracy of the polynomial fit of κ [Eqs. (8) and (9) combined] is illustrated in Fig. 3 . The thermobaric component κ(θ) 
alone [Eq. (9)] is shown in Fig. 4 . 

b. Pressure gradient force representation in the dynamic equations  

The PGF in a hydrostatic fluid can be expressed as the isobaric gradient of the geopotential   gz, that is, α zp = p . 

Integrating the hydrostatic equation / p = −α from the sea surface (zero pressure) to pressure p then allows us to write 
the PGF as

 

where srf/g is the sea surface height. By virtue of

p lnα = p lnα*,(11)
 

which follows from (7), the integrand in the last term of (10) can be expressed as

 

allowing (10) to be written in the form

 

Now if a modified geopotential * is defined by

 

then * = *
srf − p

0 α  dp′ and

 



Setting srf = srf allows us to combine the last expression with (12) into

 

Viewing (10) as a variant of the thermal wind equation, we can argue that p  and pα dp′ are of comparable 

magnitude, and that this also holds for pα  dp′ by virtue of (12). According to (6) and Fig. 4 , the factor [Ar(p) − 1] 

in an ocean 5 km deep is at most of order 10−2. Hence we may conclude that

− p   − p .(16)
 

This is an important result. It implies that estimates of the horizontal PGF are insensitive to whether the hydrostatic 
equation has been integrated using the in situ or the virtual potential density, that is, whether or not the oceanic density field 

is subject to compression by the pressure-related part κ(p) of the compressibility coefficient. 

It is instructive to verify that replacing α  by αr in situations where thermobaric effects are important yields a PGF 

approximation inferior to (16). Retracing the steps leading from (10) to (16), but with αr taking the place of α , one 

immediately realizes that the relationship between p lnα and p lnαr analogous to (11) is complicated by the fact that the 

isobaric gradient of κ(θ) does not vanish. The equation taking the place of (11) can be inferred from (5) to be

 

At pressure levels far from pr, the last term on the right-hand side of (17) is not necessarily small. In fact, it can 

overshadow the term on the left, thereby rendering| p lnαr| much larger than | p lnα|. 

Starting from (17) and substituting αr for α  in (13) and (14) leads to the following analog of (15):

 

where r is the geopotential associated with αr.
 

The single-integral term in (18) is the analog of the last term in (15); both are similar in magnitude and thus small 
compared to p . The double-integral term, however, which is spawned by the last term in (17) and thus represents the 

error in the αr-based PGF calculation stemming from the neglect of thermobaricity, cannot be counted on as being small. 

This obviously will prevent us from declaring − p r a good approximation to − p . The effect of the last term in (18) is 

particularly strong if pκ
(θ)—or pθ, for that matter, given that κ(θ) is predominately a function of θ—remains constant 

over a large depth range.

Switching from isobaric to isopycnic differentiation in (16) yields an approximation to the PGF in the form

[−α zp ] −  p  = −
αr

M  + p
αr
α ,(19)

 



where

M  = pα  +  

is the Montgomery potential based on α . Note the formal similarity between (19) and (1). 

A hydrostatic equation stated in terms of α  can be derived by differentiating the modified Montgomery potential in the 
vertical, M  = p α  + α p + . By virtue of (13), this expression reduces to

 

In conclusion, the addition of the last term in (19) and the use of α  in the Montgomery potential and the hydrostatic 
equation comprise the changes needed to account for thermobaric effects in isopycnic coordinate models. The three 
components of the PGF (we interpret here the hydrostatic equation as a statement about the vertical PGF) retain their 
original isopycnic appearance, with the gradient of virtual potential specific volume along isopycnic surfaces as a correction 
term.

In order to gain an understanding of the magnitude of the last term in (19) in relation to the PGF itself, we write this term 
as

 

and consider the case of a potential isopycnal descending from 0 to 5 km (50 MPa) over a horizontal distance L. 

