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ABSTRACT

A simple theory is presented for steady geostrophic circulation of a stratified 
fluid in a rectangular basin with a circumpolar connection. The interior flow 
obeys the β-plane Sverdrup vorticity balance, and the circulation is closed by 
geostrophic boundary currents. The circulation is forced by surface thermal 
gradients and wind-driven Ekman transport near the latitudes of the 
circumpolar connection. A thermal circumpolar current arises in response to 
imposed surface thermal gradients and northward Ekman transport across the 
gap latitudes. The transport of this model circumpolar current depends on the 
imposed surface thermal gradients and the gap geometry, but not on the 
strength of the wind forcing. In contrast, the circulation induced in a related 
reduced-gravity model by Sverdrup transport into the gap latitudes has zero 
zonally integrated zonal transport. The thermal current arises as a 
consequence of the geostrophic constraint, which requires that the northern 
region fill with warm fluid until it reaches the sill depth, where return 
geostrophic flow can be supported. Thus, the structure of the middepth, 
midlatitude thermocline is directly influenced by the geometry of the gap. A 
similar constraint evidently operates in the Southern Ocean.

1. The Gill and Bryan geometry  

In a pioneering calculation, Gill and Bryan (1971) studied the effects of a 
circumpolar connection on numerical solutions of a primitive-equation ocean circulation model. The basin geometry was 
purposely kept simple: a rectangular box with vertical sidewalls, punctured by a gap near the southern end of the eastern and 
western boundaries, at which periodic boundary conditions were imposed to represent a circumpolar connection. The model 
circulation depended importantly on the existence of the gap and on whether it extended to the basin floor or only to 
middepth. The existence of the gap was offered as an explanation for the formation of Antarctic Intermediate Water, and the 
model circumpolar current appeared to be primarily thermal when the gap extended only to middepth.
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The idealized geometric representation of the Antarctic region introduced by Gill and Bryan (1971) has formed the basis of 
several other numerical investigations using similar primitive equations (e.g., Cox 1989;Vallis 2000). However, despite the 
analytical treatment of related barotropic problems by Gill (1968), Kamenkovich (1962), and others, there has evidently been 
relatively little attention devoted to analytical models that include both thermal and wind stress forcing in this geometry. 

The purpose of the present note is to describe a very simple analytical theory for steady, large-scale geostrophic 
circulation of a stratified fluid in the Gill and Bryan (1971) geometry, which illustrates some relations that arise in this 
geometry between the circumpolar current, the midlatitude thermocline, and the wind and thermal forcing in the vicinity of 
the circumpolar connection.

2. Model formulation  

The geometry consists of a square basin of uniform depth on a southern-hemisphere β plane (Fig. 1 ). Horizonal 
distance is scaled by the basin width L, so the domain is 0  x  1, 0  y  1, where x and y are positive eastward and 
northward, respectively. Depth is scaled by the basin depth D, so the domain is 0  z  1, where z is positive upward. 
The gap is located in y1  y  y2, z  H so that z = H is the sill depth, and periodic boundary conditions are imposed at x 

= 0 and x = 1 in the gap. 

The interior flow is described by ideal planetary geostrophic dynamics (geostrophy, hydrostatic balance, incompressibility, 
and material conservation of temperature in the Boussinesq approximation), with no salinity effects. Thermal diffusion is 
neglected, but convective adjustment is included to maintain static stability and plays a fundamental role in the solutions. 
Geostrophic boundary currents close the meridional transport; in these, the cross-stream momentum balances are 
geostrophic, but the alongstream momentum balances are not specified.

Special forms of wind and thermal forcing are chosen for simplicity and to focus attention on the role of the circumpolar 
connection. The surface temperature Ts = T(x, y, z = 1) is fixed to zero south of the gap, increases abruptly at the southern 

edge of the gap and then linearly across the gap to a maximum at the northern edge of the gap, and remains constant at this 
maximum value from the northern edge of the gap to the northern boundary of the basin:

 

The reason for the small but abrupt temperature increase from 0 to T1 at the southern edge of the gap will be explained 

below.

