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ABSTRACT

Kinematic models predict that a coherent structure, such as a jet or an eddy, in 
an unsteady flow can exchange fluid with its surroundings. The authors 
consider the significance of this effect for a fully nonlinear, dynamically 
consistent, barotropic model of a meandering jet. The calculated volume 
transport associated with this fluid exchange is comparable to that of fluid 
crossing the Gulf Stream through the detachment of rings. Although the model 
is barotropic and idealized in other ways, the transport calculations suggest that 
this exchange mechanism may be important in lateral transport or potential 
vorticity budget analyses for the Gulf Stream and other oceanic jets. The 
numerically simulated meandering jet is obtained by allowing a small-amplitude 
unstable meander to grow until a saturated state occurs. The resulting flow is 
characterized by finite-amplitude meanders propagating with nearly constant 
speed, and the results clearly illustrate the stretching and stirring of fluid 
particles along the edges of the recirculation regions south of the meander 
crests and north of the troughs. The fluid exchange and resulting transport 
across boundaries separating regions of predominantly prograde, retrograde, 
and recirculating motion is quantified using a dynamical systems analysis. The 
geometrical structures that result from the analysis are shown to be closely 
correlated with regions of the flow that are susceptible to high potential vorticity 
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dissipation. Moreover, in a related study this analysis has been used to 
effectively predict the entrainment and detrainment of particles to and from the 
jet.

1. Introduction  

It is well known that horizontal fluid exchange and mixing in the Gulf Stream and other oceanic jets can result from the 
detachment of rings and other spin-off eddies. More recently, attention has been focused on the prospect that exchange and 
stirring can occur due to the meandering motions of the stream in the absence of eddy detachments (Bower 1991; Bower 
and Lozier 1994). Support for this idea comes from models of wavy flows that have simple Eulerian time dependence but 
very complicated Lagrangian motion. In simple models of meandering jets with periodic or quasiperiodic time dependence 
for example, the flow contains regions in which fluid blobs are continually stretched and stirred, resulting in chaotic 
Lagrangian motion. The fluid parcels that participate in this process are able to move across regime boundaries that separate 
regions of the flow exhibiting qualitatively different types of motion. The associated volume flux across such boundaries is 
called “chaotic transport”  and it can be calculated using a method known as “lobe dynamics”  (Wiggins 1992). As 
summarized below, many of the simple jet models for which this mechanism has been illustrated are kinematic or involve 
other restrictions, such as linearity.

This paper has several aims. First, we describe the fluid motion and lobe dynamics in a meandering jet that is fully 
nonlinear and temporally aperiodic (and therefore one step closer to reality). The resulting lobe diagrams provide a new way 
of visualizing meandering flow fields and can be used to interpret drifter data (Lozier et al. 1997). Second, we suggest the 
importance for fluid exchange and mixing within the Gulf Stream and other meandering jets by calculating the dimensional 
transport and showing it to be comparable to transports caused by Gulf Stream rings. Also, we use the lobe calculations to 
identify regions of strong fluid filamentation and, through calculation of changes in potential vorticity along particle 
trajectories, we show these regions to be ones of high dissipation. Finally, we demonstrate by example the application of a 
potentially important dynamical systems analysis to model data that is aperiodic and available only over a finite time.

a. Background  

A number of earlier studies have suggested the existence of chaotic fluid exchange in meandering jets. Many of these 
studies build on Bower’s kinematic model of Lagrangian behavior in a jet with steadily propagating meanders (Bower 1991). 
For such a flow, the motion may be rendered steady by changing to a frame of reference translating with the meander phase 
speed. Figure 1  shows a typical streamfunction pattern caused by a meander propagating at a speed within the velocity 
range of the eastward jet. In the frame of reference moving with the meander, regions containing three types of motion 
appear. Near the meandering centerline or core of the jet exists a prograde region (labeled 1) containing eastward 

streaming motion. Far away from the jet lie retrograde regions (labeled 3) containing westward streaming motion, and 

between the retrograde and prograde regions lie recirculations or “cat’s eyes”  (labeled 2). The recirculations are centered 

about the critical lines, defined as values of y at which the phase speed c equals the velocity u(y) of the background jet. 
These recirculations should not be confused with the broader recirculation gyres known to exist north and south of the Gulf 
Stream. The points labeled p1 and p2 are hyperbolic stagnation points. The term “hyperbolic”  implies pure straining motion, 

with fluid moving toward or away from p1 or p2 along “stable”  and “unstable”  directions, respectively, as indicated by the 

arrows in Fig. 1 . In this steady flow, the streamlines are pathlines and therefore the streamlines connecting the 
hyperbolic points to the north of the crests and to the south of the troughs are regime boundaries separating the prograde (

1), recirculation ( 2), and retrograde ( 3) regions. In Bower’s model, no fluid exchange occurs across the bounding 

streamlines (the edges of the cat’s eyes) and the Lagrangian motion is regular (nonchaotic). 

When additional time dependence is added to the steadily propagating meander, it is no longer possible to render the flow 
steady by shifting reference frames. In the studies of Behringer et al. (1991), Samelson (1992), Meyers (1994), and Duan 
and Wiggins (1996) additional time dependence is included by superimposing meanders of different frequencies or by 
modulating the amplitude of the original meander. In all cases, chaotic exchange occurs across the regime boundaries and 
the stretching and folding associated with chaotic motion implies stirring in the vicinity of these boundaries. [Dutkiewicz et 
al. (1993) effected a similar result by adding a diffusive process.] This process is depicted in Fig. 2  for a time-periodic 
meandering jet flow (from Miller et al. 1996). The Lagrangian motion of particles in the vicinity of the cat’s eye is 
represented by a Poincaré map, which marks the locations of different particle trajectories at the end of each time period. 
The points p1 and p2 of Fig. 2  are generalizations of the hyperbolic stagnation points of the steady flow. In the time-

periodic case p1 and p2 mark periodic trajectories, that is, trajectories for which the fluid element in question passes the 
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same location at the end of each time period. Point p1 is intersected by a solid curve Wu(p1) called an unstable manifold of 

p1. In the absence of time dependence, Wu(p1) relaxes to the boundary separating the recirculating and prograde regions in 

the steady case (Fig. 1 ). As in the steady case, we can define Wu(p1) as the collection of trajectories that diverge from 

p1 (or, equivalently, approach p1 as t  −∞). Any fluid element that initially lies on Wu(p1) must continue to lie along this 

curve after subsequent iterations of the map. Similarly, a continuous material segment initially lying along this curve will map 

to another material segment on the curve. The motion of material elements or contour segments along Wu(p1) follows the 

arrows marked in the figure. Note that p1 has a stable manifold (also a solid curve in Fig. 2 ), which defines the collection 

of all trajectories that approach p1 as t  ∞. The point p2 has its own stable and unstable manifolds and the former, Ws

(p2), is shown as a dashed line in Fig. 2 . 

It is sometimes helpful to think of the stable and unstable manifolds as surfaces in the three-dimensional space (x, y, t). 
For example, one might picture the time axis as perpendicular to the (x, y) plane of Fig. 2 . Then the trajectories of all 

fluid elements, which initially lie on Wu(p1), form a material surface. Time slices of this surface yield curves like Wu(p1), and 

these curves are identical when the time slices are taken periodically. Visualizing the manifolds this way is also very helpful 
when the time dependence becomes aperiodic, in which case the time slices no longer replicate themselves exactly.

In the steady case Wu(p1) and Ws(p2) are identical, but this is no longer true in the periodic case. Instead, Wu(p1) and Ws

(p2) are distinct curves that intersect each other at an infinite number of points (labeled q0, 0, q1, 1, etc., in Fig. 2 ). 

Between successive intersection points are segments of the unstable and stable manifolds that delineate regions of fluid called 
lobes (labeled A0, A1, B0, B1, etc.). Since any point lying initially on a manifold must be mapped to another point on the 

same manifold, the intersection points must be mapped to other intersection points (say 
−1 to 0 and q

−1 to q0) and 

material segments like 
−1q

−1 are mapped to, say, 0q0, and then to 1q1. It follows that the material contained in a 

particular lobe, say A
−1, is mapped into a different lobe, say A0, then to A1, and so on. (More complicated scenarios, such 

as movement from A
−1 to A1 to A3 can also occur, but we assume this is not the case here.) Similarly, material from B

−1 is 

mapped to B0, then to B1, and so on. 

