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ABSTRACT

Unphysical extrema are found in ocean simulations employing space-centered 
advection even when horizontal mixing coefficients are sufficient to suppress 
checkerboard behavior. They are mostly found as isolated spurious temperature 
minima (density maxima) occurring in close association with topography and in 
places of concentrated upwelling or overflowing adjacent to the margins of 
deep basins, where velocities considerably exceed the vertical, or sometimes 
horizontal, grid Péclet condition. Temperature depressions may be as large as 
the expected temperature difference between levels and are capable of 
contaminating upstream water mass properties through horizontal diffusion and 
convective adjustment. Examples are discussed with reference to the finite 
difference solution for a stream of variable speed and diffusivity. Increased 
vertical resolution disproportionately reduces the magnitude but not necessarily 
the incidence of depressions. Flux correction eliminates the extrema and the 
contamination, but it can be very diffusive in the deeper layers and cannot 
overcome problems due to failure to resolve circulations.

1. Introduction  

Space-centered advection has the advantage of being nondiffusive, but it is rather 
dispersive at high wavenumbers and requires explicit viscosity and diffusion to 
prevent the growth of variance at the grid scale. Weaver and Sarachik (1990) 
showed that a computational mode may be excited if the horizontal or vertical grid Péclet or grid Reynolds condition be 
exceeded. The grid Péclet conditions can be written

PeH = uΔx/AH  2, PeV = wΔz/KH  2,
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where PeH, PeV, u, w, Δx, Δz, AH, KH are the horizontal and vertical grid Péclet numbers, velocities, grid spacings, and 

diffusivities, respectively. Such modes sometimes appear in horizontal fields, where they are recognized as checkerboarding, 
but the geostrophic coupling of momentum and tracer fields tends to inhibit this, and it is possible to set horizontal mixing 
parameters so that they do not arise under most conditions. Grid Péclet violations also occur in the vertical direction, but 
constraints on the thermohaline circulation allow less flexibility for adjusting diffusive coefficients in this direction. Violations 
can lead to the occurrence of unphysical extrema in the tracer fields and the production of spurious water masses. Weaver 
and Sarachik produced in a 12-level hemispheric model an anomalous overturning cell, which they ascribed to spurious 
dense water formation near the equator and which disappeared when the vertical resolution was increased to 19 levels.

In a companion study, which forms Part I of this work (Murray and Reason 1999), unphysical extrema were found to 
have a particular impact on bottom-water properties. This study investigated the effects on water properties of using 
different ways of representing fracture zone channels in the model topography below 3700 m. These channels are important 
in that they allow Antarctic Bottom Water (AABW) to pass through the submarine ridges from basin to basin in the Atlantic 
Ocean. The simulations were performed with a version of the Geophysical Fluid Dynamics Laboratory ocean model 
(described in Part I) that uses a longitudinally compressed horizontal grid of 300-km resolution (3° longitude × 2.5° latitude) 

in the Atlantic sector. Vertical diffusivity was set to KH = 1 cm2 s−1 (except in the uppermost levels) and horizontal 

diffusivity to AH = 1 × 107 cm2 s−1. Vertical grids of 12 and 21 levels were used, with thicknesses ranging from 25 m in 

the two uppermost layers to 900 m or 450 m, respectively, in the (3 or 6) layers lying beneath 1900-m depth. Below 160 m, 
each two layers of the 21-level grid occupied the depth range of one layer of the 12-level grid, and the topographic masks 
were constructed to keep the ocean volume of the two models the same.

In these models, the AABW was mostly confined to the depth range 3700–4600 m, which was represented by the bottom 
level of the 12-level grid and the bottom two levels of the 21-level grid. The topography was the same in all simulations 
above 3700 m, but differed below this level to allow fracture-zone channels to be represented in various ways. When 
channels were resolved in the model topography, water of Antarctic origin tended to spread through the basins via the 
channels at the bottom level(s). When they were not, the currents still flowed in a generally northward direction through the 
basins but were deflected upward along the margins and at the northern ends of the basins, where they were obstructed by 
the interbasin ridges. Spurious temperature depressions were found at some of these points of upwelling. These occurred 
with both open and closed channel topographies, and at both coarse and fine vertical resolutions; but the problem was 
particularly noticeable with blocked channel topography at coarse vertical resolution, and most of the discussion is 
concerned with results using this type of configuration. The simulations reported here all had blocked channels, but differed 
in the vertical resolution used and in the vertical or horizontal diffusivity applied at the bottom level. The model was 
formulated in the same way as in Part I, except that, to avoid our having to consider the impact of artificial source terms on 
the numerics, the bottom tracer restoration was suppressed. This did not affect the qualitative features of the extrema; 
however, without the restoration, the density contrast between the AABW and the North Atlantic Deep Water was greater, 
and in the NW Atlantic Basin there was a northward flow of Antarctic-influenced water, which upwelled at the northern end 
of the basin, causing a spurious depression there.

In the deep ocean, where vertical grid spacings are large but horizontal velocities are small, numerical violations are most 
likely to occur in the vertical direction;this contrasts with the situation in the upper ocean where the reverse is likely to be 
true. This is demonstrated by using the model parameters given above and some characteristic (standard deviation) velocities 
encountered in the 12-level simulations to calculate the ratios by which velocities exceeded the Péclet condition:

 

The numbers given above imply that infringements of the grid Péclet condition in one or other direction occur just about 
everywhere in the ocean. That overshoots (which here also refer to undershoots) do not occur to a similar extent is due to 
the fact that the tracer solution is stabilized by diffusive fluxes in more than one direction and by dynamical feedbacks and to 
the fact that oscillations are only recognizable when the gradients in the grid wave are comparable to ambient tracer 
gradients. The grid Péclet condition is actually very severe, and an advective calculation that exactly satisfied it (AH = uΔx/2) 

would, in fact, be equivalent to the very diffusive upwind or donor-cell scheme since



 

One matter that has not received much attention in the literature until now is the relationship between overshoots and 
topography. It is a fairly simple procedure to determine the points at which an unphysical tracer value occurs by comparing 
the tracer with its value at the same and the surrounding points at the previous time step(s). In the simulations that we have 
performed, nearly all spurious extrema were found to occur at isolated points lying next to topography. Most were 
associated with upward vertical velocities and cold (or, at any rate, dense) advection. Overshoots in downwelling regions are 
less likely since downwelling of sufficient intensity to lead to violations of the vertical grid Péclet condition is nearly always 
accompanied by convective adjustment, which effectively adds copious diffusion and negates any oscillatory tendency. 
However, in a vigorous density current, a violation in the horizontal can produce spuriously high densities in bottom cells or 
in convectively homogenized columns abutting topography.