The meridional surface Ekman transport E is given by

 

Here ys = y1 − Δy, ym = y2 + Δy/2, yn = ym + Δy, and E = 0 for y < ys and for y > yn. Thus, the Ekman transport E is 

constant across a band of latitudes spanning the gap (y1 < y < y2) and extending north to y = ym (so the effective zonal wind 



stress across this band varies in concert with the Coriolis parameter) and falls smoothly to zero to the north and south. This 
Ekman transport results in an Ekman vertical velocity at the surface z = 1:

 

where W1 = πV1/(2Δy).
 

The corresponding meridional profiles of Ts, E, and wE are shown in Fig. 2  for the example with ys = 0, y1 = 0.2, y2 

= 0.3, ym = 0.4, yn = 0.6, Δy = 0.2, H = 0.5, T1 = 1.05, T2 = 50, W1 = 1, and f(y) = −1.125 + 0.5y. Dimensional values may 

be computed using the scales L = 5000 km, D = 5000 m, U  = 10−3 m s−1, W  = 10−6 m s−1, and T  = 0.12 K, for 
length, depth, horizontal velocity, vertical velocity, and temperature, respectively (see, e.g., Samelson and Vallis 1997). The 
values f  = −1 and β = β L/f  = 0.5 at y = 0.25 correspond to a latitude of 57°S in the center of the gap. 

3. Model circulation  

a. Southern gyre (y < y1) 
 

When the surface temperature Ts is given by (2.1), and no fluid with T < 0 is present, it follows that the fluid south of the 

gap (y < y1) must have T = 0 everywhere, since Ts = 0 and any warmer fluid will be removed immediately by convective 

adjustment. Thus, the motion in the southern wind-forced region (ys < y < y1) is barotropic, and there is no motion south of 

the wind-forced region (y < ys). A zonal integral of the barotropic Sverdrup balance β  = fwE gives the surface pressure ps
(x, y) in ys < y < y1,

 

The western boundary current transport required to balance the Ekman and Sverdrup flow is

 

for y > ys and zero for y < ys. Figures 3  and 4  show ps and Vbs, respectively, for forcing as above.
 

b. Northern gyre (y > y2) 
 

The sidewalls extend continuously around the basin up to the sill depth z = H. Consequently, meridional geostrophic flow 
can be supported continuously around the basin, and the entire basin will fill up to the sill depth with the coldest fluid 
available, except where the cold fluid is displaced by warm fluid that has been forced downward by the action of the wind. 
North of the gap (y > y2), it is natural to make the traditional assumption that the geostrophic no-normal-flow condition may 

be applied directly to the interior flow along the eastern boundary so that isotherms along the eastern boundary must be flat. 



It follows that the fluid beneath the sill depth (z < H) must have T = 0 along the entire eastern boundary. Similarly, all the 
fluid beneath the sill depth in the stagnant region north of the wind forcing (y > yn) must have T = 0. 

Surface Ekman transport forces fluid northward across the gap, and the fixed surface thermal gradient implies that this 
fluid warms as it moves across the gap. North of the gap (y > y2), the fluid pumped downward from the surface layer all 

has uniform temperature T = T2. The geostrophic constraint prevents any southward return flow of this warm fluid across 

the gap above the sill depth. Along the eastern boundary, then, the warm (T = T2) fluid will extend downward all the way to 

the sill depth z = H, where it first encounters opposition from cold (T = 0) fluid able to flow northward geostrophically. 
Accordingly, the fluid north of the gap divides into two layers, a lower layer that has T = 0 and is at rest and an upper layer 
of thickness h(x, y) that has T = T2 and is driven by Ekman pumping, with eastern boundary condition h(1, y) = he = 1 − H. 

The solution for the moving, upper layer north of the gap is

h(x, y) = (h2
e + D2

0)1/2,(3.3)

 

where for ym < y < yn,

 

and D0 = 0 for y2 < y < ym and for y > yn. The surface pressure ps(x, y) = T2h(x, y), and the western boundary current 

transport is

 

for y2 < y < yn and zero for y > yn. Figures 3  and 4  show ps and Vbn, respectively, for forcing as above and in 

Fig. 2 . The depth at x = 0 of the western boundary current in the northern gyre is also indicated in Fig. 5 , which is 
discussed below.

c. Gap latitudes (y1 < y < y2) 
 

When the warm fluid north of the gap reaches the sill depth, it may flow southward geostrophically across the gap to 
compensate the northward surface Ekman transport across the gap. However, as it does so, it will flow beneath colder 
surface fluid because of the fixed thermal gradient across the gap. To remove the resulting static instability, a convective 
adjustment process is imposed that mixes temperature vertically to neutral stability. The effect of this adjustment is that the 
water column at the sill assumes the local surface temperature throughout the depth range from the surface (z = 1) to the 
base of the boundary current (z = d) that flows southward along the sill. 

