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ABSTRACT

The nature of the transition in coastal-trapped wave behavior from trapped, 
subinertial modes to imperfectly trapped, superinertial waves (not modes), is 
investigated. When formulated purely in terms of pressure, the coastal-trapped 
wave eigenvalue problem admits a spurious inertial mode that distorts 
numerical calculations at nearby frequencies. By solving a pair of coupled 
equations, involving the component of velocity normal to the coastline as well 
as pressure, this spurious mode is removed. The transition through the inertial 
frequency is examined analytically by considering the effect on trapped inertial 
modes of a small frequency increment. It is shown that, to first order in this 
increment, modes remain trapped. At higher frequencies, the modal approach 
breaks down and a primitive equation model is used to represent the, now fully 
three-dimensional, situation. The scattering of energy from an oscillating 
barotropic alongshore flow by a topographic feature is considered. At 
superinertial frequencies, internal energy is scattered in all directions, although 
preferentially alongshore in the direction of coastal-trapped wave propagation. 
There is not a sudden change in behavior at the inertial frequency. As 
frequency becomes increasingly superinertial there is a gradual increase in the 
three-dimensionality of the response and a decrease in the proportion of 
energy represented by the trapped component. The work highlights the 
potential for spurs and canyons to generate alongslope-propagating internal 
tides.

1. Introduction  

The behavior of coastal-trapped waves near the inertial frequency is poorly 
understood, yet important in view of the energy concentrations at such frequencies. In linear theory, low frequency 
(subinertial) energy at ocean margins is channeled along topography and/or the coastline as coastal-trapped waves of various 
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types. At superinertial frequencies, however, linear theory admits free gravity waves and coastal-trapped waves cease to be 
perfectly trapped (Dale and Sherwin 1996, henceforth DS). This study investigates the nature of the transition from sub- to 
superinertial frequencies and discusses the changes in behavior that can be expected. One major motivation is to gain a 
greater understanding of the potential for alongshore transport of internal tidal energy within this frequency range. The M2 

tidal frequency (period 12.42 h) lies within 10% of the inertial frequency at all latitudes greater than 61.5°.

Coastal-trapped wave modes are generally calculated by solving a second-order equation describing perturbations in 
pressure in a vertical section normal to the coastline and topography. Unfortunately, close to the inertial frequency this 
approach becomes inaccurate because the pressure formulation admits a spurious (physically meaningless) inertial mode 
(Brink 1982). This spurious mode arises because boundary conditions involving the velocity component normal to the coast 
must be expressed in terms of pressure, but the relation between this component and pressure is singular at the inertial 
frequency. When modes are calculated numerically close to the inertial frequency, the spurious mode interacts with the 
physical modes of the system, causing dispersion curves to distort around the inertial frequency (DS).

An additional complication is a change in the nature of the governing differential equation from elliptic (subinertial) to 
hyperbolic (superinertial). Modal solutions to the superinertial coastal-trapped wave problem can never be entirely 
satisfactory due to difficulties in setting a realistic offshore boundary condition. Although modal shapes may appear 
acceptable close to the topography, they always contain components that either become large far offshore or require 
onshore phase and energy propagation from the ocean (DS). In addition, if the bed has points of critical slope at which the 
bed slope matches that of internal-wave characteristics, solutions may contain discontinuities that lie along characteristics. 
The difficulties with the modal approach are symptomatic of the increasing three-dimensionality of the problem, in the sense 
that the alongshore and cross-shore dependency are no longer separable when reasonable physical constraints (trapping 
conditions) are imposed. The modal approach becomes increasingly inappropriate as frequencies rise above the inertial 
frequency.

This paper begins by describing a method by which modes can be calculated accurately at near-inertial frequencies. The 
second-order pressure equation is replaced by a pair of equations involving pressure and the component of velocity normal 
to the coastline, enabling the boundary conditions to be set in a manner that remains valid at the inertial frequency. Similar 
techniques have been used in equatorial-wave calculations (e.g., Proehl 1991). The nature and implications of the transition 
from sub- to superinertial frequencies are then investigated analytically by considering slightly superinertial frequencies. At 
frequencies a finite interval above the inertial frequency, the breakdown of the modal approach necessitates solution of a 
fuller (and, in particular, three-dimensional) set of equations. To this end, the Bryan–Cox primitive equation model is used, 
first to make comparisons with the linear modal solutions, then to investigate the form of coastal-trapped waves generated 
by local forcing representing the interaction between an oscillating current and topography.