Two fundamentally important events occur as a result of this motion. First, fluid is transported from the prograde region 

1 to the recirculating region (or cat’s eye) 2, and vice versa. For example, the material in A
−1 (which clearly lies 

outside 2) is eventually mapped to A2 (which clearly lies inside). Similarly, the material in B
−1 (which lies inside 2) is 

mapped to B2 (which lies outside). The cat’s eye may now be regarded as a region where the motion is predominantly 

recirculating but experiences exchanges with the prograde and retrograde regions. The second important event is that fluid 
entering 2 through the “A”  lobes becomes stretched and folded, as suggested by the deformation of the solid dye patches 

shown in Fig. 2 . This process is due in part to the fact that there is an infinite number of intersection points between the 
stable and unstable manifolds and, consequently, they become densely packed in the neighborhood of the hyperbolic points. 
For example, the distance between n and qn, which is a measure of the width of lobe An decreases to zero as n increases. 

To conserve area, as required by mass conservation, the lobes must lengthen. This filamentation process tends to increase 
property gradients, eventually bringing diffusive processes into play.

The boundaries separating 1 and 2 in the time-periodic case can be defined in a number of ways. A convenient 

choice is the curve p1q0p2, formed by a segment of the unstable manifold Wu(p1) and a segment of the stable manifold Ws

(p2). This boundary roughly coincides with the boundary between 1 and 2 in the steady case. Inspection of the “A”  

lobes shows that fluid crosses into 2 from 1 only during the mapping from A0 to A1 and that fluid leaves 2 for 

1 only during the B0-to-B1 mapping. Thus, fluid enters and leaves 2 through a “turnstile”  mechanism. The associated 

flux from 1 to 2 is calculated by dividing the area of A0 by the period. In situations where the mapping of fluid lobes 

is more complicated (such as when A
−1 maps directly to A1 and A0 to A2) two or more pairs of lobes may cross the 

boundary during each time period.

Readers unfamiliar with the process and the terminology described above can refer to Guckenheimer and Holmes (1983), 
Ottino (1989), and Wiggins (1992) for a more general and complete presentation of the material. In the models of Behringer 



et al. (1991), Samelson (1992), Meyers (1994), and Duan and Wiggins (1996) this same process is at work, though 
different approaches and techniques have been utilized to analyze the chaotic motion in each case. Furthermore, these results 
seem consistent with laboratory experiments showing mixing at the edges of a barotropic jet (Sommeria et al. 1989; 
Behringer et al. 1991). 

The aforementioned kinematic models are limited in that the velocity fields do not obey any dynamical constraints, a 
shortcoming partially addressed by del-Castillo-Negrete and Morrison (1993) and Pratt et al. (1995) who used linear, 
dynamical modes to produce meandering velocity fields. In both cases the modes are neutrally stable and have critical lines 
on either side of the jet axis. Their results also show chaotic exchange but the dynamics are formally valid only for 
infinitesimal meander amplitude. Furthermore, chaos is diagnosed using the long-time behavior of fluid parcels whereas 
trajectory calculations in these linear models are formally valid only for finite time. Work along these lines has recently been 
extended to the weakly nonlinear regime by Ngan and Shepherd (1997) in a critical-level model, but the results still require 
small amplitudes. There are also a small number of analytical models that employ exact solutions to the fully nonlinear 
equations of motion, though none involve jets. One is the Kida vortex (Polvani and Wisdom 1990), an elliptical vortex 
embedded in a constant background shear. The vortex “nutates,”  a phenomenon of rotation accompanied by periodic 
variation of the aspect ratio. In a frame of reference rotating with the ellipse, the motion is periodic and the situation is 
therefore similar to the periodic motion of a jet with an additional meander frequency superimposed on the original steadily 
propagating meander. Chaotic particle trajectories are found in the region exterior to the Kida vortex.

A significant feature of all periodic models that utilize dynamical modes is that chaos occurs where the potential vorticity 
gradient is zero. For example, the Kida vortex and the jet examined by Pratt et al. (1995) have piecewise uniform potential 
vorticity. The jet examined by del-Castillo-Negrete and Morrison (1993) has a background potential vorticity gradient which 
vanishes along the critical lines where the chaotic motion is centered. These results have been formalized by Brown and 
Samelson (1994) who show that chaotic motion is precluded (in time-periodic, two-dimensional, incompressible, potential-
vorticity conserving flow) in regions of nonzero potential vorticity gradient. As a result, the chaotic motion produces no 
mixing of potential vorticity nor any potential vorticity fluxes. Indeed, strong potential vorticity gradients have been observed 
to act as a barrier to mixing in laboratory jets (Sommeria et al. 1989) and the Gulf Stream (Bower and Rossby 1989; Bower 
and Lozier 1994). 

b. Present approach  

Our approach overcomes some of the limitations of the simple models described above. In the flow field that is analyzed, 
the dynamics are fully nonlinear and there is no restriction to small amplitude. The meandering jet flow forms as the result of 
the growth of initially small amplitude disturbances until saturation occurs. The ultimate meander amplitudes are determined 
as the result of this evolution, rather than set to arbitrary values (as they are in the linear and kinematic models). Finally, the 
potential vorticity varies continuously throughout the flow field, in contrast to the artificial piecewise uniform distributions 
used in several earlier studies.

In the saturated states we consider, the flow field is dominated by a meander of a single wavelength. The spatial structure 
of the Eulerian flow field remains qualitatively simple; there is no eddy detachment. The meanders propagate eastward at a 
nearly constant speed and decay slowly due to the presence of weak dissipation. In a frame of reference moving with the 
average meander speed the time dependence is aperiodic. We have chosen these flow fields for analysis because it is possible 
to identify in them the prograde (or jet core) region, the recirculations (or cat’s eyes), and the retrograde (or far field) 
regions. The underlying geometry is therefore the same as in the simple models cited above, providing us with the 
opportunity to verify the fundamental results (that fluid is exchanged between the different regions) in a dynamically 
consistent setting. At the same time, our flow field presents complications such as aperiodic time dependence and availability 
of velocity fields over limited time intervals, both of which are more characteristic of oceanic reality. These features 
necessitate the use and development of new methodology, and this is an important aspect of this work.

Briefly, we use an extended version of a previously described lobe analysis developed for aperiodic flows fields specified 
over a finite time interval. [Miller et al. (1997) first extended the lobe analysis to the treatment of finite-time data, and Haller 
and Poje (1998) have strengthened the mathematical underpinnings. The reader is also referred to Nusse and Yorke (1998) 
and Miller et al. (1997) for background material on the numerical construction of the finite-time geometrical structures. 
Additional discussion and examples can be found in the recent work by Malhotra and Wiggins (1998).] The results will 
show that the stretching, stirring, and fluid exchange associated with lobe dynamics is confined to the edges of the 
recirculations where the potential vorticity gradient is weak, reinforcing the picture that the jet core acts as a barrier to 
mixing. It will also be shown that these edges are regions of relatively high dissipation of potential vorticity due to 
filamentation. Estimates of the flux are calculated which, when dimensionalized using scales appropriate to the Gulf Stream, 
indicate that the transport and exchange due to meandering motions is comparable to the transport associated with warm-
core and cold-core ring formation. 

Before we continue, we remark that the dynamical systems analysis utilized in this study is just one technique for 
examining fluid exchange and stirring in flow fields. In addition to providing quantitative estimates of the fluid transport 



between different regions of the flow, detailed pictures of the Lagrangian motion result from this analysis. These pictures 
can be used, for example, to interpret complicated drifter trajectories, as has been done for a set of Gulf Stream RAFOS 
trajectories (Lozier et al. 1997). However, there are other methods that have their own advantages, and the reader is 
referred, for example, to the work of Pierrehumbert (1991a, b), Ngan and Shepherd (1997), and references contained 
therein for analyses that use Lyapunov exponents and Lagrangian statistics to describe mixing.

In the next section we describe the numerical model that has been utilized to generate the flows that are analyzed in this 
investigation. The finite-time aperiodic analysis that has been applied to the numerical model data is described in section 3, 
and the results for three meandering jet flows is presented in section 4. In section 5 we discuss the oceanographic relevance 
of the results and summarize our findings.