Above the sill, then, the fluid in the gap has a simple structure: at each latitude, the surface temperature extends to the 
base of the gap: T(0, y, z) = Ts(y) for y1 < y < y2, z > H. Associated with this meridional temperature gradient is a zonal 

geostrophic flow through the gap. A pure zonal geostrophic flow solves the interior equations exactly, so the temperature 
field in the gap may be extended zonally across the basin:

T(x, y, z) = Ts(y), y1 < y < y2, z > H.(3.6)
 

Since the T = 0 abyssal interior fluid beneath the sill is stagnant, the interior pressure at the sill depth z = H is uniform, and 
the hydrostatic and geostrophic relations may be used to construct the pressure p and zonal velocity u in the circumpolar 
current above the sill depth, yielding

 



for y1 < y < y2, z > H. The speed u and transport U,

 

of this circumpolar current depend only upon geometric and thermal parameters. Figure 3  shows the surface pressure 
ps(x, y) = p(y, 1) for this solution for forcing as above and in Fig. 2 . For the dimensional scales given above, the 

dimensional values for the maximum current speed and total circumpolar current transport are 25 cm s−1 and 153 × 106 m3 

s−1. The midbasin, meridional cross section of temperature in Fig. 5  illustrates that the strength of the middepth, 
midlatitude thermocline in this model depends directly on the meridional difference in surface temperature across the gap. 
Vallis (2000) shows a similar sketch of this dependence, on the basis of numerical calculations extending the approach of 
Gill and Bryan (1971) and Cox (1989). 

At the southern edge of the gap (y = y1), there is a small discontinuity in pressure above the sill depth (z > H) since p = 0 

just south of y = y1 and p = T1(z − H) just north of y = y1. This discontinuity arises from the surface temperature jump at y 

= y1, which was imposed for convenience, to make the southern gyre barotropic. Setting T1 = 0 would remove the 

discontinuity, but would also remove the thermal gradient required to support the deep boundary current at the southern 
edge of the sill. Associated with the pressure jump is an infinitesimally thin zonal geostrophic jet at the southern edge of the 
gap with transport

 

which has the value 3.2 × 106 m3 s−1 for the dimensional scales given above. Since this transport is relatively small, the 
detailed dynamics of this jet are not pursued further here.

It is useful to give a concrete model of the southward-flowing geostrophic boundary current at the sill, which illustrates a 
possible thermal and velocity structure for the current. The thermal anomaly, relative to the stagnant T = 0 abyssal interior 
fluid beneath the sill, is assumed to be independent of depth within the boundary current and to decay exponentially offshore,

Tbc = Tse−x/ ,y1 < y < y2,d < z < H,(3.11)

 

where d is the base of the moving fluid at the boundary, and  is an arbitrary width scale for the boundary current. The 
hydrostatic relation may be integrated downward from the sill depth z = H, where p = 0, to determine the southward 
geostrophic flow in the boundary current, which increases with depth. A zonal integral across the boundary current gives 
the boundary current transport as a function of depth,

Vbc(y, z) = −f−1Ts(z − H).(3.12)

 

Since f  < 0 and z < H in the boundary current, Vbc is negative, as it must be to balance the northward Ekman transport. 

The total transport is

 

Balancing V0 against the northward Ekman transport across the gap V1 determines d,

 

so the boundary current thickens and deepens southward, while slowing to maintain constant transport. The depth d of 
the moving fluid at the boundary is indicated in Fig. 5 . The continuous horizontal thermal structure implies horizontal 
mixing of heat, in addition to the vertical mixing by convective adjustment adjacent to the sill where Tbc = Ts. 