2. The coastal-trapped wave eigenvalue problem  

Consider coastal topography of depth h(x) that is uniform in the alongshore (y) direction (Fig. 1 ). Buoyancy frequency 
N(z) is horizontally uniform. A motionless background state is perturbed by velocity components u, , and w, pressure p, 
and density ρ. All these perturbations are expressed as functions of x and z in the form

 

where u(x, z) and wavenumber k may be complex but frequency σ is real. Thus, a nonzero imaginary component of k 
implies alongshore growth or decay. The linear, Boussinesq equations of motion are nondimensionalized with respect to 
scales L, U, f , H, ρ, N0, HU/L, and ρfUL for horizontal position, velocity, frequency, depth, density, buoyancy frequency, 

vertical velocity, and pressure, respectively:

 

where u, , w, ρ, p, σ, and k are now nondimensional, without change of notation. Two dimensionless parameters 

remain, S  N2
0H2/f2L2 and D2  f2L2/gH (which appears in the free-surface condition, below). Here L and H are taken 

to be the offshore and vertical scales of the topography, with H = limx ∞
h(x). The hydrostatic approximation has been 



made in (3), effectively assuming that σ2  N2. 

p formulation: 

A second-order equation for p is obtained by expressing the velocity perturbations in terms of p:

 

then substituting into the continuity equation (4)

 

Boundary conditions are a free surface

 

no flow through the bed

 

and a coastal wall

 

The open ocean is assumed to be flat bottomed, so perturbations in this region can be decomposed into a linear 
combination of vertical structure modes with horizontal structure arranged to match the alongshore wavenumber k (DS). 
The vertical structure mode eigenvalue problem for pressure perturbations p′(z) is

 

with boundary conditions D2SN2p′ + dp′/dz = 0 at the surface (z = 0) and dp′/dz = 0 on the bed (z = −1). The nth vertical 

mode p′n(z) has eigenvalue κn, related to component wavenumbers k and ln in the y and x directions respectively through

κ2
n = k2 + l2n. (14)

 

Thus, the decomposition at the offshore boundary is written

 



where the an are coefficients to be determined. The sign of each ln is chosen to ensure offshore decay, although, when k 

is complex, this choice may not be consistent with a second trapping condition, that energy flux can only be outward 
through the boundary (DS).

The relation (6) between u and p is singular at the inertial frequency (σ = 1), leading to problems with the boundary 
conditions (11) and (12) when the problem is expressed purely in terms of pressure. A spurious inertial “mode,”

p(x, z) = A(z) exp(kx), (16) 

where A(z) is an arbitrary function that satisfies the surface boundary condition, is a solution to the pressure-formulated 
problem for any k, although the underlying physical problem is not necessarily satisfied. A more careful treatment of the 
inertial frequency is required (next section).

u, p formulation 

In order to avoid the spurious mode, (9) is replaced by two independent equations in u and p: (6) and

 

which is implied by (2), (4), and (8). Boundary conditions are also expressed in terms of u and/or p. The surface 
condition (10) is unchanged and no flow through the bed is written as

 

The coastal condition is

u = 0 (x = 0), (19) 

and the flat-bottomed open ocean is again treated by decomposition into vertical structure modes, now of the coupled u,p 
system.

3. Expansion about the inertial frequency  

At the inertial frequency, (1) and (2) together imply that p/ x = kp, so inertial modes can be written in the form p(x, z) = 
p0(z) exp(kx). It will be seen that inertial modes occur at discrete values of k, in contrast to the spurious mode (16) that 

occurs at all k. Expanding to a slightly superinertial frequency σ = 1 +  (where   1), solutions are written

(x, z) = { 0(z) + 1(x, z)} exp(kx), (20)
 

where k = k0 + k1 with  representing p, u, , w, or ρ. Equations (1)–(5) become



 

On the bed

 

and at the free surface

 

Order 0: Inertial solutions

 

From the order 0 terms of (21)–(25), u0 and w0 can be expressed in terms of p0 as

 

The bed condition (26) then yields a differential equation in p0(z),

 

where E = exp(2k0X) and X(z) is defined by z = −h(X) with X = 0 at z = 0. Boundary conditions on p0(z) are

 

at the surface and

 

far offshore where the bed is flat (w = 0). 

Together, (30), (31), and (32) constitute a one-dimensional Sturm–Liouville system for p0(z) with eigenvalues of S 

(Huthnance 1978). Thus, for fixed wavenumber k0, inertial modes exist at discrete values of the stratification parameter S. 