2. Numerical framework  

Our choice for a model of a meandering jet was dictated by the need to capture some of the properties of Gulf Stream 
meanders (eastward phase propagation, finite amplitude), to achieve dynamical consistency, and, at the same time, to 
maintain a link with existing simple models (limited number of wavelengths present and well-defined retrograde, prograde, 
and recirculating regions). Flow fields that fit these requirements were found by Flierl et al. (1987) in their study of 
barotropic, β-plane jets. They numerically simulated the evolution of an unstable jet disturbed by a small amplitude 
perturbation in order to identify regimes in which eddy detachment would occur. In addition to spin-off eddies, they found a 
variety of other regimes including finite-amplitude meandering states, vortex streets, dipoles, and various instabilities (see 
Fig. 3 ). Using higher resolution, longer computation times, and a different type of dissipation, we have recomputed three 
of their finite-amplitude meandering states and we will base our lobe analysis on these simulations. 

The flow fields we analyze are numerically approximated solutions of the barotropic, β-plane, potential vorticity equation,

 

with periodic boundary conditions in both zonal and meridional directions. In (1),  is the streamfunction, q = 2  + βy 
is the potential vorticity, β is the variation of the Coriolis parameter with latitude, J( , q) = ( / x)( q/ y) − ( / y)( q/ x) 
is the Jacobian of  and q, and  is a dissipation term. Equation (1) is viewed as nondimensional, with length, velocity, and 
time scales L*, U*, and L*/U*, respectively, where L* is representative of the half-width of the jet and U* is the maximum 
jet velocity. The flow is approximated pseudospectrally in a square computational domain of nondimensional length LD and 

is allowed to develop from a weakly perturbed zonal jet of the form,

(x, y, t = 0) = −erf(y)+ 2y/LD + e−y2
 sin(k0x)(2)

 

with  = 0.02 and wavenumber k0 = 2πn0/LD. Flierl et al. (1987) found that (β, k0) = (0.103, 0.74) and (β, k0) = (0.207, 

0.98) lead to finite-amplitude meandering states in which the flow is dominated by a meander with wavelength equal to the 
initial perturbation. An example of the development of this meandering state is shown in Fig. 4 . 

Using a dimensional value of  = 1.8 × 10−11 m−1 s−1 = βU*/L*2, we associate β = 0.103 with the scales U* = 175 cm 

s−1, L* = 100 km, and t* = L*/U* =  day, and β = 0.207 with the scales U* = 87 cm s−1, L* = 100 km, and t* = L*/U* 

= 1  day. These scales are associated with propagation speeds that are higher than the speeds observed for Gulf Stream 

meanders by Lee and Cornillon (1996) using satellite imagery. Between 75° and 45°W, they find speeds less than 6 km d−1 
for the 650–800 km wavelengths corresponding to the meanders in our numerical solutions, which propagate at 12 to 18 km 

d−1. This discrepancy is probably due to the fact that Gulf Stream meanders have a significant baroclinic component. We 
also note that Gulf Stream meanders are unrestricted by periodic boundary conditions. It is unlikely that the clean, nearly 
monocromatic meanders of the type considered in this study would exist for long in such a setting, and we therefore view 
the model flow as a stepping stone to more complicated situations.

A common problem in spectral approximations is the amplification of high modes associated with Laplacian-type 
operators, resulting in numerical instability. One method used to control this amplification is to model diffusion in terms of a 

superviscosity (  = −ν4
6 ), as was done in Flierl et al. (1987). An alternative approach employs a filter to selectively 

damp only the high modes. In this study, we have applied a weak exponential cutoff filter to the Fourier projection of the 
potential vorticity field to control numerical instability. The form of this filter in terms of the normalized wavenumber θi = 

LDkH
i/N = 2πi/N, i = 0, . . . , N/2, is (see Canuto et al. 1988)



 

where kH
i = 2πi/LD is the discretized wavenumber in the x or y direction, and we have set θc = 0.65π and α = 37  −ln

(10−16). Since the use of the filter introduces some (albeit small) numerical dissipation, we have chosen to model the 
physical dissipation of potential vorticity,

 

where Re = U*L*/A is the Reynolds number. The flows are computed at two Reynolds numbers, Re = 103 and Re = 104, 

corresponding to eddy viscosities A = 175 m2 s−1 (17.5 m2 s−1) and A = 87 m2 s−1 (8.7 m2 s−1) for β = 0.103 and β = 

0.207, respectively, at Re = 103 (Re = 104). The solutions presented were computed pseudospectrally using N = 128 Fourier 
modes in the zonal and meridional directions on a square computational domain with nondimensional length LD = 25.6, and 

advanced in time using leapfrog time stepping with occasional Euler correction and time step Δt = 0.025. The resolution is 
such that, for the Reynolds numbers used, the physical dissipation dominates the numerical dissipation associated with the 
filter, resulting overall in approximately 1% (10%) total kinetic energy loss per 100 nondimensional time units for simulations 

with Re = 104 (Re = 103). 

Three flows are analyzed in this study, corresponding to the following parameter settings,

 

As an example, the evolution of the flow for parameter setting III is shown in Fig. 4  in terms of the potential vorticity 
field. The initial weakly perturbed zonal jet [Eq. (2)] is unstable and develops nonlinearly into a finite-amplitude meandering 
configuration. The generation and evolution of coherent structures in the flow for times t = 0 to t  100 is discussed in 
detail by Flierl et al. (1987). By time t0 = 200 in this case (Fig. 4b ), the flow has saturated into a configuration 

characterized by large-scale meanders that propagate eastward at a nearly constant speed and decay in amplitude as time 
progresses. It is in this regime that the numerical flows are analyzed. In some cases, secondary instabilities occur causing 
pairing of the meanders and generation of longer wavelengths. This stage of evolution, which begins for simulation times on 
the order of 500–1000, is avoided in our analysis. 

Table 1  lists the simulation times t0 that have been chosen as the initial times for the analysis in each case. These times 

have been subjectively chosen and no rigorous selection criterion has been applied. To examine the Lagrangian motion in the 
three flows, it is convenient to view the flows in a reference frame moving with the large-scale meanders. The propagation 
speed of the large-scale meanders has been estimated by spatially averaging over a portion of the domain (−4.4 < y < 4.4) 
the difference of the streamfunction, velocity, and vorticity fields at times t > t0 with fields at time t0 until a best fit (a 

minimization of the spatially averaged difference) was located. The reference-frame translation speeds that have been 
selected for each of the three flows analyzed are listed in Table 1 . Spectral analysis could also be utilized since the large-
scale meanders are dominated by a single meandering mode. For parameter setting III, for example, time series of the 
meridional velocity at two fixed locations, (x, y) = (6.0, 12.8) and (x, y) = (8.0, 15.0), reflect the propagation of the jet 
meanders past these locations (see Fig. 5a ). The power spectra of both time series (Fig. 5b ) show distinguished 
peaks near ω/(2π) = 0.0138, indicating a propagation speed of c = (LD/n0)ω/(2π) = 0.1178. We remark that a precise 

determination of the propagation speed is not essential to the characterization of the lobe dynamics presented in the following 
sections. Viewing the flow in a reference frame translating with the large-scale meanders simply makes it easier to identify 
the regions in the flow that exhibit the strong hyperbolicity necessary for the construction of the stable and unstable 
surfaces.

Figure 4b  also shows patches of vorticity swirling around within the recirculation regions, a motion that is evidence of 
a second important time dependency. (One patch is marked in the figure with asterisks.) The vortical regions undergo a 
nutation (a rotation accompanied by a change in aspect ratio similar to that of the Kida vortex) concurrent with an amplitude 



pulsation of the large-scale meanders. The time dependence of this motion can be quantified by computing the spatially 
averaged norm described above, or by conducting a similar spectral analysis, for the flow in the moving reference frame. 
For example, the spectral analysis for parameter setting III is shown in Fig. 6 . The highest peaks in the spectra coincide 
with the period of nutation, a feature found in all three flows studied. (The secondary peaks in Fig. 6b  are harmonics.) 
The time periods associated with the nutation are listed in Table 1  for each of the three flows analyzed. We document 
this phenomena to give the reader a feeling for the time dependence in the moving frame. However, the analysis presented 
below does not require the presence of any characteristic time scale.

In the next section, we describe the analysis that has been conducted on the numerical model data. In each case, the 
flows are analyzed over a finite time interval spanning 250 nondimensional time units (that is, over the time interval t = [t0, t0 

+ 250]). Although t0 is different for each of the parameter settings analyzed, for convenience throughout the rest of the 

paper we will refer to the time interval over which the analysis is conducted as t = [0, Tf] for each case. 