This boundary current model illustrates several points. First, if Ts(y1) = 0, that is, if the surface temperature at the 

southern edge of the gap were equal to the temperature south of the gap, (3.14) would be singular at y = y1, as there would 

be no thermal contrast available to support southward return flow in a geostrophic boundary current beneath the sill. 
Second, the boundary current model (when extended downward to z < d, using the hydrostatic relation) emphasizes that 
pressure gradients will be induced in the abyssal layer beneath the boundary current adjacent to the sill. These pressure 
gradients are neglected in the present model. This difficulty could be removed by introducing a small topographic slope along 
the eastern edge of the sill so that the boundary current extends to the bottom everywhere. Finally, the boundary current 
model illustrates that the southward geostrophic flow can occur as a downward deformation of isotherms along the eastern 
side of the sill, while the southward boundary current north of the gap naturally occurs as an upward deformation of 
isotherms since the level of no meridional motion is beneath the southward moving layer north of the gap but above the 
southward moving layer in the gap. The vertical motion implied in the boundary currents at the edges of the gap is discussed 
below.

4. Discussion  

a. Nonlinear coupling  

The structure of the solution depends critically on the southward-flowing boundary current beneath the sill of the gap. 
This current exists solely to balance the northward Ekman transport across the gap. In the absence of wind forcing there 
need be no such boundary current, and the temperature field in and north of the gap and above the sill depth is no longer 
uniquely constrained.

Thus, the surface Ekman transport across the gap, in the presence of surface thermal gradients across the gap (and with 
the restriction to zonally symmetric circumpolar flow through the gap), selects a particular circumpolar current structure 
from the many possible symmetric circumpolar flows that exist in the absence of wind forcing. However, as noted above, 
the structure and transport of the circumpolar current in this wind-forced state are determined entirely by thermal and 
geometric parameters and do not themselves depend on the strength of the wind forcing. This is a particularly clear and 
simple illustration of an intrinsically nonlinear coupling of wind-driven and thermal circulations. 

b. Midlatitude thermocline  

When there is a surface thermal gradient and Ekman transport across the gap, the depth to which warm fluid extends in 
the middepth, midlatitude thermocline is controlled in this model by the geometry of the gap. Also, there is a direct 
connection in the model between the surface temperature difference across the gap and the middepth, midlatitude 
stratification (Fig. 5 ) since the temperature difference across the base of the moving layer is equal to the imposed 
surface temperature difference across the gap latitudes. Vallis (2000) shows a similar sketch of this connection, based on 
analysis of numerical calculations extending the approach of Gill and Bryan (1971) and Cox (1989). 

c. Deep boundary current  

The model circulation requires large vertical motions in the western boundary current at the edges of the gap (Fig. 5 ). 
The fluid north of the gap moves southward in a single, homogeneous layer that extends from the surface to middepth. At 
the western boundary, the interface north of the gap lies 350 m (0.07 units) above the sill depth z = H, to support the net 
southward geostrophic transport, since the interface depth is z = H at the eastern boundary. At the northern edge of the gap, 
the bottom of the southward moving column must drop from 350 m above z = H to z = d, roughly 350 m below z = H. 
Simultaneously, the thickness of the southward-moving column must decrease precipitously from near 1 − H  0.43 (2150 

m) to H − d = |2fV1/T2|1/2  0.07 (350 m). At the southern edge of the gap, the opposite must occur: the thin boundary 

current along the sill must spread vertically over the entire water column in order to match the barotropic flow south of the 
gap. The present analysis assumes that these vertical motions in the vicinity of the western boundary are possible and that 
substantial modifications of the interior circulation will not occur instead. The numerical solutions of Gill and Bryan (1971) 
show large vertical velocities along both the western and the eastern boundaries near the edges of the gap, an indication that 
large vertical motions can consistently occur in this region, at least in a numerical model, but it is uncertain whether these 
are related to the vertical motions in the present model.