Usually the amplitude of a computational mode is stabilized in one way or another (in the case of upwelling, by the 
temperature difference maintained between the water at the upper and lower levels); and, to some extent, one may be 
justified in saying that overshoots are “locked in”  to particular locations relative to the topography. Provided that they do not 
grow, these overshoots will tend to remain local and static features of the solution; however, there are two things that may 
upset this and lead to contamination of the properties of the surrounding water. The first is that abnormally dense water may 
be mixed by convective adjustment into a lower level where it is no longer helping to maintain the oscillatory feature. The 
second, which is of more interest here, is that, to prevent the growth of wiggles, diffusion is required. For controlling the 
intensity of the thermohaline circulation, it is necessary to have a realistic vertical diffusivity; so, although the violation of the 
vertical grid Péclet condition is the cause of the overshooting, it is horizontal diffusion that is usually called upon to smooth 
out the oscillations caused by dispersion. However, it will be shown that this is ineffective in situations where the 
topography shields the horizontal flow from lateral warming and that, paradoxically, it is this horizontal diffusion that is the 
cause of the contamination. 

The extent of this sort of contamination is illustrated in Fig. 1 , which shows the bottom level velocities and 
temperatures obtained using coarse resolution and normal diffusivities. As the AABW moves northward, it should warm as a 
result of diffusion of heat from the layer above, but it will be seen that temperatures monotonically decrease northward in 
each basin.

A number of methods may be used in an attempt to obviate this problem, but all of them have costs and drawbacks. 
There are some simple measures that reduce violations but may affect the solution in ways that work against the aim of 
modeling flows constrained by topography realistically. Duffy et al. (1997) found that increasing the horizontal viscosity 
eliminated spurious oscillations (manifested as “stacked jets”  near the equator) by reducing horizontal divergences, and 
hence vertical velocities. We have found that increased viscosity reduces spurious extrema in the deep ocean too, but blurs 
and retards current features and makes the Antarctic overturning cell more dominant. Opening interbasin channels is another 
way of inhibiting spuriously low bottom temperatures, in this case by allowing warm diffusion through the gap, which 
counteracts cold advection in the upwelling water, and by allowing pressure gradient forces to adjust so that upwelling is 
less intense. This is appropriate where channels exist anyway and need to be included to improve the realism of the 
circulation generally, but is not justified where ridges, such as the Walvis Ridge, naturally block bottom water movement, 
and may not be possible along the margins or at the ends of trough systems where upwelling can also occur.

The remedy proposed by Weaver and Sarachik (1990) is to increase the vertical resolution. For many models, this may be 
a satisfactory measure. Increased resolution does, however, incur a proportionate increase in the computational cost. This is 
an important consideration in models that are to be used for long-term climate integrations, where the cost of improving the 
vertical resolution may have to be balanced against that of providing improved parameterizations, increased horizontal 
resolution, or longer integration times. An increase of vertical resolution from 12 to 19 or some other number of levels does 
not necessarily eliminate the incidence of spurious extrema; however, it certainly decreases their severity, and this in a 
nonlinear way that it is worth understanding.

Another approach is to include a monotonic or quasi-monotonic advection scheme. Two that have been used in ocean 
models are the upstream parabolic interpolation scheme of Leonard (1979) and the flux-corrected transport (FCT) scheme 
of Zalesak (1979). Both are essentially ways of modifying wall tracer values so as to provide a controlled mix of centred and 
upstream advection. Upstream advection, on its own, is nondispersive (and therefore monotonic) but very diffusive, so it is 
desirable that the upstream weighting should be limited. Leonard’s scheme is not truly monotonic but contains sufficient 
effective diffusivity to damp oscillations in tracer fields rapidly. It has been adapted for use in the Bryan–Cox ocean model 
by Farrow and Stevens (1995), who showed it to be very effective in eliminating large horizontal temperature excursions in 
a fine resolution model of the Brazil–Falkland confluence. However, it may not perform so well near topography, where the 
upstream bias is lost.

FCT guarantees that overshoots shall not occur by applying just so much upstream advective tracer flux as is calculated 
necessary to prevent extrema from forming or becoming accentuated. Gerdes et al. (1991) incorporated the scheme in an 
ocean model and compared solutions for the North Atlantic Ocean using centered, upstream, and FCT advection. They 



found that FCT used with isopycnal mixing produced a more realistic equatorial thermocline than did centered advection 
with horizontal mixing. Their Fig. 9 shows, however, that in the deep ocean, the effective vertical diffusivity is large and 
comparable to that of upstream advection. The effect of this may need to be considered in connection with abyssal water 
properties. Flux correction is computationally expensive, and it would be of interest to know how the costs and benefits of 
using it compare with those obtained from increased resolution.

The problem of numerical violations has become more acute following the adoption by many ocean modelers of the Gent–
McWilliams parameterization (Gent and McWilliams 1990; Gent et al. 1995) and the attempt to use it with pure isopycnal 
diffusion. For the purpose of computing tracer advection in this parameterization, the explicit (or large scale) model 
velocities are augmented by eddy-induced transport velocities, which have the effect of flattening the density fields. This 
often magnifies total transport velocities, which may already be large in overflow regions. Groups using the scheme have 
been obliged to increase the number of vertical levels to about 20 to discourage spurious water mass formation (e.g., 
Danabasoglu et al. 1994; Hirst and McDougall 1996). Weaver and Eby (1997) have shown that the Gent–McWilliams 
scheme tends to produce spurious water masses in spite of increases in vertical resolution and have shown how flux 
correction can help. Although the transport velocities generated with eddy-induced transport may be larger and more noisy 
in some locations than without it, the spurious advection problem is essentially no different, and it is convenient to analyze it 
using a conventional model formulation. This also obviates a consideration of the effects of isopycnally oriented diffusion 
and the instabilities inherent in the Cox–Redi scheme (Griffies et al. 1998). 