Assuming a representative value of 10−5 MPa−1 for |κ(θ)| and a middepth value of 2 × 104 m2 s−2 for pα , we obtain for 

(20) a magnitude of roughly (10 m2 s−2)/L. Assuming that the sloping isopycnal is associated with a 10 cm s−1 current, the 

left-hand side of (19) has a magnitude of 10−5 m s−2 at midlatitudes. Thus, (20) and the PGF are of comparable magnitude 
if L = 1000 km, that is, if the isopycnal slope is 1:200. 

Isopycnals occasionally are more steeply sloped than this, implying that (20) is not always small compared to the PGF. 
Practical tests conducted on isopycnal fields derived from Levitus (1982) data suggest, however, that the above estimate is 

overly pessimistic. At 117 000 grid points where the geostrophic velocity exceeded 1 cm s−1, the term (20) was found to 
exceed 10% of the PGF at roughly 1 in 1000 points, while no point was found where (20) reached the same magnitude as 
the PGF.

Generally speaking, it is clear that the term (20) is much smaller than the corresponding term

 

in (1), given that κ is 40 times larger than the value for |κ(θ)| assumed above.

 

The example discussed in the introduction can be used to illustrate that substituting virtual potential specific volume for in 
situ specific volume in the three-dimensional PGF calculation indeed produces satisfactory results. The pressure difference 
calculated from the virtual potential density field referenced to 0, 20, and 40 MPa, respectively, is plotted in Fig. 5  using 
dashes of different length. The solid curve from Fig. 1  has been added as reference. Even though the abscissa scale has 
been expanded to accentuate possible differences, the three dashed curves are found to be virtually indistinguishable from 
the reference curve.

c. Static stability and folding of potential isopycnals  

For the purpose of the following discussion we find it useful to define a “mean ambient pressure”  pl whose relationship to 

the local and to the reference pressure is given by p = pr + δp +  where δp = pl − pr is the“ambient pressure bias”  and  is 

a small pressure deviation.



The most easily understood consequence of thermobaricity is its impact on the relation between isopycnal layer thickness 
and static stability.

The Brunt–Väisälä frequency N is the conventional measure of static stability. It is defined as

 

where αl is the potential specific volume with respect to the mean ambient pressure pl = pr + δp (held constant during 

vertical differentiation), and z is directed upward. 

By setting p = pl in (7) and differentiating the outside members of that equation with respect to z while holding pl 

constant, one finds that (21) can also be written in terms of α :

 

Hence, the frequency of buoyancy oscillations remains unchanged if the specific volume of seawater in the model is 
changed from its in situ value to α . 

Taking the logarithm in the first part of (7) gives, after setting p = pl,

 

Combining the z derivative of the above and (22) yields

 

This equation provides a diagnostic criterion for the occurrence of isopycnic-coordinate surface folding due to excessive 
pressure bias. The conditions under which potential isopycnals fold have previously been discussed by You and McDougall 
(1990). Our intent in deriving the above formula is to highlight the roles played by the ambient pressure bias and the 

coefficient κ(θ) encompassing the essence of thermobaricity. 

The critical pressure bias δpcrit beyond which folding occurs is found by setting (23) to zero. The potential for folding, 

indicated by a small absolute value of δpcrit, is large if the bracketed term in (23) is large in absolute terms. Given that κ(θ) is 

primarily a function of θ (see Fig. 4 ) and κ(θ)/ θ < 0, the threat of folding in situations where pr > pl is thus greatest if θ 

decreases upward, while in situations where pr < pl, the threat is greatest if θ increases upward. Since κ(θ)/ S < 0, a 

vertical salinity gradient of the same sign as the potential temperature gradient increases the potential for folding.

Reviewing existing global hydrographic datasets, one finds that degeneracy of the depth-to-potential density coordinate 
transformation near the surface and near the bottom in subpolar regions cannot simultaneously be avoided by any choice of 
reference pressure. Because of the wide range of variations in temperature and salinity in the subpolar surface layer, a 
practical choice for global modeling is to use a high enough reference pressure to avoid the problem in the abyssal waters, 
while accommodating near-surface conditions by a modified coordinate mapping procedure there. 