d. Zonal momentum balance  

In the vertically and zonally integrated zonal momentum balance at the gap latitudes, the effective wind stress is balanced 
by a pressure force on the basin walls that is associated with the geostrophic boundary current beneath the sill. If the wind 



stress in the gap is increased by increasing W1, the pressure force will increase proportionally and the northern and southern 

gyres will intensify, but the thermal circumpolar circulation will be unaffected. Conversely, if the thermal gradient across the 
gap changes while the wind stress is held constant, the circumpolar flow will change, but the pressure force on the basin 
walls will not. There is no vertical transport of momentum through the circumpolar current itself and, since there are no 
waves in the model, there is no drag from wave processes in the latitude range of the gap. The zonal pressure force on the 
basin walls develops through the northern gyre from the Ekman flow that is forced northward across the gap. Since this 
zonal pressure force is associated with the meridional circulation and is essentially equivalent to the zonal pressure force that 
would support the return geostrophic flow in a closed basin, it seems inappropriate to consider it“form drag,”  which 
classically describes a component of force directed parallel to the motion of the body or, if the body is at rest, parallel to the 
motion of the fluid past the body. From this point of view, it might be more appropriate to consider it a force of lift, rather 
than drag, since it is directed normal to the flow of the boundary current that is its proximate cause. However, this 
terminology could give the false impression that the force is upward.

e. Sverdrup-driven gap currents  

In the model above, the zonal wind stress at the gap latitudes is taken up in the surface Ekman layer, and the circumpolar 
flow is a purely thermal current. Circulation may also be induced in the gap latitudes (y1 < y < y2) by southward Sverdrup 

flow across y = y2, which is absent from the model above. 

Provided that the wind stress at the gap latitudes will be balanced by Ekman transport as above, the Sverdrup-driven 
component may be considered separately, with forcing restricted to the region north of the gap. The interesting case is when 
the impinging Sverdrup flow is confined above the sill depth. The simplest configuration in which this process can be 
represented is a reduced-gravity model, with a single moving layer of temperature T = T2 and thickness h overlying a 

stagnant abyssal layer with temperature T = 0, and in which the mean value of h is chosen small enough so that the moving 
layer lies above the sill depth at the gap latitudes. The surface temperature is T = T2 everywhere, and the wind stress 

(divided by a reference density) is

 

where f2 = f(y2), W2 is a constant, and τy = 0 everywhere. For (4.1), wE(y = y2) = W2, so the Sverdrup transport VS = 

(f2/β)W2 across y = y2 in the moving layer will be southward if W2 > 0. Only motions induced by the forcing (4.1) are 

considered, and the fluid is otherwise at rest, with constant h. 

Since there is no forcing for y < y2, the fluid is at rest and h is constant for y < y2, and the southward Sverdrup flow US 

across y = y2,

 

must be taken up in an infinitesimal internal boundary layer along y = y2. The zonal jet associated with this internal 

boundary layer must reach the western boundary in order to allow the fluid to return northward in a western boundary 
current and close the circulation, as suggested by Stommel (1957), Wyrtki (1960), and Veronis (1973) for a related 
geometry.

It is necessary to determine in which direction this jet flows. Perhaps the simplest assumption is that, since there is no 
forcing in the gap latitudes, the zonally integrated zonal momentum of the flow in the jet must equal the zonally integrated 
zonal momentum of the flow immediately north of the northern edge of the gap latitudes, as the meridional displacement 
required to cross the edge of the gap latitudes and enter the jet is infinitesimal. Since the Sverdrup and geostrophic boundary 
current flow at y = y2 are purely meridional and there is no zonal wind stress at y = y2, this reasoning would evidently imply 

that the zonally integrated zonal momentum of the internal boundary layer jet must also be zero. This suggests that the jet 
will split, with half of the impinging Sverdrup transport US flowing directly westward to the western boundary and half 

flowing eastward through the gap.

To test this inference, it is useful to consider an explicit solution of a model that includes a simple representation of 



frictional effects. For the reduced-gravity model, a total transport streamfunction  may be defined so that

hu = − y, h  = x,(4.3)
 

where h is the thickness of the moving layer, (u, ) the depth-averaged velocities, and the wind stress τ will be treated as 

a body force (τz = τ/h). If frictional effects are parameterized by a simple linear drag law, ( x, y) = −r(u, ), then the 

resulting equation for  is (Stommel 1948)

r( xx + yy) + β x = τyx − τ
x
y.(4.4)

 

Solutions of (4.4) in a basin with a circumpolar connection have been obtained by Gill (1968). The present case differs 
slightly from the particular cases examined by Gill because the wind stress vanishes at the gap latitudes, but Gill’s analytical 
results may still be used. For this purpose, it is convenient to extend the gap southward to y = ys, so that there are no 

meridional boundaries south of y = y2, and to place rigid zonal walls at y = ys = y1 = 0 and y = yn = 1. 