The purpose of this paper is to investigate how numerical problems are related to flows adjacent to deep topography and 
how they are affected by different model prescriptions. In section 2, the finite difference solution obtained for a simplified 
one-dimensional situation and predictions regarding the form of the solution and its sensitivity to vertical resolution and 
different advection methods are tested against some ocean GCM simulations. In section 3, the usefulness of alternative 
advection schemes for suppressing spurious extrema is considered.

2. Flow across a topographic barrier  

a. Continuous solution  

The upwelling of water over a topographic step is a situation in which a narrow, high-diffusivity, horizontal current is 
changed into a broad, low-diffusivity, vertical current and then back into a horizontal current again as the upwelling current 
merges with the flow at the upper level. This is one of a number of situations in which there is a variation of either speed or 
diffusivity along a flow trajectory. Other instances are large-scale upwelling (variation of KH) and flow through a 

constriction (variation of speed). It is convenient to represent this type of flow as being insulated, nondivergent, unsheared, 
and time-invariant, having variable speed u(x), cross section h(x), and diffusivity A(x) along a flow axis x, which may vary 
in direction. In the finite difference representation of the upwelling case, the trajectory axis, flow boundaries, and the grid 
interfaces might be as shown in Fig. 2 . In the figure, the current is shown as continuing toward the right of the plot after 
ascending the topographic barrier; however, the direction of the current after upwelling is not important. Some or all of it 
may, in fact, be deflected towards the left of the plot at the upper level, thus forming part of a large vertical convective cell. 
In practice, there will also be some diffusion and some water movement across the boundaries, as indicated by the dashed 
vectors in the diagram. However, the conceptual model is adequate for explaining the relevant aspects of the primitive 
equation model solution. Of particular interest is the relationship between the temperatures at the bottom of the step (Tb), at 

the top of the step (Tc), and far upstream (Ta). 

The variation of temperature with x is first derived for the continuous case. Because the mass transport, Q = hu is 
constant along the stream tube, the advective term, −Q T/ x, may be written in flux form, and the advective–diffusive 
equation may be written

 

Integrating and dividing by hA, then substituting u = Q/h and renaming the constant of integration gives

 

and hence



 

where Ta is an upstream asymptotic value and T′(0) [=T(0) − Ta] is the perturbation from Ta at x = 0. The integral and, 

hence, T are monotonic and continuous functions of x. Equation (2) may be substituted in (1) to give an explicit expression 
for the temperature gradient,

 

which is equivalent in the constant velocity case to the less transparent expression derived by Cummins (1991) for the 
large-scale vertical density gradient. 

In the case of constant cross section and diffusivity, the curve will be exponential. Where there is a sudden change of 
either u or A, there will also be a discontinuity of temperature gradient, which varies in proportion to u/A at the discontinuity. 
The inverse of this quantity, A/u, defines the scale length of the amplification. 

In the application which is of interest to us, a horizontal bottom level current u of diffusivity AH upwells in a vertical 

current w of diffusivity KH. (Note that u and x now refer to the horizontal direction.) An example is taken from results from 

the 12-level blocked channel integration at the Rio Grande Rise near the location of the (blocked) Vema Channel (Fig. 1 ). 

South of the ridge, the current is northward, with advective velocities characteristically of 0.1 cm s−1; this is turned into an 

upwelling current of vertical velocity w = uΔz/Δx  3 × 10−4 cm s−1. Within each section, the cross section and the 
diffusivity are constant and the solution is exponential. The e-folding length scales for the two sections are

 

The effect of slackened velocity is more than offset by very low diffusivity in the vertical direction so that the short 
diffusive length scale and the strong tracer gradients are in the middle (upwelling) part of the trajectory. The continuous 
solution for this situation is depicted diagrammatically by the heavy curve in Fig. 3 . Because the vertical amplification 
scale is so much smaller than the upwelling depth (the 900 m between model levels), most of the temperature variation will 
occur close to the top, and the rest of the upwelling column and the whole bottom layer will be almost isothermal. While 
short advective–diffusive length scales are physically possible, they are not likely to be characteristic of flow over a 
topographic obstacle. In reality, an established flow across a topographic barrier would tend to align isothermal surfaces 
parallel to it, and strong gradients in the direction of the current would not occur. The problem in modeling this situation is 
that the overflowing stream might be quite shallow and there might be insufficient resolution to distinguish it from the 
ambient water above.

b. Finite difference solution  

Let us compare this with how the temperature variation might be represented in a finite difference computation. The 
temperatures at three consecutive grid cells, i − 1, i, and i + 1, are Ti−1, Ti, and Ti+1. The spacing, stream width (or cross 

section), speed, and diffusivity between the first two are Δxu, hu, uu, and Au, and between the second two are Δxd, hd, ud, 

and Ad. The subscripts u = i − ½ and d = i + ½ refer to the upstream and downstream interfaces, respectively. The 

advective–diffusive balance at the central cell, i, is

 

Dividing by uuhu/2 = udhd/2 (by continuity) and defining Peu = uuΔxu/Au and Ped = udΔxd/Ad,

 



−(2/Peu)(Ti − Ti−1) + (Ti + Ti−1) + (2/Ped)(Ti+1 − Ti)− (Ti+1 + Ti) = 0.

Subtracting 2Ti from the second term and adding it to the fourth, and grouping,

−(2/Peu + 1)(Ti − Ti−1) + (2/Ped − 1)(Ti+1 − Ti) = 0;
 

whence

 

For the case of constant Pe (=Peu = Ped), the temperature variation and stability condition have been derived more directly 

by Weaver and Sarachik (1990). The temperature diverges in geometric progression from an asymptotic upstream value Ta, 

and it is convenient to denote perturbations from this value by primes, namely, T′i = Ti − Ta; thus,

T′i = T′i−1.