Folding of surfaces α  = const (an issue of interest if α  is to be used as vertical model coordinate) can be investigated 
by deriving an equation analogous to (23) but with lnα / z replacing lnαr/ z on the right-hand side. Note that α  in this 

context is to be taken as a function of in situ pressure, not of pl as in (22). A derivation paralleling that of (22), but without 

setting p = pl, yields



 

Assuming, as we did in discussing (20), a representative value of 10−5 MPa−1 for |κ(θ)|, the term ρg2κ(θ) in (24) is of 

order 10−6 s−2. This value is small compared to N2 in the thermocline, though definitely not in the deep ocean. However, by 

adding a constant to (9) [and modifying c3 in (8) accordingly], κ(θ) can be reduced to near zero at cold temperatures, 

thereby rendering the term ρg2κ(θ) small compared to N2 in the deep ocean as well. With this in mind, we can state that the 
depth variation of virtual potential density closely approximates the depth variation of locally referenced potential density and 
that multivaluedness of α  in the vertical is therefore likely to be uncommon. 

d. Neutrality of potential and virtual potential isopycnals  

Aside from the folding of isopycnals, the deviation from neutrality of constant potential density surfaces is a concern in 
isopycnic modeling. Lateral stirring predominantly takes place along neutral surfaces. Thus, alignment of coordinate surfaces 
with neutral surfaces not only results in a clean separation of isopycnal and diapycnal mixing in the model, but also allows 
naturally occurring mixing to at least partially mask numerical dispersion errors associated with along-coordinate advection. 

McDougall (1988) expresses the slope difference between αr and neutral surfaces as a function of the isoneutral θ 

gradient, the vertical gradients of θ and S, and the pressure variation of the saline contraction and thermal expansion 

coefficients. Our aim here is to cast the nonneutrality condition explicitly in terms of κ(θ). 

It follows from the definition of neutral surfaces that they are tangential to (strictly speaking, osculating with respect to) a 
constant potential density surface referenced to the mean ambient pressure pl (McDougall 1987). The nonneutrality of a 

potential isopycnal referenced to a “distant”  pressure pr can be expressed in terms of the gradient of potential density 

referenced to pl along this surface. Setting p = pl and keeping both pl and pr constant, we obtain from (5)

 

The deviation of neutral surfaces from the coordinate isopycnals, measured in terms of potential specific volume anomaly, 
is thus proportional to the product of the ambient pressure bias δp and the isopycnal gradient of the thermobaric 
compressibility.

As pointed out before and shown in Fig. 4 , κ(θ) is primarily a function of θ. Hence, (25) can be further reduced to

 

Within the limits of the approximations made in deriving this expression [which is similar to one in section 7.2 of 
McDougall (1988)], we can state that in oceanic regions where water mass properties are tightly coupled in θ–S space 

(meaning that both θ and S, and by implication κ(θ), are functions of αr alone), potential isopycnals are neutral surfaces 

regardless of the magnitude of the pressure bias δp. Stated differently, nonneutrality is only an issue where water masses of 
different θ, S properties meet at pressures markedly different from the reference pressure pr. 

It is of interest to explore whether the nonneutrality problem associated with αr surfaces can be reduced by switching to 

an α -based coordinate system. A measure of the deviation of α  surfaces from neutrality can be found by evaluating the 
gradient of αl at constant α . Setting p = pl in (5) and combining it with (7) gives



 

This yields

 

Evaluated at p = pl, this becomes

α
 lnαl = κ(θ)

α
p.(27)

 

Comparison of (26) and (27) shows that the nature of the approximation error in the αr and α  is very different.
 