The vertically integrated no-normal-flow condition requires s = 0 on the lateral boundaries, where s is a local tangent to 

the boundary. Along the eastern, northern, and western boundaries,  must therefore be a constant, taken to be zero. Along 
the southern boundary,  must also be constant, but this constant value 0 must be determined as part of the solution and 

gives the meridionally integrated, zonal circumpolar flow (at each longitude) through the gap. The vertically integrated zonal 
momentum balance,

−f x = −T2hhx + r y + τx,(4.5)

 

may be integrated over the basin at the gap latitudes (0 < x < 1, 0 < y < y2), where τx = 0 and the flow is zonally periodic, 

to obtain

 

Thus, the value of  on the southern boundary is equal to the zonal average of  along the northern edge of the gap 
latitudes.

In the limit r  0, the value of 0 for the wind forcing (4.1) may be calculated from Eq. (5.22) of Gill (1968). The 

result is

0 = 0.5894US(4.7)
 

(where 0.5894 = σ1 in Gill’s notation). Thus, in this model, friction slightly augments the eastward transport through the 

gap, relative to the value 0 = US/2 inferred above from inviscid arguments. Since there is no forcing at the gap latitudes, 

the zonally integrated zonal flow at the gap latitudes remains zero, as it must according to (4.6). From Eq. (5.28) and 
subsequent discussion in Gill (1968), the eastward transport in the boundary layer around the southern tip of the meridional 
boundary at x = 0, y = y2 is 0.8240US (0.8240 = 2a0 in Gill’s notation). The Sverdrup transport is equal to US north of the 

internal boundary layer, so a transport of 0.1760US must enter the western boundary layer from the east, and a transport of 

0.2346US must pass westward through the gap and then recirculate, turning northward and eastward to enter the western 

boundary current through the boundary layer at the southern tip of the meridional boundary.

To illustrate these results, a finite-difference numerical solution of (4.4) is shown in Fig. 6  for ys = 0, y2 = 0.3, yn = 

1.0, W2 = 1/f2, and r = 0.01. The grid resolution for this solution was dx = dy = 0.005 = 0.25(r/β). For this solution, 0 = 

0.898 and US = 1/β = 2, so 0/US = 0.45 and the eastward flow through the gap is roughly 20% less than the r  0 

estimate (4.7). The zonally integrated zonal flow is zero in the gap latitudes, as it must be, according to (4.6). South of the 
northern edge of the gap (y < y2), the flow between the  = 1.0 and  = 1.3 contours is westward. The  = 0.9 contour 

indicates flow westward through the gap that recirculates eastward into the western boundary current. The flow between 
the  = 0 and  = 0.7 contours goes eastward through the gap and into the western boundary current. The corresponding 



upper-layer thickness h, with h = 0.45 specified along the southern boundary, is nearly flat across the gap latitudes and 
slopes upward to the west and downward to the east in the cyclonic gyre for y > y2. 

f. The Antarctic Circumpolar Current  

The above results may be combined to suggest a conceptual model of the large-scale dynamics of the Antarctic 
Circumpolar Current (ACC). Since the Sverdrup and Ekman transport balances are linear, it is reasonable as a first 
approximation to simply superpose a thermal component, driven by the Ekman transport across the gap, and a Sverdrup 
component, driven by the divergence of Ekman transport just north of the gap indicated by the dashed lines in Fig. 2 . 
Gradients in the thickness of the moving layer in the northern region and along the northern edge of the gap latitudes will 
support the Sverdrup component, essentially as in Fig. 6 , except that now the interface will surface along the gap 
latitudes to support the thermal flow, as in Figs. 3  and 5 . The eastward flow through the gap at x = 1 will consist of 
the thermal flow plus roughly half of the southward Sverdrup transport across y = y2, while the zonally integrated zonal flow 

is due to the thermal flow alone and has no contribution from the Sverdrup component. A reversal of the zonal flow and the 
meridional thickness gradients is implied along meridional sections in the western part of the basin; this and the small 
cyclonic gyre that would form between y2 and ym might be loosely interpreted as suggesting a Sverdrup-driven northward 

shift of the circumpolar flow in the western part of the basin, which would seem more consistent with observations in the 
Southern Ocean.