 

The amplification factor over one grid length is

 

which gives a monotonic progression (  > 0) for Pe < 2 (the grid Péclet condition). The length scale of the amplification 
is

 

which rapidly converges to the continuous solution, 1/k = Δx/Pe = u/A, as Pe/2  0. 

The amplifying behavior can be found for the case where there is a change of grid Péclet number. Subtracting Ta from all 

temperatures in Eq. (3) and using the expanded form of the interfacial subscripts,

 

With an appropriate value of Ta, this is satisified by

T′i+1 − T′i = T′i ÷ (1/Pei+1/2 − ½),

 

that is,

T′i+1 = i+1/2T′i(7)

 

where

 

Since Pei+1/2  0, | |  1; that is, the solution is continuously amplifying. Because Ta is the same for all i, the 



amplification takes place about a constant asymptotic value; so

 

which is the discrete analogue of the continuous equation [Eq. (2)]. Note the difference in the form of the amplification 
factor for the perturbation temperatures in Eq. (8) above, as compared to that appearing in the equation for the temperature 
differences [Eq. (6)], which also involves Pei−1/2. Since the magnitude of the perturbation is nondecreasing, the occurrence 

of an extremum at grid cell i depends only on the sign of i+1/2, and hence on the grid Péclet number at the interface 

immediately downstream. This means that if the grid Péclet condition be exceeded at only one point on a trajectory, there 
will be only one spurious extremum on it.

The above findings can now be related to the upwelling case described above. The diffusive length scale of the horizontal 
current is well resolved on the model grid, giving an exponential profile with an amplification length close to that of the 
continuous solution; that of the vertical current is not, the vertical grid Péclet number in this case being PeV = wΔz/KH  30. 

Let T′b (=Tb − Ta) and T′c (=Tc − Ta) be the perturbation temperatures at the lower and upper points of the upwelling 

branch. Here T′b is determined by T′c (which can be taken as a boundary condition) by inversion Eq. (7),

 

For PeV > 2, as it is here, T′b will be negative (in this instance T′b = −0.88T′c), so the exponential will curve downward, 

and the temperature of the corner cell will be a local minimum in the finite difference solution for the temperature variation 
versus distance along the flow axis; this is in contrast to the continuous solution, which does not admit of a change of the 
sign of the temperature gradient (see Fig. 3 ). The minimum is just a single trough of the nonlocalized oscillation expected 

from Eq. (7) for  < 0. It is interesting that the temperature depression, T′b, is independent of the upstream (horizontal) grid 

spacing and diffusivity, and of whether these quantities be constant or variable.

To keep the model presented here simple, a vertical diffusive flux was only allowed between the two points in the vertical 
column that formed part of the trajectory. Without invalidating the condition for a computational mode, the formula will 
overestimate the depression of temperature at the corner point when there is vertical diffusion since this is normally applied 
at all grid points, irrespective of upward motion. When Pe is very large, temperature changes between grid points will be 
little affected by increases in u/A (in contrast to the situation when Pe is in the monotonic range and they are proportional to 
u/A). This being so, the contribution of vertical diffusion may been neglected, and

T′b = −T′c.(10)

 

Consideration will show that Eq. (10) is necessary for advective equilibrium. The equation above makes the advective 
temperature in the upwelling face

(Ta + T′c)/2 + (Tb + T′c)/2 = Ta,

 

which is the same temperature as that of the water entering at the other end of the abyssal basin; this ensures that the 
abyssal layer as a whole shall have no advective tendency, and therefore no tendency at all since there is no vertical diffusion 
into the bottom layer either.

c. Ocean model experiments  

Several experiments were carried with the 12-level model using normal diffusivities (AH = 1 × 107 cm2 s−1, KH = 1 cm2 

s−1) in most of the ocean, but with the vertical or horizontal diffusivity being varied at the bottom level. The vertical 
diffusivity between levels 11 and 12 was either normal or set to zero (except in convecting cells) and the horizontal 

diffusivity was either normal or increased to 2.5 × 107 cm2 s−1 in level 12. The meridional variation of zonal average 
temperatures in the western Atlantic trough (comprising the Argentine, Brazil, and NW Atlantic Basins) is shown for each 
experiment in Fig. 4 . 



The applicability of Eq. (10) is demonstrated by the curve for zero vertical diffusivity and normal horizontal diffusivity at 
level 12 (Fig. 4 , heavy solid curve). The features predicted from the one-dimensional model are all present in the curve 
for the Argentine Basin—the reversal of sign of the perturbation temperatures, the approximate equality of the magnitudes of 

T′b and T′c, and the length scale of the exponential (10° lat) in the horizontal. One would expect the profile normally to differ 

somewhat from the ideal exponential form owing to the fact that, even without any vertical diffusion, the upwelling is not 
confined to a single horizontal point. The upwelling at points upstream of the step (indicated by vertical dashed vectors in 
Fig. 2 ) introduces cold advection, which tends to reduce or reverse the downward curvature of the temperature trace 
while still maintaining a monotonic negative gradient. In this case, the temperatures will be such that the calculated value of 
Tb will apply to the w-weighted average advective temperatures for the whole upwelling region. In the Brazil Basin (30°S–

0°), much of the upwelling, and hence cold advection, is spread along the western margin of the basin, and this results in 
much of the temperature decrease happening in the southern half of the western boundary current, with the temperature 
gradient diminishing in the northern half. That the meridional trace still curves downward toward the Ceara rise is due to the 
movement of cold water around the northern end of the basin (as in the parallel simulation represented in Fig. 1 ). 

When normal vertical diffusivity was operating (Fig. 4 , heavy dashed curve), the temperature depression was less. 
This was expected, not only because of diffusion in the upwelling column [Eq. (9)], but also because the effective value of 
Ta would have been raised by the warming of the current due to downward diffusion at other points along and beside the 

current.