3. Aperiodic analysis  

It is possible to carry out the same type of lobe analysis for the aperiodic flow that was described in section 1 for periodic 
flow, provided generalizations of hyperbolic points and their stable and unstable manifolds can be found. Recall that a 
hyperbolic point corresponds to a particular fluid trajectory that passes the same location periodically. Such points are found 
just to the north of meander crests (and the south of troughs) of the jet. Nearby trajectories converge and diverge toward or 
away from this trajectory along its stable and unstable manifolds, respectively. In the aperiodic case it is reasonable to expect 
similar structures to arise, given the geometrical similarity with the periodic case. Specifically, one might expect to find a 
distinguished trajectory, γ(t), in the region north of a meander crest that remains in the general area and is characterized by 
converging and diverging Lagrangian motion in its immediate neighborhood. We call γ(t) a hyperbolic trajectory. Stable and 

unstable manifolds s and u are then defined as the collection of trajectories that converge to γ(t) as t  ∞ and as t 
 −∞, respectively. Unlike the periodic case, these surfaces must be visualized in the full three-dimensional space (x, y, t). 

Figure 7  shows a hypothetical example with the hyperbolic trajectory labeled γ(t) and its stable and unstable manifolds 
indicated by blue and red surfaces, respectively. Intersection between the stable and unstable manifolds of different 
hyperbolic trajectories can be used to identify material lobes of fluid trapped between the two surfaces and whose motion 
can be followed in the same manner as before. The intersecting surfaces might look something like the ones drawn in Fig. 
8a . Whether this exercise is helpful in clarifying transport and stirring processes in the flow field depends on the 
complexity of the flow field under consideration.

Unfortunately, velocity fields defined over −∞ < t < ∞ are typically available only in highly idealized models. In most 
imaginable examples based on numerical or real data, the velocity fields will be available over only a finite time, and it will not 
be possible to formally identify stable and unstable manifolds in terms of infinite time limits. However, it is possible to 
identify material surfaces that approximate the stable and unstable manifolds, which presumably could be found provided the 
full (−∞ < t < ∞) time record was available. The construction of these material surfaces is described below. [The reader is 
also referred to Nusse and Yorke (1998), Miller et al. (1997), and Haller and Poje (1998) for more detailed and rigorous 
discussions.]

Suppose that data over a finite time interval, 0  t  Tf, is given and regions of strong hyperbolicity are identified, such 

as to the north of the meander crests. Then, as depicted schematically in Fig. 7a , a surface s(x, y, t) can be 
generated by evolving in backward time a short segment of particles initially located in the region and aligned in the stable 
direction. The initial placement of the line of particles is such that the end points stretch in opposite directions and the 

surface s continues to straddle the particular hyperbolic region for all 0  t  Tf. A second surface u(x, y, t) is 

generated by evolving forward in time a segment of particles initially located in a region of strong hyperbolicity at time t = 0 

and aligned in the unstable direction (see Fig. 7b ). Initializing the surface u so that it includes the same hyperbolic 

region used to generate s ensures that there will be intersections between u and s. Moreover, there will be 
exactly one intersection that remains in a “small”  neighborhood of the hyperbolic region for the entire time interval. We will 
refer to such an intersection as a distinguished hyperbolic trajectory, denoted as γ(t) (see Fig. 7b ). The corresponding 

stable and unstable surfaces are denoted as s
γ
 and u

γ
, respectively. By construction, all trajectories on the material 

surface s
γ
 approach γ(t) as time progresses (t  Tf) and all trajectories on u

γ
 approach γ(t) as time regresses (t  

0). Therefore, these surfaces serve as approximate stable and unstable manifolds for the distinguished hyperbolic trajectory γ
(t). 

In this manner, every distinct hyperbolic region in the meandering jet flow can be identified with a distinguished 

hyperbolic trajectory, denoted γi, and with approximate stable and unstable manifolds denoted s
γi

 and u
γi

, for which 



γi = s
γi

  u
γi

. For the meandering jet flow, stable and unstable manifolds have been computed for two hyperbolic 

trajectories, γ1(t) and γ2(t), north of consecutive meander crests. The fluid exchange between the northern recirculation 

region and the adjacent retrograde region is described in terms of the surfaces s
γ1

 and u
γ2

, shown schematically in 

Fig. 8a . Fluid particles that move toward γ1 as time progresses lie on the surface s
γ1

, shown in blue. Particles that 

move away from γ2 as time progresses lie on the surface u
γ2

, shown in red. The surfaces intersect traversely in the x–y 

plane. At a given time in the x–y plane, the intersections terminate segments of the stable and unstable curves that bound 
areas of fluid called “lobes”  (two lobes, marked A and B, are labeled in Figs. 8a,b ). Since the surfaces are composed of 
Lagrangian trajectories, the fluid within the lobes can be tracked throughout the time interval once the surfaces are known. 
As the lobes evolve in time, their shape can deform considerably but, due to the incompressibility of the flow, the area of an 
individual lobe remains constant. In regions of strong hyperbolicity, found in the vicinity of γ1 and γ2 for example, the 

boundaries of lobes undergo rapid stretching, and we can expect their shapes to become severely filamented as in the case 
of periodic time dependence.

In order to discuss fluid exchange between the different regions of the flow, the boundaries between the regions must be 

defined. Referring to Figs. 8a,b  let Ws
γ1,t0

 denote the curve that is the t = t0 time slice of the surface s
γ1

, and 

similarly for Wu
γ2,t0

, that is,

 

Furthermore, let Ws
γ1,t0

[p, q] denote the segment of Ws
γ1,t0

 between the points p and q, and similarly for Wu
γ2,t0

[p, q]. 

The regime boundary between the recirculation region and the retrograde region at time t0  [0, Tf] is then defined as

(t = t0): Ws
γ1,t0

[γ1, q]  Wu
γ2,t0

[q, γ2],(5)

 

where q is an intersection point of Ws
γ1,t0

 and Wu
γ2,t0

. We select the intersection point that produces a boundary 

resembling the cat’s eye structure in the steady flow. In Fig. 8a  for example, the boundary at time t = 0 is defined in 
terms of the intersection point labeled “q0.”  As time progresses however, the boundary deforms and in order to restore 

symmetry to the shape of the boundary, another intersection point, q
−1, is eventually chosen to define the new boundary. 

That is,

 

Therefore, the regime boundary is defined discontinuously in time. (Notice that in Figs. 8a,b  and in the definition 
above the index of qi is incremented for every second intersection point.) The redefinition of the boundary results in a fluid 

exchange “across”  the boundary involving a pair of lobes called “turnstile lobes.”  (Transport occurs only where the 
boundary is redefined, which is generally away from the hyperbolic trajectories.) Referring to Fig. 8b , the fluid in lobe A, 
which is north of the boundary (and therefore in the retrograde region) for times t  [t0, t1), is “transported”  south of the 

boundary (and therefore into the recirculation region) at time t = t1 when the intersection point with which the boundary is 

defined is switched. Meanwhile, the fluid in lobe B is transported from the recirculation region to the retrograde region. 

Since the fluid in lobe A is trapped south of u
γ2 and north of s

γ1 for the entire available time interval (t  [0, Tf]), 

there would be no fluid exchange if the chosen intersection point with which the boundary is defined remained unchanged.

In the traditional time-periodic or quasiperiodic analysis, the boundary across which the exchange occurs is also defined 
discontinuously in time. In a time-periodic flow, the structure of the material surfaces are replicated at constant time 



intervals equal to the time period of the flow. The intersection point with which the boundary is defined is switched at these 
regular time intervals, yielding a boundary that is exactly the same as the boundary at the beginning of the interval. In the 
aperiodic flow, the timing of the boundary redefinition is less obvious. Since the meandering jet flow in this study is spatially 
symmetric in the large-scale sense, the redefinition of the boundary has been selected to approximately coincide with the 
time when an intersection point is midway between the meander crests. The resulting boundary at time ti+1 has the same 

cat’s eye shape as the boundary at time ti, but the two boundaries are not identical. Alternatively, the timing of the boundary 

redefinition could be chosen to coincide with a characteristic time period such as the nutation period. Note that the 
discontinuous alteration of the boundary occurs well away from the hyperbolic trajectories so that the motion of the latter do 
not effect the transport.