While this conceptual model may be appealing in some respects, the present geometry, forcing, and dynamics are all 
extremely idealized, and inferences regarding the circulation of the Southern Ocean should be drawn only with appropriate 
caution. Two important uncertainties arise from the extreme idealization of the topography of the Southern Ocean and the 
neglect of mesoscale eddy effects. Flow driven by wind stress curl at the gap latitudes is also neglected in the model since it 
cannot be supported by geostrophic Sverdrup transport above the sill depth.

The primary issue associated with the topography is whether the reentrant zonal channel properly represents the 
circumpolar connection through Drake Passage and its relation to the Antarctic Circumpolar Current. In general, the broad 
gap in the model likely constrains meridional motion at the gap latitudes too strongly. Stommel (1957) points out that, while 
Drake Passage itself is open to zonal flow down to at least 2000 m, most fixed latitude circles are blocked by topographic 
features at other longitudes [Stommel (1957, Fig. 25), note that panels (b) and (c) are reversed; see also Webb (1993, Fig. 
9a)]. However, since unblocked latitude circles extending to depths of roughly 1500 m are found in narrow latitude bands 
within the latitudes spanned by Drake Passage, the reentrant zonal channel properly prevents meridional geostrophic flow 
above this depth; northward surface Ekman transport across the unblocked circles can return southward geostrophically 
only below the sill. Warren (1990) has argued that a deviation of only 1°–2° to the north or south of a latitude circle is 
sufficient to allow a similar circumpolar integration path through Drake Passage at depths down to at least 2000 m; while 
there are circumpolar passages deeper than 2000 m, Webb (1993) illustrates that a system of geostrophic zonal interior jets 
and meridional boundary currents can span the channel at any depth that is occluded by topographic barriers with sufficient 
meridional overlap.

The model thermal current and zonal jets, including especially the implied reversal of zonal currents in the western part of 
the basin, will almost certainly be unstable to mesoscale disturbances. These effects may be substantial: eddy heat fluxes 
may alter the thermal current, and eddy vorticity fluxes may disrupt the Sverdrup balance. Note that eddy momentum fluxes 
from baroclinic instabilities could also maintain the thermal current against friction; friction has been neglected in the thermal 
model, since the direction of the thermal current can be established independently, but is needed to obtain the constraint 
(4.6) in the Sverdrup-driven model. 

Observations suggest that, to first order, the ACC transport at Drake Passage is comparable to the zonally integrated 
southward Sverdrup transport near 57°S, but there are substantial uncertainties in both the wind stress curl and the transport 
estimates (Baker 1982; Godfrey 1989; Chelton et al. 1990). Alternatively, the present results may also be compared briefly 
with results from numerical models, such as the FRAM primitive-equation Southern Ocean model, which had a horizontal 
grid resolution of roughly 25 km and included significant mesoscale eddy fluctuations (The FRAM Group 1991). 

Saunders and Thompson (1993) verify explicitly that during the diagnostic phase of FRAM, the zonal wind stress in the 
FRAM ACC region is balanced near the surface by northward Ekman transport, and in vertical integral by bottom pressure 
forces associated with the meridional geostrophic return flow, and that the zonally integrated southward transport across 
60°S is given by the Sverdrup balance. Wells and de Cuevas (1995) report that, on a nearly circumpolar path following mean 
streamlines westward from the west side of Drake Passage for longitudes from 70°W to 0°, and perhaps to 40°W, the 
Sverdrup transport balance dominated the integral of the depth-integrated vorticity equation in FRAM, and that there was 
little evidence of significant eddy contributions to the depth-integrated vorticity budget. These results are consistent with the 
assumption of surface Ekman and interior Sverdrup flow in the present model. The suggestion by Saunders and Thompson 
(1993), following Stommel (1957), that the FRAM ACC transport is set by the Sverdrup balance is at odds with the present 



results, which suggest that, in general, the southward Sverdrup flow across 60°S need not close eastward. Ivchenko et al. 
(1996) find that the vertically integrated alongstream momentum balance in FRAM is dominated by the balance of wind 
stress and bottom pressure force, consistent with the balance in the present model, but that friction and eddy stresses are 
not entirely negligible as assumed here.