Spurious minima depress temperatures upstream by horizontal diffusion. The degree of contamination of the abyssal 
water may be taken to be proportional to the volume integral of the temperature depression in the bottom level, or, in the 
zonal-average profiles, the area of the curve beneath the Ta asymptote. In the ideal case of an exponential variation, this is 

0
−∞

T′(x) dx = −(AH/u)T′b. If a larger horizontal diffusivity were used, the exponential would tail off more gradually, 

giving the temperature profile a smoother appearance and making the temperature depression less obvious. However, the 
equation implies that increasing the horizontal diffusivity (and also decreasing the current, which tends to happen at the same 
time) would actually increase the contamination by spreading the depression over a wider area. Some evidence of this is seen 
in the two light curves in Fig. 4 , which are for the simulations in which the horizontal diffusivity at the bottom level only 

was increased to 2.5 × 107 cm2 s−1 (with and without vertical diffusivity between levels 11 and 12). The full effect of the 
spreading was not realized because the asymptotic value was not reached at the heads of the basins.

The extreme case of backward contamination occurs when the diffusivity becomes effectively infinite, as it does in 
convectively adjusting columns. The homogenization of tracer values represents a vanishingly small upstream decay of 
perturbation temperature over the length of the column. Convective adjustment normally takes place where negative 
buoyancy forcing at the surface creates static instability, but it may happen as a numerical artifact in stable upwelling 
columns. When rapid upwelling takes place over more than one grid length and the temperature at the top of the column is 

greater than that of the deep source water, that is, T′c > 0, as is usually the case, the formulas predict a minimum 

temperature in the first cell below the top and an alternation of maxima and minima beneath it—this would be equivalent to 
the multiple wiggles sometimes found in horizontal fields. In practice, the pattern below the first minimum will be disrupted 
by convective adjustment, producing homogeneous columns. This was remarked upon with reference to the 21-level 
blocked ridge simulation in Part I, in which spurious minima were found in vertical pairs at levels 20 and 21. The 
phenomenon is more common in the 21-level than the 12-level simulations because of the way that the topography was 
stepped in pairs of levels and the greater incidence of upwelling columns of more than one grid length.

Temperature depressions in the 21-level simulation were found in the same places as in the 12-level simulation, but were 
much reduced in severity. A doubling of vertical resolution naturally leads to an approximate halving of grid Péclet numbers, 
but this is not a sufficient explanation for the size of the temperature response. The main examples of unphysical minima are 
associated with vertical velocities more than an order of magnitude greater than the grid Péclet limit, and it has been shown 
that the magnitude of the depression is almost insensitive to PeV under these conditions. However, with halved grid spacing, 

the natural temperature difference between levels, T′c, will be about half, and hence so will T′b at level 20. This is confirmed 

by the results of an experiment at 21-level resolution in which the vertical diffusivity was set to zero between levels 19 and 
20 and between 20 and 21. Compared to the corresponding experiment at 12-level resolution, described earlier, the 
temperature depression was only about half (Fig. 5 ). Because of convective mixing, the depression was not compounded 
in the next layer. A depression of even half the original size is still quite large; however, this only applied when vertical 
diffusion was suppressed. With normal vertical diffusion, the ratio was less again. In the basin interior, where upwelling is 
moderate, reductions in PeV have a greater effect on temperatures than at points of strong upwelling. The effective upstream 

temperature, Ta, is increased more than in the coarse resolution case, and this further lowers T′c.
 



Convecting columns with spuriously low temperatures are found in overflow regions, where some upward currents occur 
amidst a general downward cascade. One example of a column homogenized in the bottom levels (two cells in the 12-level 
model and four in the 21-level model) was found in the Weddell Sea. The large vertical velocities at the top of the column 
and the fact that the depression of temperature relative to that at nearby grid points in the high resolution experiment was 
only half of that in the coarse resolution experiment showed clearly that the phenomenon was due to a violation of the 
vertical grid Péclet criterion. In overflow regions, currents may be sufficiently strong to exceed the horizontal grid Péclet 
criterion. Isolated minima have been found in corner grid cells southwest of Denmark Strait where the cell aspect ratio was 
such that velocities and grid separations caused violations at the southward outflow faces. In a separate experiment 
performed with stronger surface forcing in the Denmark Strait region, the temperature in the bottom four cells (depth 90–
800 m) of one vertical column in the 12-level simulation was a constant −3.9°C. With uniform column temperatures, it is not 
always immediately obvious what is causing the instability. A strong vertical current through the column (which interestingly 
was upward in these cases, not downward as one might expect) could create an oscillation, which would break up on 
account of static instability. However, the fact that the temperature was the same in the seven bottom cells at the same 
horizontal location in the 21-level simulation, shows that the cause of the problem was not coarse vertical resolution but 
strong horizontal cold advection, which was occurring over a number of levels.

3. Other advection schemes  

a. Quadratic upstream interpolation  

One scheme which has been used to overcome the problem of spurious oscillations is that proposed by Leonard (1979). 
Advective temperatures are given by the relation,

Ti−1/2 = (3Ti + 6Ti−1 − Ti−2)/8,
 

where the current, u, is in the direction of increasing i. The parabolic interpolation gives more accurate wall values and 
less dispersion than linear interpolation for medium-long waves, and the upstream bias provides numerical diffusion that 
damps trailing oscillations. The equation for a forward time step, which he used, and including an explicit diffusion term is

Tn+1
i = Tn

i − (c/8)(3Ti+1 + 3Ti − 7Ti−1 + Ti−2)n + Γ(Ti+1 − 2Ti + Ti−1)n,

 

where c = uΔt/Δx and Γ = AΔt/Δx2. An advective–diffusive balance may be obtained by equating Tn+1
i and Tn

i, setting Ti 

= T0
i, and using Pe = c/Γ, namely,

(  − 1)(3 2 + 6  − 1) − (8/Pe) (  − 1)2 = 0.(11)

 

This equation has three roots: a background constant mode (  = 1) and a pair of modes given by

 

One of these will be oscillatory if Pe > 8/3, which agrees with the curves shown in Fig. 23 of Leonard (1979). For the 

case of zero applied diffusion, the roots are (  = −1 ± 2/(3 )½ = −2.154, 0.154). With downstream boundary conditions, the 
solution is dominated by the growing, that is, oscillatory mode. In contrast to the computational mode generated by the 
centered difference solution, which is of constant amplitude, that generated by Leonard’s scheme decays to 0.464 of its 
amplitude with each grid point in the upstream direction. This corresponds to a numerical diffusivity of Anum = uΔx/Penum, 

where

Penum = 2(  − 1)/(  + 1) = 5.464,
 

that is, to an upstream weighting of 2/5.464 = 0.366. Because of the nonlinear nature of the calculation, the effective 
diffusivity (and hence the effective upstream weighting) becomes less as the explicit diffusivity is increased (e.g., for Pe = 
0.5, Penum = 20.4). 