4. Transport in the aperiodic flow  

The aperiodic analysis described in the previous section has been applied to three meandering-jet flows corresponding to 
the parameter settings,

 

In this section, we present results illustrating the fluid exchange across the regime boundary separating the recirculation 

region and the retrograde region, as represented by intersections of the surfaces s
γ1

 and u
γ2

, for one recirculation 

region on the northern side of the jet. The exchange between the jet core and the recirculation region, represented by the 

intersecting surfaces u
γ1

 and s
γ2

, is significantly less than that across the recirculation–retrograde boundary for each 

of the three cases; results showing jet core–recirculation exchange will be presented at the end of this section for parameter 
setting III only.

a. Case I: (Re, β, k0) = (104, 0.103, 0.74) 

 

The results of the analysis for this case are shown in Fig. 9 . At selected times, time slices through the intersecting 

surfaces s
γ1

 and u
γ2

 are shown and the areas, or lobes, delineated by the intersecting curves are color filled. 

Included in the plots are contours, drawn in the dotted line style, of the potential vorticity field in the moving reference frame 
north of the jet axis. The locations of two distinguished hyperbolic trajectories are marked in the figures with the “+”  
symbol, and in the discussion that follows we refer to the one north of the westernmost meander crest depicted in the 
figures as γ1 and to the one north of the easternmost meander crest as γ2. The point marked with an asterisk distinguishes 

the intersection point q, chosen to define the regime boundary at the displayed time. The boundary is drawn in the figures 
with a thick black line. To ease the discussion that follows and help the reader decipher the figures, each lobe is numbered 
individually and tagged with one of six colors.

As noted in the previous section, the curves Ws
γ1,t and Wu

γ2,t become severely filamented near the hyperbolic regions γ2 

and γ1, respectively. This filamentation can be so extreme that the accuracy of the computation is insufficient to be reliable 

and the structures lose their physical relevance. Therefore, we have deleted portions of Ws
γ1,t 0 and Wu

γ2,t Tf
 in the 

vicinity of γ2 and γ1, respectively. Even though an infinite number of lobes theoretically exist throughout the entire available 

time interval, the result of truncating Ws
γ1

 and Wu
γ2

 is that only a finite number of lobes can be identified and the identified 

lobes are visible in the figures for only a portion of the available time interval, appearing near γ2 at early times and then 

disappearing near γ1 at late times after moving cyclonically along the northern recirculation–retrograde boundary. In addition, 

a consequence of the method used to compute the material surfaces (see section 3 and Fig. 7 ) is that only a small 

segment of the curve Wu
γ2,t is known at times near the beginning of the available time interval and only a small segment of 

Ws
γ1,t is known at times near the end of the interval. In the first frame in Fig. 9  corresponding to time t = 38, the curve 



Ws
γ1,t=38 has been truncated near γ2 and only the segment of the curve Wu

γ2,t=38 between q and γ2 is known. Therefore 

only six lobes are identified at time t = 38. At later times additional lobes are identified, and as the lobes move towards γ1 

they eventually disappear from the figures as Wu
γ2,t is truncated. Near the end of the available time interval, no newly 

identified lobes are present in the figures since only a short segment of Ws
γ1,t Tf

 is known (see last two frames in Fig. 9 

). 

According to the chosen regime boundary at time t = 38 (first frame in Fig. 9 ), lobes 1 (purple), 3 (blue), and 5 (too 
thin to recognize the coloring) are in the retrograde region while lobes 2 (red), 4 (pink), and 6 (yellow) are in the 
recirculation region. As time progresses, the fluid within the lobes moves cyclonically (counterclockwise). After advecting 
westward, lobe 1 at time t = 72 is stretched eastward around the southern edge of the recirculation region, becoming thin 
and elongated. In contrast, lobes 2, 3, and 4, which were filamented at time t = 38, have formed into more compact shapes 
by t = 72. Furthermore, two of the lobes have moved into a different flow regime; the fluid within lobe 1 has moved from 
the retrograde region of the flow into the recirculation region, while the fluid in lobe 2 has moved from the recirculation 
region to the retrograde region. (Note that, as discussed in the previous section, a new intersection point has been chosen to 
define the boundary at time t = 72.) Therefore, over the time interval t  [38, 72] there has been an exchange of fluid 
between the recirculation and retrograde regions. The exchange process between the recirculation and retrograde regions 
continues as time progresses. Between times t = 72 and t = 98 in Fig. 9 , lobe 3 (blue) moves from the retrograde region 
to the recirculation region while lobe 4 (pink) moves from the recirculation region to the retrograde region. Meanwhile, lobes 
1 and 2 remain in the recirculation and retrograde regions, respectively, and are compressed and stretched as their associated 
intersection points move towards γ1. 

The snapshots in Fig. 9  correspond to the times that we have chosen to redefine the regime boundary (that is, when 
every second intersection point crosses midway between meander crests). The time period that was found to dominate the 
flow in the moving reference frame, T = 52.5 (see Table 1 ), is almost twice as long as the time interval between 
snapshots in Fig. 9 . After some study, it can been seen that the overall lobe structure is qualitatively replicated at every 
second snapshot shown. That is, the lobe pattern in the snapshots at t = 38, t = 98, t = 156, and t = 210 resemble each other 
(disregarding the absence of unidentifiable lobes at t = 38 and t = 210); there is an approximately repeatable pattern every 
cycle, where the cycle length varies from 60 early in the available time interval to 54 at the end of the available time interval. 
In this flow, two sets of lobes (i.e., four lobes) participate in the exchange process during each cycle. In the first cycle (t  
[38, 98]), lobes 1, 2, 3, and 4 participate in the exchange. During the second cycle (t  [98, 156]), the exchange is 
represented by the movement of lobes 5 (green) and 6 (yellow) (see frames t = 98 and t = 130) and by lobes lobes 7 
(purple) and 8 (red) (see frames t = 130 and t = 156), and so on. If the flow were precisely time-periodic with a (constant) 
period of 60 for example, then the lobe structure would be exactly replicated every 60 time units. The region occupied by 
lobes 1, 2, 3 and 4 at time t = 38 would be occupied by lobes 5, 6, 7, and 8, respectively, at time t = 98, followed by lobes 
9, 10, 11, and 12 at time t = 158, and so on. That is, if the flow were time-periodic there would be a mapping of the lobes in 
four groups,

 

such that within a given group the lobes have exactly the same size and shape. Table 2  lists the lobe areas that have 

been calculated for each of the lobes depicted in Fig. 9 .1 Since the flow in this case is not time-periodic, the lobe 
structure is not precisely replicated and the lobe areas within each group are not constant. Over the first cycle (t = 38–98; 
lobe 1  5, 2  6, 3  7, 4  8) there is a 9% contraction of the overall lobe structure, while over the second cycle (t 
= 98–156; lobe 5  9, 6  10, 7  11, 8  12) there is a 34% increase of the total lobe area. 

The size of the lobes also indicates how much fluid is participating in the exchange between different regions of the flow. 
Over each cycle, the transport between the two regions can be computed by simply dividing the area of the lobes 
participating in the exchange by the length of the cycle. As described above, two sets of lobes participate in the exchange 
between the recirculation and retrograde regions over each cycle for the case shown in Fig. 9 . The cumulative area from 
both sets of lobes and the transport to/from the recirculation from/to the retrograde region during the cycle are listed in 
Table 3 . Over each cycle, there is a net transport from the recirculation region to the retrograde region. Note that this is 
not a net mass transport across a fixed boundary, but rather a net change in the type of motion exhibited by fluid particles in 
the vicinity of the cat’s eyes. That is, as time progresses, more fluid undergoes a change from recirculating motion to 



retrograde motion than vice versa.

b. Case II: (Re, β, k0) = (104, 0.207, 0.98) 
 

The results of the aperiodic analysis for the flow corresponding to the second case are shown in Fig. 10 . In the first 
time frame displayed, t = 38, seven lobes have been identified although lobe 5 is too small to be distinguished in the figure. 
Over the time interval t  [38, 64], the fluid in lobe 2 (red) moves from the retrograde region to the recirculation region, 
while the fluid in lobe 3 (blue) moves from the recirculation region to the retrograde region. Over the next time interval t  
[64, 96], however, two sets of lobes participate in the exchange: lobes 4 (pink) and 5 (hidden at t = 64), and lobes 6 (yellow) 
and 7 (purple). At regular intervals thereafter (δt = t2 − t1 = 32), the exchange between the recirculation and retrograde 

regions is again accomplished by just one set of lobes. Over the time interval t  [96, 128], the exchange is represented by 
the movement of lobes 8 (red) and 9 (blue), and for t  [128, 164] lobes 10 (pink) and 11 (green) perform the exchange, 
and so on.