As implied by the discussion of (26), αr surfaces become neutral surfaces as δp  0. Incidentally, this provides an 

analytical basis for the practice in hydrographic diagnostics where patching isopycnic-coordinate maps with reference 
pressures separated by O(10 MPa) provides good global continuity in water-mass distribution characteristics (Lynn and Reid 

1968). The equivalence also works for conditions of weak variability of κ(θ) on isopycnals, that is, under conditions of 
approximate lateral water mass homogeneity.

An α  surface, on the other hand, is exactly neutral only if it is isobaric. Thus, if a finite pressure bias δp combined with 
an isopycnal water mass gradient creates a significant neutral surface slope relative to an αr surface, the associated α  

surface will be more neutral as long as its slope is small. Note that δp does not appear in (27). 

The quantitative importance of the right-hand side of (27) is hard to judge. Like the term ρg2κ(θ) in (24), it contains κ(θ) 
as an undifferentiated factor; hence, its magnitude in different regions of (θ, S, p) space can be manipulated by an additive 

constant. While minimizing κ(θ) in the abyssal ocean appeared to be the best strategy for minimizing the importance of the 

term ρg2κ(θ) in (24), (27) suggests that buoyancy neutrality of α  surfaces benefits most from reducing the overall 

magnitude of κ(θ), that is, from removing a nonzero mean. If this “mean”  is evaluated in a mass-weighted sense, the fact 
that most of the water in the ocean is close to freezing implies that the two requirements actually can be satisfied 
simultaneously.

Judging from the above discussion, α  does not appear to offer a clear advantage over αr as far as buoyancy neutrality is 

concerned. In both cases there will be oceanic regions where numerical diffusion along a coordinate surface has a nonzero 
diapycnal component. This problem can be ameliorated to some extent by mixing tensor rotation (Griffies et al. 1998), but 
one should note that improving the accuracy of explicit mixing processes in the model leaves unaffected the diapycnal 
mixing resulting from numerical dispersion errors in the horizontal transport calculation in situations where coordinate 
surfaces and neutral surfaces are not aligned.

5. Discussion  

We have introduced in this paper a new variable called “virtual potential density”  (and its reciprocal, virtual potential 
specific volume α ), which can be viewed as the potential density that would be computed from in situ conditions using a 
compressibility coefficient reflecting the pressure dependence of seawater compressibility alone.

Our main result, which is of potential interest not only in the context of isopycnic models but in any ocean model 
featuring steeply inclined coordinate layers, is that α  is a near-perfect substitute for in situ specific volume in representing 
the oceanic mass field in dynamic model computations, including the full complement of vertical and horizontal pressure 
forces.

Specifically, α  defines the layerwise increments of a modified Montgomery potential, M  = α p, which defines a 
major portion of the horizontal PGF in the momentum equations. This provides the basis for including the thermobaricity 
effect in isopycnic coordinate models, and ensures that in their absence the model dynamics reduce to the conventional 



incompressible case where one sets M = αr p. 

Consistent with the notion that the spatial distribution of α  defines much of the stratification impact on the isopycnic 
system dynamics, we have shown that the Brunt–Väisälä frequency is represented correctly. This implies that substituting α

 for α in a numerical model does not affect internal wave speeds. 

By comparing the vertical gradient of αl to that of potential specific volume αr, we arrived at a criterion for the single-

valuedness of the latter with respect to z. Sign changes in the vertical αr gradient signal a degeneracy in the depth-to-

isopycnic coordinate transformation. The single-valuedness requirement constrains the reference pressure choice whenever 
θ and/or S increases upward in the abyssal ocean, or decreases upward near the surface. In today’s ocean, this constraint 
can be satisfied in the abyssal waters by choosing a middepth reference pressure such as 20 MPa. The cold haloclinic near-
surface layers in subpolar regions cannot be accommodated in this way, though, without either introducing a layer patching 
scheme with different reference pressures, or some form of hybrid coordinate transformation in the near-surface layers.