Farrow and Stevens (1995) implemented Leonard’s scheme into the Bryan–Cox ocean model with a predictor–corrector 
time step, namely,



 

and some code that allowed for nonconstant grid spacings and ocean boundaries. The predictor step gives greater 
accuracy and stability in time, but introduces an extra factor, [1 − (c/4)(  − 1/ )], into the advective term of Eq. (11). For c 

 1, as it usually is, this exerts a small perturbation on the amplification of the dominant mode and gives rise to two 
additional modes (   4/c, −c/4), which decay rapidly upstream and downstream. A one-dimensional model run for 1000 
time steps with a constant downstream boundary condition and zero applied diffusivity gave an oscillation with the same 
predicted amplification rate with both time integration methods. This shows that the extra amplifying mode was not used to 
suppress the oscillatory mode when the predictor–corrector time step was applied. 

Unfortunately the damping properties of the advection scheme are not very useful in the case of a bottom current 
approaching and upwelling over a topographic step. Parabolic interpolation can only be applied where three upstream-biased 
grid points lie in a single physical coordinate direction. Where the i − 2 point does not exist, as is the case for an upwelling 
interface above a bottom cell, the scheme defaults to linear interpolation, that is, centered advection, giving an exit wall 
temperature that is too high. In the horizontal part of the trajectory, where the interpolation scheme can be applied, it will 
have little effect because horizontal diffusion is quite adequate for suppressing the computational mode there and keeping the 
tracer variation smooth. Thus, the conditions for a spurious temperature depression will still exist. (The same would hold for 
a horizontal grid Péclet violation following an overflow adjacent to topography.) The hypothesis has been tested with the 
one-dimensional model, this time with a constant downstream boundary condition, zero diffusivity in the interval adjacent to 

it, and Pe = 2 in the preceeding intervals. With forward time stepping, the depression was −T′c, as with centered advection, 

and there was an exponential tail of almost the same steepness. With a predictor–corrector time step, the results were very 

similar, except that the depression was slightly attenuated (to −0.922T′c).
 

b. Flux-corrected transport  

Spurious extrema can be avoided by using an upstream advection scheme, which supplies sufficient diffusion to ensure 
monotonicity under all conditions but more than is normally necessary when fluxes in three dimensions are considered. In 
the algorithm of Zalesak (1979), each interfacial advective flux consists of an upstream and a centered part, the weighting 
being such as to satisfy some criterion of monotonicity. The procedure is, first, to determine, from the previous values of 
the tracer, a range of values in which the new value may fall without creating a new extremum or intensifying an existing 
one and, second, to calculate factors which limit the weighting of the centered part to that which just guarantees that 
advection on its own shall not exceed this range.

There is more than one way of determining the tracer range and choosing the flux limiters. Gerdes et al. (1991) defined 
the range as including the upstream solution at the central point and the surrounding time-centered interfacial-average values. 
Because the predominant transports, and hence the fluxes most needing correction, may lie in a direction almost 
perpendicular to that of greatest tracer variation, they first applied a one-dimensional (1D) prelimiter based upon the 
allowable tracer range and fluxes in each coordinate direction. Since thethree pairs of fluxes limited to ensure monotonicity 
individually might not do so in concert, allowance was made that the limiters might be further circumscribed by a three-
dimensional (3D) limiter based on the full tracer range and fluxes in all directions, if desired.

Experiments were carried out with and without horizontal diffusion using FCT with 3D delimiters, FCT with 1D and 3D 
delimiters together, and also pure upstream advection. All of these used the blocked channel topography, in which the 
overshooting problem is most acute. Although both FCT schemes were found to be effective in eliminating extrema, they 
removed most of the evidence of an intermediate level salinity minimum and produced bottom temperatures in all 
experiments that were rather too warm. It made little difference to the solution whether or not the 3D delimiter was also 
applied. The effect of the warming on the bottom level meridional temperature variation can be seen in Fig. 6 . The FCT 
temperature profile follows a course midway between those of the centered and the upstream solution in which the 
temperatures were even higher. The characteristics described above seemed to indicate that too much correction, and hence 
diffusion, were being applied by the FCT scheme.

In order to establish the extent to which flux correction was being applied, numerical diffusion was diagnosed as the 
difference between the flux-corrected and centered advective tendencies. This was equivalent to the procedure of Weaver 
and Eby (1997). Flux correction was found to be occurring at most grid points in the ocean and with rms tendencies 
comparable to those of 3D advection and of horizontal diffusion at most levels. The flux corrections were also analyzed 
separately as horizontal and vertical numerical diffusion. In the bottom layer, the largest tendencies were in the vertical, of 



the order of 5 × 10−9 °C s−1, and associated with uplift at the northern ends of the basins. Numerical diffusion in both 
directions was slightly less with normal horizontal diffusion than without, but there was little difference between the 
solutions. Gerdes et al. (1991) calculated the added vertical diffusivity at each level using upstream advection and FCT. 

Their results show vertical numerical diffusion to be as much as or slightly less than the applied diffusivity (0.65 cm2 s−1) in 
the upper ocean, but several times greater in the deep ocean, where it was comparable with numerical diffusion with 
upstream advection. This accounts for the fact that their scheme produced a sharper thermocline while at the same time 
excessively warming the deep ocean. Effective vertical diffusivities that we have calculated show very similar behavior. On 
the other hand, that of numerical horizontal diffusion was the opposite, with large corrections being needed in the upper 
oceans and only minor ones in the deep oceans. This accords with the arguments made in the introduction. Both horizontal 
and vertical numerical diffusivities were overall about one quarter of those diagnosed with upstream advection.