That two sets of lobes pass through the turnstile during the time interval t  [64, 96] is a consequence of the temporal 
aperiodicity of the flow. Also, unlike the previous case for which the qualitative pattern of the lobe structure was 
approximately repeated, the time dependence in this case obscures any such pattern in the lobe structure. Although the lobes 
in the groupings,

 

have comparable areas (see Table 4 ), the shapes of the lobes do not correspond as well (see t = 128, t = 164 and t = 
196 snapshots in Fig. 10 ). 

The recirculation–retrograde transport during each cycle is summarized in Table 5 . The direction of the net transport 
varies for the different cycles, but the net cumulative transport over the time interval t  [38, 228] is from the recirculation 
region to the retrograde region. Notice that, even though two sets of lobes participate in the exchange over the interval t  
[64, 96], lobes 4 and 5 are small and do not inflate the transport over this time interval.

c. Case III: (Re, β, k0) = (103, 0.103, 0.74) 
 

The results for the third case are shown in Fig. 11 . In this case, the Reynolds number has been decreased by a factor 
of 10 from case I and, in a broad sense, the evolution of the lobe structure shown in Fig. 11  is similar to that shown in 
Fig. 9 . Over the time interval between successive snapshots in Fig. 11 , one set of lobes is transported across the 
recirculation–retrograde boundary; lobes 1 (purple) and 2 (red) are transported across the regime boundary during t  [48, 
80], followed by lobes 3 (blue) and 4 (pink) during t  [80, 102], and lobes 5 (green) and 6 (yellow) during t  [102, 134], 
and so on.

Like case I, there is a repeatable pattern to the qualitative lobe structure (the snapshots at t = 48, t = 102, and t = 162 
resemble each other, as do those at t = 80, t = 134, and t = 194) but the size of the lobes resident along the northern edge of 
the cat’s eye decrease considerably as time progresses. We can again consider the mapping of lobes into four groups,

 

Referring to Table 6 , which lists the computed lobe areas for this case, there is a 27% contraction of the overall lobe 
structure over the first cycle (t = 48–102; lobe 1  5, 2  6, 3  7, 4  8) and a 33% contraction over the second 
cycle [t = 102–162; lobe 5  9, 6  10, 7  11, 8  12 (assuming lobe 12, which is not identified, has the same area 
as lobe 8)].

The transports to/from the recirculation from/to the retrograde region over the time intervals displayed in Fig. 11  are 
summarized in Table 7 . Since the lobes that participate in the exchange decrease in size as time progresses, the transport 
across the regime boundary decreases with time. As in the low-dissipation case, more fluid undergoes a change from 



recirculating motion to retrograde motion during each cycle than vice versa.

The results presented above detail the evolution of the intersecting surfaces s
γ1

 and u
γ2

, providing a description of 

the fluid exchange between the recirculation and retrograde regions. The exchange between the jet core and the recirculation 

region can be similarly analyzed by computing the intersecting surfaces u
γ1

 and s
γ2

. Figure 12  shows the results 

of the jet core–recirculation analysis for case III. Eight individual lobes are formed in the available time interval, but most of 
the time the lobes are so thin that the intersection points and the identifying color cannot be detected in the figure. The 
computed lobe areas are listed in Table 8 . Compared to the lobes formed along the northern edge of the cat’s eye (see 
Fig. 11  and Table 6 ), these lobes are a factor of 7 smaller (using the average area of lobes 1, 2, 3, and 4 as 
representatives). Likewise, the associated transport between the jet core and the recirculation region, listed in Table 9 , is 
several times smaller than the transport between the recirculation and retrograde regions. Analyses of the jet core–
recirculation exchange for cases I and II yield similar results (not shown).

5. Discussion and summary  

The structures that have been computed in the analysis presented above are constructs that enable certain key Lagrangian 
features of the meandering jet flow to be described in detail. The geometry of these structures illustrates how patches of 
fluid are stretched, stirred, and transported to different regions in the flow. In Figs. 9–12  it can also be seen that the 
stable and unstable surfaces are embedded within regions of relatively low potential vorticity gradient. In particular, the 
dynamics do not allow the material surfaces to penetrate the high potential-vorticity-gradient region of the jet, reinforcing the 
picture that the jet core acts as a barrier to mixing.

Since the lobes undergo filamentation, it is natural to ask whether the regions occupied by the lobes are ones of high 
dissipation. The process of filamentation acts to increase local property gradients (e.g., potential vorticity gradients) and can 
thereby facilitate changes in the property field by locally increasing the dissipation. To address this question, additional 
numerical computations were conducted to study the potential vorticity evolution of Lagrangian particles in this 
nonconservative system. In these experiments, the flows for cases I and III were seeded with fluid particles along two 
meridional lines that transect the cat’s eye region (see Fig. 13 ). The fluid particles were initialized at time t = 98 for case 
I and at time t = 102 for case III, and numerically tracked for 200 nondimensional time units. The potential vorticity of each 
fluid particle was computed as the numerical flow field was advanced in time by interpolating the potential vorticity field to 
the particle location using the same sixth-order Lagrange algorithm used to estimate the Lagrangian velocity. The resulting 
potential vorticity time series for each particle was then analyzed in a simple fashion in an attempt to quantify the 
nonconservation of potential vorticity for the Lagrangian fluid particles. Figures 14  and 15  show the mean potential 
vorticity and standard deviation computed for each particle trajectory for cases I and III, respectively.

Overall, fluid-particle potential vorticity variations are weak, with standard deviations for case III (with Re = 103) 

somewhat higher than for case I (with Re = 104) as might be expected due to the increased physical dissipation in the flow 
(Figs. 14b,c  and Figs. 15b,c ). However, for both Reynolds numbers the potential vorticity variations appear to have 
some spatial dependence. An inspection of the potential vorticity time series for the particles reveals that while many of the 
time series exhibit a general downward trend, some of the fluid particles exhibit relatively large rapid transitions in their 

potential vorticity. For case I (with Re = 104), we have subjectively singled out particles that exhibit potential vorticity 
changes of Δq > 0.01 over any 10-unit time interval, and have applied the criterion Δq > 0.015 over a 10-unit time interval 

for case III (with Re = 103). These particles are highlighted in Figs. 14b,c  and Figs. 15b,c  with a square plot marker. 
While this selection process does include the particles with the largest rms potential vorticity fluctuations, which would 
manifest if the potential vorticity jumps were very large, it also includes particles that have relatively moderate standard 
deviations, differentiating them from trajectories that exhibit trends in potential vorticity. The initial locations of these same 
selected particles are marked in Fig. 13  with an asterisk. Also shown in Fig. 13  are snapshots of the lobe structure 
for cases I and III at the time the particles were initialized. There is a striking correspondence between the initial locations of 
particles that undergo rapid potential vorticity changes and regions demarcated by the lobe structure. [Recall that only a 
subset of the lobes that exist are actually depicted in the snapshots, so it is possible that the particle locations near (x, y) = 
(14, 16) in Fig. 13a  and near (x, y) = (17.5, 14) in Fig. 13b  also coincide with a portion of the entire lobe structure.] 
The correlation suggests that the filamentation experienced by the evolving lobes is associated with increased dissipation and 
eventual mixing.

In addition to revealing how the Lagrangian motion is geometrically constrained, the analysis we have conducted provides 
quantitative estimates of the fluid exchange between regions of the flow exhibiting qualitatively different types of motion. In 
all of the cases studied here, the most significant fluid exchange takes place between the recirculation regions located on 
both sides of the meandering jet and the retrograde region in the far field. Exchange between the recirculation regions and 
the jet occurs in a narrow region along the edge of the jet core, away from the strong potential vorticity gradients associated 
with the core of the jet, and is associated with a transport estimate that is approximately 4 or 7 times smaller than the 



transport between the recirculation and retrograde regions.