The gradient of αl along a potential isopycnal is a useful measure of the degree to which the latter deviates from the local 

neutral surface. Since the slope difference is mainly a function of the isopycnic potential temperature gradient, weighted by 
the ambient pressure bias, it vanishes asymptotically wherever the temperature–salinity correlation is tight, or where the 
ambient pressure bias is small. This implies that potential isopycnals are piecewise nearly neutral for diagnostic purposes. 
Significant deviations occur only in regions of pronounced water mass contrasts, and even there only for large pressure 
biases.

The agreement between the vertical gradients of αl and α  expressed by (24) suggests that α  is single-valued in z even in 

situations where αr is not. It is therefore of interest to explore the pros and cons of α  as vertical model coordinate. The 

ideal coordinate would be one that is single-valued in z, constant along neutral surfaces, material under adiabatic conditions, 
and endowed with a simple PGF formula. Attempts at finding a variable that satisfies several of these conditions have been 
undertaken by Jackett and McDougall (1997) and, more recently, by Eden and Willebrand (1998). 

Our analysis suggests that surfaces α  = const do not systematically track neutral surfaces (locally referenced potential 
isopycnals) any better than do surfaces αr = const. From this perspective, α  offers no apparent advantage over potential 

density as a vertical model coordinate. However, α  is advantageous in that the two-term expression, − M  + p α , for 
the horizontal PGF given in (19) reduces to − M  if evaluated in (x, y, α ) coordinates. That the PGF can be expressed as 
the gradient of a potential function (M  = pα  +  in this case) makes it easy for a model using α  as vertical coordinate 
to emulate dynamic constraints governing spinup of horizontal circulation systems.

There appear to be two reasons for choosing α  over αr as vertical coordinate, namely, simplicity of the PGF formulation 

and less likelihood of its being multivalued in z. The main disadvantage of α  is its nonmaterial character in adiabatic flow. 
As far as buoyancy neutrality is concerned, neither variable appears to have a clear advantage. The relative weights of the 
four factors considered undoubtedly depends on the particular model application and will have to be determined in practical 
tests.

An important reason for retaining αr as a vertical coordinate would be that it is conserved in adiabatic flow. This greatly 

facilitates the dynamic interpretation of model results because it unambiguously links interlayer mass exchange to diapycnal 
processes acting on the fluid. More importantly, it greatly reduces the diffusion associated with the numerical evaluation of 
vertical transport terms in the model equations. Virtual potential density does not qualify in this regard, as can be seen from 
the equation for the time rate of change of α  obtainable from (7). Under adiabatic conditions this“generalized vertical 
velocity”  in α  coordinates reduces to

 

whereas dαr/dt reduces to zero.
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Tables  

Table 1. Coefficients c1, . . ., 11 for κ in (8) and (9).
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Fig. 1. Lower panel: interhemispheric pressure difference (in relative units) based on the θ/S profiles shown in the upper panels. 
Solid: in situ density; short-dashed: potential densities ρ0, ρ2, ρ4. 
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Fig. 2. Adiabatic compressibility (10−5 MPa−1) at 0 MPa (κ0, solid) and 50 MPa (κ5, dashed) as function of θ and S.
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Fig. 3. Adiabatic compressibility (10−5 MPa−1) at 0 and 50 MPa (κ0 and κ5) as function of θ and S. Solid: from JMcD (1995); 

dashed: [(8) + (9)] minus JMcD (1995). 

 
Click on thumbnail for full-sized image. 

Fig. 4. Thermobaric compressibility (10−5 MPa−1) at 0 MPa (κ(θ)
0, solid) and 50 MPa (κ(θ)

5, dashed) as function of θ and S.
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Fig. 5. Interhemispheric pressure difference (in relative units) based on θ/S profiles shown in Fig. 1 . Solid: using in situ 

density (repeated from Fig. 1 ); dashed: using virtual potential densities ρ 0, ρ 2, ρ 4. 

 

 

1 We use the adjective “isopycnic”  throughout this paper to denote constant potential density.

 

2 1 MPa corresponds approximately to a 100-m depth interval.
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