One of the problems with 1D prelimiters is that the limiters may be made very small (i.e., giving large upstream weighting) 
in a direction in which the tracer range is small but the flow is weak, resulting in larger than necessary upstream fluxes in a 
direction in which the range is larger but not of itself limiting. Other schemes for defining a range were tried, for example, 
using the central value and the transport-weighted average at the upstream cells and at the downstream cells, or (since 
spurious extrema are ultimately sensitive to antidiffusive downstream fluxes) just the central value and the downstream 
average. These attempts were unsuccessful. The essential difficulty is that allowable ranges and hence limiting ratios can 
only be calculated in relation to a whole grid cell from the combined effects of fluxes entering and leaving it; yet each of the 
fluxes to be limited affects two cells and does not necessarily individually cause a measurable excess of tracer range in 
either.

A simpler approach is just to apply 3D limiters without any consideration of direction, as originally envisaged by Zalesak 
(1979). When this was done, the incidence of flux correction was markedly reduced, occurring mainly near topography in 
places of marginal upwelling (vertical warm numerical diffusion from the level above) and at overflow points (horizontal 
warm numerical diffusion from the point ahead). At these particular locations, the corrections were of a magnitude similar to 
those found with 1D prelimiters. Elsewhere the corrections were much smaller or zero and tracer values were not much 
changed from the standard advection case. In that it has a very small diffusive effect on water properties overall, while still 
ensuring that isolated extrema in 3D will always be checked, the 3D-only method is useful for studying numerical problems 
in the bottom level, but no claims are made for its appropriateness in dealing with spurious oscillations in the ocean interior. 

The 12-level 3D FCT simulations may be compared with the 21-level centered advection simulations. Both used the same 
normal explicit horizontal diffusion and blocked topography. The meridional profiles for the western Atlantic ocean (Fig. 6 

) in both experiments were similar to the standard 12-level centered advection case. The relative diminution of spurious 
minima in the higher resolution case has already been discussed. Temperatures averaged over the lowest two levels of the 
21-level simulation (coinciding with the bottom level of the 12-level model) are slightly less than in the 3D FCT case;this 
may be due partly to (the small amount of) cold contamination at the bottom level in the centred advection experiment and 
partly to numerical diffusivity in the 3D FCT experiment. It is interesting that, with the excessive cold contamination of the 
standard experiment removed, the basin temperatures are about uniform and that the temperature jump is about half of that 
in the standard experiment. In the FCT experiment, this means that the flux-corrected, that is, upstream, advective 
temperature is the same as the space-centered advective temperature of the standard experiment. This being the case, it is 
not surprising that the temperature at the top of the ridge is about the same in the two experiments. This is as one would 
hope: flux correction has only eliminated the upstream contamination, without affecting the downstream solution.

4. Conclusions  

The standard derivation of the grid Péclet instability criterion assumes a linear array of points with constant diffusivity and 
gives the condition for the appearance of a nonlocalized oscillatory mode. Multiple wiggles and checkerboarding are familiar 
in horizontal velocity and tracer fields in regions of strong currents when mixing coefficients have been set too low. But 
even when suitable coefficients have been used, extrema in 3D can still be found; they are nearly always produced at isolated 
points and in close association with topography. They often occur at the point where a horizontal bottom current deflects 
upward over a topographic barrier. In such locations there may be relatively little opportunity for diffusive interaction with 
points lying on either side of the current, and it may be appropriate to consider the solution as a function of distance along 
the trajectory.

The added ingredient here is a change of speed and/or diffusivity at some point along it. The continuous solution is a 
perturbation of constant sign and monotonically increasing magnitude about a constant asymptotic upstream value with an 
amplification factor u/A. The solution has the familiar exponential variation when this factor is constant. In the finite 
difference case, the perturbation is still of monotonically increasing magnitude, but not necessarily of constant sign. The 
amplification factor, related to grid index, is a function of Pe, and it is negative, that is, oscillatory, for Pe > 2. Although it is 
common to treat the oscillations as a wave phenomenon, the amplification and the conditions for an extremum are particular 
to the conditions between two grid points.



In strong upwelling, the vertical grid Péclet criterion may be exceeded by more than an order of magnitude. This is close 
to the nondiffusive limit, in which the oscillation will be of constant amplitude. When such upwelling occurs over a single 
grid interval, the temperature depression at the base will be as great as the expected difference in layer temperatures. When it 
extends through a column of several points, there will nearly always be just one point near the top of the column that 
satisfies these conditions and becomes abnormally cold and dense, the lower part of the column being made uniform by 
convective adjustment. Thus, multiple oscillations are unlikely to be found in vertical columns. Although the extrema 
themselves are isolated, their effects may be felt over many points upstream. The large diffusivity in the approaching part of 
the flow provides the means by which the spurious tracer value may contaminate water masses surrounding this point (by 
horizontal diffusion) or beneath it (by the enhancement of vertical mixing applied to statically unstable columns).

In the cases studied, the blocking of currents at the bottom level at a ridge did not actually prevent a continuous bottom 
current from flowing but did force it to rise to the next level to cross the ridge, where it was exposed to much mixing with 
the deep water at that level. It was this mixing that maintained the large vertical gradient in the direction of the upwelling. It 
does not seem likely that bottom-water currents in nature could overflow in the way they do in the model. However, even if 
they did, the low diffusivities and large gradients, which are characteristic of the vertical in the ocean, would not actually 
occur along the path of an overflowing current. Instead, a current would tend to align isopycnals parallel to itself, which 
would encourage mixing of temperature and salinity along them and shut out mixing with waters at the same level in the 
basins on either side. This is a situation that would probably be well represented by an isopycnal coordinate model (e.g., 
Oberhuber 1993), which is not constrained to representing the overflowing stream by a layer of any particular thickness. A 
more familiar and easily implemented alternative is a level model employing the Cox–Redi isopycnal diffusion scheme, 
although this suffers from the need for background diffusion and for slope limiting in regions of steep isopycnal gradients, 
which would very likely degrade its effectiveness in overflow situations. Griffies et al. (1997) have recently proposed 
numerics that would eliminate instabilities and, hence, the need for horizontal diffusion in the Cox–Redi scheme. In principle, 
one would expect any isopycnal diffusion scheme to inhibit the mixing of water masses of differing density, but this is only 
true in relation to diffusive mixing. Much of the mixing encountered in the model is due to the merging of currents in the 
vertical plane, and is therefore advective. In models of coarse vertical resolution, the isopycnals at deep levels are normally 
maintained sufficiently parallel relative to the grid by such processes that isopycnals cannot align with the particular current 
streams in which one may be interested, so advective instabilities associated with merging will still occur. Experiments 
similar to those described in this paper have been carried out using the Cox–Redi scheme, and the solutions show the same 
symptoms.