The amount of fluid participating in these exchange processes can be dimensionalized to provide transport estimates 
appropriate for the Gulf Stream. The dimensional volume transport is

& script; = L*U*D* , 

where  is the nondimensional transport, L* is the length scale representative of the half-width of the jet, U* represents 
the maximum jet velocity, and D* represents the depth over which the transport takes place. Using L* = 100 km and U* = 

175 cm s−1 (U* = 87 cm s−1) for nondimensional β = 0.103 (β = 0.207) (see section 2) and taking D* = 500 m as a 
representative value for the thickness (Lai and Richardson 1977), the results listed in Tables 3 , 5 , and 7  yield 

dimensional transports on the order of 0.5 to 4 Sv (Sv  106 m3 s−1) over one meander wavelength. The transport 
associated with Gulf Stream ring detachment could be estimated at approximately 1 to 5 Sv, assuming an average formation 
rate of five to six rings per year over distances comparable to the meander wavelength of the numerical jet, an average ring 
diameter of 130–250 km and a thickness of 500 m (Lai and Richardson 1977; Auer 1987). Of course, the formation of Gulf 
Stream rings results in a fluid exchange that is entirely different from the transport discussed here, and the above 
comparison is simply meant to put the current results in perspective. Rings generally carry large volumes of fluid from one 
side of the Gulf Stream to the other, whereas the Lagrangian transport described herein is associated with stirring and 
transport along the edges of the jet.

Like the model results presented here, Lagrangian observations of the Gulf Stream using neutrally buoyant floats indicate 
that, when a strong potential vorticity front is present, there is limited cross-frontal fluid transport (Bower and Lozier 1994). 
The observations also reveal a wide array of fluid particle trajectories, including pathways that reflect the meandering 
Eulerian structure of the stream as well as entrainment and detrainment to and from the stream (Bower and Rossby 1989). 
In an effort to better understand the complicated motion revealed in the observations, results from a dynamical systems 
analysis similar to that presented here have been utilized to aid the interpretation of a set of Gulf Stream RAFOS trajectories 
(Lozier et al. 1997). Recognizing that the analysis of the observed Lagrangian motion would be simplified in a moving 
reference frame, the study of Lozier et al. (1997) provided the first look at float trajectories in a reference frame moving 
with the phase speed of Gulf Stream meanders to expose the underlying geometrical structure of the observed flow.

The flow we have analyzed is a very idealized model of an oceanic jet such as the Gulf Stream, and the desire to study 
more complex flows naturally arises. It is our hope that this study will encourage future investigations that will continue to 
test the extent to which a dynamical systems approach can be effectively applied to physically relevant flows to address 
mixing and transport issues in the ocean and atmosphere.

Acknowledgments

The authors wish to thank Joseph Biello, who was involved in preliminary numerical studies of the barotropic jet. The 
results of this work were one factor in the decision to apply a dynamical systems analysis to the flow fields. The authors 
also thank Roger Samelson, Diego del-Castillo-Negrete, and Joe Pedlosky for several engaging and beneficial discussions. A 
special thanks goes to E. Paul Oberlander, WHOI Graphic Services, for the images depicted in Figs. 7  and 8 . Support 
from the Office of Naval Research, Grant N00014-93-1-1369 for AMR, N00014-92-J-1481 for PDM and CKRTJ, and 
N00014-89-J-1182 for LJP, and from the National Science Foundation, Grant OCE-9503014 for AMR, is gratefully 
acknowledged. AMR also acknowledges partial support from the Penzance Fund and Sawyer Fund through the Woods Hole 
Oceanographic Institution.

REFERENCES  

Auer, S. J., 1987: Five-year climatologicial survey of the Gulf Stream System and its associated rings. J. Geophys. Res., 92 (C11), 11 709–

11 726.. 

Behringer, R. P., S. D. Meyers, and H. L. Swinney, 1991: Chaos and mixing in a geostropic flow. Phys. Fluids A, 3 (5), 1243–1249.. 

Bower, A. S., 1991: A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J. Phys. Oceanogr., 21, 173–180.. Find 
this article online 

— —, and T. Rossby, 1989: Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. 
Phys. Oceanogr., 19, 1177–1190.. Find this article online 

— —, and M. S. Lozier, 1994: A closer look at particle exchange in the Gulf Stream. J. Phys. Oceanogr., 24, 1399–1418.. Find this article 



online 

Brown, M. G., and R. M. Samelson, 1994: Particle motion in vorticity-conserving, two-dimensional incompressible flows. Phys. Fluids, 6 
(9), 2875–2876.. 

Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, 1988: Spectral Methods in Fluid Dynamics. Springer-Verlag, 567 pp.. 

del-Castillo-Negrete, D., and P. J. Morrison, 1993: Chaotic transport of Rossby waves in shear flow. Phys. Fluids A, 5 (4), 948–965.. 

Duan, J., and S. Wiggins, 1996: Fluid exchange across a meandering jet with quasiperiodic variability. J. Phys. Oceanogr., 26, 1176–1188.. 
Find this article online 

Dutkiewicz, S., A. Griffa, and D. B. Olson, 1993: Particle diffusion in a meandering jet. J. Geophys. Res., 98 (C9), 16 487–16 500.. 

Flierl, G. R., P. Malanotte-Rizzoli, and N. J. Zabusky, 1987: Nonlinear waves and coherent vortex structures in barotropic β-plane jets. J. 
Phys. Oceanogr., 17, 1408–1438.. Find this article online 

Guckenheimer, J., and P. Holmes, 1983: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied 
Mathematical Sciences, Vol. 42, Springer-Verlag, 459 pp.. 

Haller, G., and A. Poje, 1998: Finite time transport in aperiodic flows. Physica D, in press.. 

Lai, D. Y., and P. L. Richardson, 1977: Distribution and movement of Gulf Stream rings. J. Phys. Oceanogr., 7, 670–683.. Find this article 
online 

Lee, T., and P. Cornillon, 1996: Propagation and growth of Gulf Stream meanders between 75° and 45°W. J. Phys. Oceanogr., 26, 225–
241.. Find this article online 

Lozier, M. S., L. J. Pratt, A. M. Rogerson, and P. D. Miller, 1997: Exchange geometry revealed by float trajectories in the Gulf Stream. J. 
Phys. Oceanogr., 27, 2327–2341.. Find this article online 

Malhotra, N., and S. Wiggins, 1998: Geometric structures, lobe dynamics, and Lagrangian transport in flows with aperiodic time-
dependence, with applications to Rossby wave flow. J. Nonlinear Sci., 8 (4), 401–456.. 

Meyers, S. D., 1994: Cross-frontal mixing in a meandering jet. J. Phys. Oceanogr., 24, 1641–1646.. Find this article online 

Miller, P., C. K. R. T. Jones, G. Haller, and L. Pratt, 1996: Chaotic mixing across oceanic jets. Chaotic, Fractal, and Nonlinear Signal 
Processing, R. Katz, Ed., AIP Conf. Proc. 375, AIP Press, 591–604.. 

— —, — —, A. M. Rogerson, and L. J. Pratt, 1997: Quantifying transport in numerically generated vector fields. Physica D, 110, 105–
122..

Ngan, K., and T. G. Shepherd, 1997: Chaotic mixing and transport in Rossby-wave critical layers. J. Fluid Mech., 334, 315–351.. 

Nusse, H. E., and J. Yorke, 1998: Dynamics: Numerical Explorations. 2d ed. Applied Mathematical Sciences, Vol. 101, Springer-Verlag, 
484 pp..

Ottino, J. M., 1989: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, 364 pp.. 

Pierrehumbert, R. T., 1991a: Chaotic mixing of tracer and vorticity by modulated travelling Rossby waves. Geophys. Astrophys. Fluid 
Dyn., 58, 285–319.. 

— —, 1991b: Large-scale horizontal mixing in planetary atmospheres. Phys. Fluids A, 3 (5), 1250–1260.. 

Polvani, L. M., and J. Wisdom, 1990: Chaotic Lagrangian trajectories around an elliptical vortex patch embedded in a constant and uniform 
background shear flow. Phys. Fluids A, 2 (2), 123–126.. 

Pratt, L. J., M. S. Lozier, and N. Beliakova, 1995: Parcel trajectories in quasigeostrophic jets: Neutral modes. J. Phys. Oceanogr., 25, 
1451–1466.. Find this article online 

Samelson, R. M., 1992: Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22, 431–440.. Find this article online 

Sommeria, J., S. D. Meyers, and H. L. Swinney, 1989: Laboratory model of a planetary eastward jet. Nature, 337 (6202), 58–61.. 

Wiggins, S., 1992: Chaotic Transport in Dynamical Systems. Interdisciplinary Applied Mathematics, Vol. 2, Springer-Verlag, 301 pp.. 