5. Summary  

A simple theory has been presented for steady geostrophic circulation of a stratified fluid in the Gill and Bryan (1971) 
geometry in which zonally reentrant flow is permitted through a gap in the sidewalls of a midlatitude basin. A circumpolar 
current arises in response to imposed surface thermal gradients and northward Ekman transport across the gap latitudes; its 
transport depends on the thermal gradients and the gap geometry, and not on the strength of the wind forcing. In contrast, 
zonal currents induced in a related reduced-gravity model by southward Sverdrup transport into the gap latitudes have zero 
zonally integrated zonal transport. When there is Ekman transport northward across the gap, the geostrophic constraint 
requires that the northern region fill with warm fluid until it reaches the sill depth where geostrophic return flow can be 
supported. Thus, the structure of the middepth, midlatitude thermocline is directly influenced by the geometry of the gap. A 
similar constraint evidently operates in the Southern Ocean.
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Figures  

 
Click on thumbnail for full-sized image. 

Fig. 1. Model geometry (schematic). (a) Plan view. The dashed lines A–B indicate the gap, where periodic boundary conditions 
are applied for y1 < y < y2, z > H. (b) Side view. The location of the gap and the height H of the sill are indicated, and the points A 

and B are labeled as in (a).
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Fig. 2. Surface forcing. Surface temperature (left panel), meridional Ekman transport (center), and Ekman vertical velocity (right) 
vs y for y1 = 0.2, y2 = 0.3, Δy = 0.2, T1 = 1.05, T2 = 50, and W1 = 1 (solid lines). With dimensional scales as in the text, the 

latitudinal distance shown is 3000 km, the total north–south temperature contrast is 6 K, the maximum Ekman transport (per unit 

zonal distance) is 0.64 m2 s−1, and the maximum Ekman pumping velocity is 10−6 m s−1. Dashed lines: Conceptual example of 
Ekman forcing discussed in section 4f. 
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Fig. 3. Contours of surface pressure ps(x, y), with the forcing as in Fig. 2  and other parameters as in the text. The circulation 

is counterclockwise (anticyclonic) in the northern gyre and clockwise (cyclonic) in the southern gyre. The circumpolar zonal flow 
through the gap (0.2 < y < 0.3) is much stronger than the gyre circulations, and the contour increment increases accordingly from 
0.5 in the gyres to 5 in the gap. For the circumpolar flow, with dimensional scales as in the text, the maximum dimensional surface 

speed is 26 cm s−1, and the dimensional transport is 153 × 106 m3 s−1. Only the region y < 0.6 is shown, as there is no flow for y > 
0.6.
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Fig. 4. Western boundary current transport (units of 25 × 106 m3 s−1, for dimensional scales as in the text) versus meridional 
distance y, for the solution in Fig. 3 . Across the gap (0.2 < y < 0.3), the southward boundary current transport balances the 

northward Ekman transport V1 = 0.127 (3.2 × 106 m3 s−1). The dashed lines indicate the boundary current transport for the Ekman 

forcing shown by dashed lines in Fig. 2 . 
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Fig. 5. Contours of temperature T versus depth z and meridional distance y on the eastern edge of the western boundary 
current (x = 0) for the solution in Fig. 3 . The contours 0, 10, 20, 30, 40, and 50 are shown. The dashed line indicates the base of 
the western boundary current at the boundary. For y > 0.6, both layers are stagnant. The boundary current and interior are 
barotropic for y < 0.2. With dimensional scales as in the text, the total temperature contrast (50 units) is 6 K, the contour 
increment is 1.2 K, the basin depth is 5000 m, and the basin width is 5000 km.
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Fig. 6. Contours of (a) streamfunction  and (b) layer thickness h for the solution of (4.4). Here ys = y1 = 0, so the gap extends 

from y = 0 to y = y2 = 0.3. The surface temperature is uniform, and the wind forcing vanishes for y < y2. 
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