Various ways of overcoming the problem of spurious extrema have been considered. The scheme of Farrow and Stevens 
(1995) is probably not applicable to suppressing spurious extrema near topography. However, two ways that are effective 
for this are the use of increased vertical resolution and FCT. Both increase computational time by a similar factor (although 
the added proportional cost of FCT would be less with isopycnal mixing schemes since the overhead of using them is not 
increased by the FCT).

The 21-level model was designed to reproduce the ocean volume of the 12-level model, but with double the vertical 
resolution. The two simulations had a very similar climatology, except below 3700 m where there was an expected 
weakening of temperature depressions caused by numerical problems in the 21-level simulation. The improvement was not 
primarily due to the approximate halving of PeV at the most troublesome spots since at the high values obtaining there, the 

temperature depression is almost insensitive to this quantity;rather, it appears to have been due to the decrease in temperature 
differences between levels in upwelling columns, the initiation of convective adjustment in upwelling columns of more than 
one grid length, and the warming of the abyssal basins due to the lowering of PeV at basin interior points. Decreased vertical 

grid spacing does not eliminate numerical violations at this or any other particular resolution, but it does result in a more than 
proportionate decrease in the depression of temperatures: it has no direct effect on violations of the horizontal Péclet 
condition, such as have been found in polar overflow regions.

FCT, unlike increased resolution, guarantees freedom from violations, but at the price of creating extra diffusion. This is 
exaggerated in the deep ocean, where there are large grid spacings, producing excessive warmth there. The aim of FCT is to 
apply only so much upstream advection, in other words diffusion, as is necessary to prevent isolated extrema from 
developing. Because of the difficulty in designing a closure for the calculation of flux limiters, this aim has not been realized. 
It is probably still worth pursuing, using more elaborate schemes. For the purpose of this study, a simplification of the 
algorithm of Gerdes et al. that applies only 3D FCT was found to be of some use for removing isolated extrema near bottom 
topography while causing little change to tracers elsewhere; however, it is not expected that it would be of great benefit for 
removing extrema in the ocean interior if they were found to be a problem there.

Although both remedies answer the problem of eliminating numerical violations, there is a more fundamental concern that 
should guide our choice. Instabilities arise when a model attempts to calculate tendencies from gradients whose length scales 
are naturally too small to be resolved on the grid. To resolve the scales, extra diffusion is added to smooth the fields. FCT is 
just a way of adding this diffusion. Many features can stand some smoothing without losing their essential properties; in 
other cases they may not. Flows having different properties and going in opposite directions at adjacent levels will together 



conduct a net advective heat transport. If the currents cannot be resolved they will be merged and will not be able to effect 
this transport. An FCT scheme will add sufficient diffusion to mix the converging water masses without distorting the water 
properties upstream. A centered advection scheme will maintain tracer variance by feeding this into oscillatory features, 
which because of dispersion do not propagate but distort the upstream solution. In neither case is the value at the point of 
mixing much affected since the two schemes are just different ways of providing the same advective flux through the 
interface to it. FCT may serve some purpose in that it will prevent the contamination of the upstream water mass, but it will 
not, of itself, achieve the onward transmission of the signal. Increased vertical resolution will do this to the extent that it 
allows counterflows to be resolved, or at any rate better resolved (i.e., with less mixing) than they would be at coarser 
resolution. A sensible approach would therefore be to modify the resolution or implement FCT depending on the way that 
flows resolve and spurious minima develop in the model solution.
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Figures  

 
Click on thumbnail for full-sized image. 

Fig. 1. Bottom level temperatures (contour interval 0.2°C), horizontal velocities (1600 day streamlines), and upwelling regions. 

(w > 4 × 10−4 cm s−1 stippled) for a blocked channel simulation performed with normal diffusivities and no interior restoration. 
Blocked pathways include the Ceara rise (CR), Romanche Fracture Zone (RFZ), Vema Sill (VS), Walvis Ridge (WR), and South 
Sandwich Trench (SST).

 
Click on thumbnail for full-sized image. 

Fig. 2. A discretized representation of an upwelling flow trajectory, showing flow boundaries (heavy lines), flow axis (x), grid 
interfaces (cross section h), current speeds (u), and temperatures. The shaded box is a topography point and dashed vectors 
indicate possible cross-boundary currents that would exist in the nonideal situation. 

 
Click on thumbnail for full-sized image. 

Fig. 3. Form of temperature variation along an upwelling flow trajectory. The three sections delineated by vertical dashed lines 
are (from left to right) the horizontal bottom flow, the upwelling into the next level, and the upper level continuation of the flow. 
Curve A is the continuous solution and curve B the discrete solution using centered advection. Curve C shows how the discrete 
solution may be modified when upwelling extends over a number of grid squares.
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Fig. 4. Abyssal temperatures in the western trough for the 12-level blocked channel model, with zero and normal (1 cm2 s−1) KH 

between levels 11 and 12 (solid and dashed lines) and with normal (1 × 107 cm2 s−1) and increased (2.5 × 107 cm2 s−1) AH at level 

12 (heavy and feint lines). Normal diffusivities applied at other levels.
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Fig. 5. Temperatures in the western trough for the bottom level of the 12-level model with KH being zero above that level (faint 

line), and for the bottom two levels of the 21-level model with KH above those levels being zero (heavy solid lines) and normal 

(heavy dashed lines). Normal KH applied at other levels and normal AH applied throughout. 
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Fig. 6. Meridional profiles of abyssal (3700–4600 m) temperatures in the west Atlantic basins for Levitus, standard scheme 
(centered advection with 12 levels), upstream advection, 1D + 3D FCT, 3D FCT, and centered advection with 21 levels (depth 
average for two bottom levels). All simulations used normal horizontal diffusivity.
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