Tables  

Table 1. Parameter settings for the three cases analyzed along with the (nondimensional) simulation time t0 chosen as the initial 

time for the analysis, the translation speed c of the frame of reference, and the dominant time period T exhibited in the moving 
reference frame.
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Table 2. Nondimensional lobe areas for the lobes illustrated in Fig. 9 for case I.
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Table 3. Lobes participating in the retrograde-to-recirculation (T  C) and recirculation-to-retrograde (C  T) exchange, the 
cumulative lobe area, and the corresponding transport over the length of the cycle Δt = t2 − t1, for the flow illustrated in Fig. 9 for 

case I.
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Table 4. Nondimensional lobe areas for the lobes illustrated in Fig. 10 for case II.
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Table 5. Lobes participating in the retrograde-to-recirculation (T  C) and recirculation-to-retrograde (C  T) exchange, the 
cumulative lobe area, and the corresponding transport over the length of the cycle Δt = t2 − t1, for the flow illustrated in Fig. 10 

for case II.
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Table 6. Nondimensional lobe areas for the lobes illustrated in Fig. 11 for case III.
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Table 7. Lobes participating in the retrograde-to-recirculation (T  C) and recirculation-to-retrograde (C  T) exchange, the 
cumulative lobe area, and the corresponding transport over the length of the cycle* Δt = t2 − t1, for the flow illustrated in Fig. 11 

for case III.
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Table 8. Nondimensional lobe areas for the lobes illustrated in Fig. 12 for case III.
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Table 9. Lobes participating in the recirculation-to-jet core (C  J) and jet core-to-recirculation (J  C) exchange, the 
cumulative lobe area, and the corresponding transport over the length of the cycle Δt = t2 − t1, for the flow illustrated in Fig. 12 

for case III.
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Figures  
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Fig. 1. Streamfunction contours in the moving reference frame for the the kinematic model of the meandering jet from Bower 
(1991). The bounding streamlines separating the prograde ( 1), recirculation ( 2), and retrograde ( 3) regions are drawn 

with thick lines. Two hyperbolic points, p1 and p2, are indicated. 
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Fig. 2. Poincaré map for the time-periodic meandering jet flow analyzed by Pratt et al. (1995), from Miller et al. (1996), illustrating 
the chaotic transport between regions 1 and 2. Two hyperbolic points, p1 and p2, are indicated. Intersections of the stable 

manifold Ws(p2) (dashed line) and unstable manifold Wu(p1) (solid line) define primary intersection points, qn and n, and lobes 

An and Bn. The regime boundary is defined in this case as Wu(p1, q0)  Ws(q0, p2). The mapping of a square patch of fluid within 

lobe A
−1 to lobes A0, A1, and A2 at subsequent times is illustrated. 
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Fig. 3. Nonlinear regime diagram from Flierl et al. (1987) identifying different types of finite-amplitude flow evolution in (β, k0) 

phase space for the nonlinear barotropic numerical model.
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Fig. 4. Evolution of the numerically generated flow as represented by the potential vorticity field for case III. The contour 
increment is Δq = 0.1. Only a portion of the computational domain is shown. (a) The early nonlinear evolution of the unstable jet, 
t = 20, 40, 60, 80. (b) The nearly time-periodic meandering jet flow, t = 200, 220, 240, 260. A patch of vorticity within a recirculation 
region is marked with an asterisk.
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Fig. 5. Time dependence of the flow in the stationary reference frame for case III. (a) Time series of the meridional velocity, (t), 
in the stationary reference frame for two points, located at (x, y) = (6.0, 12.8) (marked “1”) and (x, y) = (8.0, 15.0) (marked “2”). (b) 
The power spectrum obtained using the maximum entropy method. The spectral peak at ω/(2π) = 0.0138 corresponds to the 
propagation speed of the dominant meander, c = (LD/n0) (ω/(2π). 
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Fig. 6. Time dependence of the flow in the moving reference frame for case III. (a) Time series of the meridional velocity, (t), in 
the moving reference frame for a point located near the jet axis at (x, y) = (6.0, 12.8) (marked “1”), and for a point located in a 
recirculation region at (x, y) = (8.0, 15.0) (marked “2”). (b) The corresponding power spectrum. The spectral peaks in the range ω/
(2π) = (0.017, 0.018) are associated with the nutation period. 
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Fig. 7. Schematic of the computational approach used to approximate the finite-time material surfaces and the hyperbolic 

trajectory γ(t). (a) The stable surface, s
γ
 (shown in blue), is generated by trajectories that exponentially move away from the 

hyperbolic region in the vicinity of γ(t = Tf) as time regresses; (b) the unstable surface, u
γ
 (shown in red), is generated by 

trajectories that exponentially move away from γ(t = 0) as time progresses. Portions of s
γ
 [in (a)] and u

γ
 [in (b)] outlined 

with the dotted line are not computed but are included in the figure to aid the visualization of the surfaces.
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Fig. 8. (a) Schematic of the time evolution of the surfaces s
γ1

 (shown in blue) and u
γ2

 (shown in red) for two 

distinguished hyperbolic trajectories, γ1(t) and γ2(t), on the northern side of the jet. Also shown are portions of u
γ1

 (shown 

in orange) and s
γ2

 (shown in purple). The intersection point used to define the regime boundary, depicted as point q0 at early 

times and q
−1 at later times, is shown in black. Two lobes, A and B, are also marked. (b) Time slices of the tangling stable and 

unstable surfaces near the intersection point q0, illustrating how the regime boundary deforms and is redefined. Segments of the 

stable (shown in blue) and unstable (shown in red) curves are used to define the regime boundary which is indicated by the thick 

line style. At time t0, the boundary is Ws
γ1,t[γ1, q0]  Wu

γ2,t[q0, γ2]. At time t > t0, the boundary has deformed, but is still 

defined with respect to the intersection point q0. At time t1, the boundary is redefined in terms of the intersection point q
−1, and 

lobes A and B are thereby “transported”  to different flow regimes resulting in a fluid exchange. 
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Fig. 9. Results of the aperiodic analysis for case I corresponding to (Re, β, k0) = (104, 0.103, 0.74).
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Fig. 10. Results of the aperiodic analysis for case II corresponding to (Re, β, k0) = (104, 0.207, 0.98).
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Fig. 11. Results of the aperiodic analysis for case III corresponding to (Re, β, k0) = (103, 0.103, 0.74).
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Fig. 12. Results of the aperiodic analysis depicting the jet core–recirculation exchange for case III. 
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Fig. 13. Composite illustrations of the potential vorticity field (contoured in the dotted line style), lobe structure (shaded), and 
two meridional transects through the cat’s eye region where Lagragian particles are initially positioned 0.05 units apart for (a) 
case I at time t = 98, and (b) case III at time t = 102. A total of 242 [202] particles for (a) [(b)] are tracked for 200 time units. The 
initial positions of particles that exhibit rapid potential vorticity transitions, Δq > 0.01 [Δq > 0.015] for (a) [(b)] over any 10-unit 
time interval, are plotted with an asterisk (see also Figs. 14  and 15 ). 
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Fig. 14. Lagrangian potential vorticity statistics for case I. (a) Mean potential vorticity vs initial meridional location, Y(t = 0), for 
the western transect (plotted with the solid line) and eastern transect (plotted with the dashed line) shown in Fig. 13a . (b) 
Standard deviation vs initial meridional location for the western transect. Particle trajectories that exhibit rapid potential vorticity 
transitions (Δq > 0.01 over 10 time units) have their rms data point augmented with a square. (c) As in (b) but for the eastern 
transect.
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Fig. 15. Lagrangian potential vorticity statistics for case III. (a) Mean potential vorticity vs initial meridional location, Y(t = 0), 
for the western transect (plotted with the solid line) and eastern transect (plotted with the dashed line) shown in Fig. 13b . (b) 
Standard deviation vs initial meridional location for the western transect. Particle trajectories that exhibit rapid potential vorticity 
transitions (Δq > 0.015 over 10 time units) have their rms data point augmented with a square. (c) As in (b) but for the eastern 
transect.

 

 

1 Lobe areas are computed every two time units using Green’s theorem. Even though the shape of the lobes deforms considerably over the available 

time interval, area conservation of individual lobes is well-approximated in our analysis, with standard deviations less than 4 × 10−5 for all lobes in 
all three cases presented.
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