The spurious nature of the inertial mode of the pressure-formulated problem (9)–(12) and (15) is now apparent since p(x, z) 
= exp(kx) was a solution for any combination of k and S. Note that, if inertial modes are sought with fixed S and eigenvalues 
of k0, the problem is no longer in Sturm–Liouville form. There will always be an essentially barotropic Kelvin-like mode 

(assuming the surface is free), but there may be no baroclinic modes when S is small, since coastal-trapped wave dispersion 
curves do not necessarily reach the inertial frequency.

Order 1: Near-inertial solutions

 

The order 1 terms of (21)–(25) are



 

The bed condition is

 

and the free surface

iD2a(p0 + p1) − w1 = 0 (z = 0). (39)

 

From (33), (34), and the 0 terms of (24)

 

defining P(z), which can be calculated from the inertial solution. Integrating in x,

p1(x, z) = xP(z) + Q(z), (41)
 

where Q(z) remains to be determined. Proceeding by expressing u1 and w1 in terms of the inertial solution, then using the 

bed condition (38), it is straightforward to obtain

 

and more involved to obtain

 

using (30), (34), (36), and (40). Integration yields u1, with the constant of integration (a function of z) set to zero to 

ensure u = 0 far offshore. Substitution into (38), and further manipulation involving (30) and (40), results in an equation for 
Q,



 

in which the first-order deviation of wavenumber k1 remains to be determined. Boundary conditions on Q are

 

at the free surface and

 

at the maximum depth. Wavenumber k1, which effectively gives the gradient of the dispersion curve through the inertial 

frequency, is found by projecting (44) onto the inertial mode p0(z) of the Sturm–Liouville system by multiplying by p0 and 

integrating in z. The left-hand side of (44) becomes

 

which is zero in view of (30) and the boundary conditions on Q and p0. The full equation (44), after several integrations 

by parts, yields

 

using (30), (40), X = 0 at z = 0 and E  0 as z  −1. 

Note, in particular, that k1 must be real since all other terms in this expression are real. Thus, to first order above the 

inertial frequency, wavenumber remains real (as it is at subinertial frequencies). The problems that arise in setting the open 
boundary condition for complex k must only become apparent at higher order. 

4. Comparative linear solutions  

Comparisons are now made between numerical solutions of the two-dimensional p formulated eigenvalue problem [(9)–
(12) and (15)], the equivalent u, p formulated problem [(6), (17), (10), and (19)] and the one-dimensional inertial eigenvalue 
problem [(30)–(32)]. Dimensional variables will be used from this point onward, and a rigid lid assumed (D = 0), removing 
the barotropic Kelvin-like mode. 

Topography and stratification are prescribed analytically, loosely based on the Iberian shelf around 40°N. Bottom depth is



 
(Click the equation graphic to enlarge/reduce size)

where hc = 50 m, hs = 100 m, and ho = 3100 m are the depths at a coastal wall (x = 0), at the shelf edge (x = xs = 12 km), 

and in the ocean (x > xs + W), respectively; W = 31 km is the width of the slope. The shelf slants linearly to a depth hmatch at 

x = xmatch, values chosen such that the depth and gradient of the shelf and slope match, and in practice very close to hs and 

xs. Note that a flat shelf has been avoided since it would imply a singularity |Xz|  ∞ in (30). The flat ocean floor leads to a 

similar singularity at z = −ho, although the inertial eigenvalue problem is still solvable with this singular endpoint. The 

buoyancy frequency is surface intensified, decreasing exponentially with a vertical scale of z0 = 500 m:

N2 = 2.7 × 10−5 exp(z/z0) s−2. (50)

 

Computations are made on a (vertically stretched) Σ grid with 20 equally spaced vertical levels and 50 horizontal levels (Δx 
= 1000 m). The u, p formulation has u and p levels staggered in x. The coastal wall is placed at a u level, and the upper and 
lower levels lie on the surface and bed respectively. Solutions are found by a resonance-searching approach (DS), in which 
the hyperbolic or elliptic system is inverted subject to forcing of some wavenumber and frequency (following Lindzen and 
Kuo 1969). The response is large close to a dispersion curve, so, by scanning through values of frequency and 
wavenumber, dispersion curves can be mapped out in (k, σ) space. When the scanned resonance field is displayed as a 
grayscale image (Figs. 2 and 4 ), dispersion curves appear as lines of enhanced resonance (dark). 

In the p formulated case, the effect of the spurious inertial mode on dispersion curves is clear (Fig. 2 ), with strong 
distortion of the lowest mode within the range σ/f   [0.9, 1.1] such that the subinertial and superinertial segments of its 
dispersion curve bend to avoid crossing the inertial frequency. This distortion is a purely numerical effect since the p and u, 
p formulations are entirely equivalent at any noninertial frequency. Distortion reduces when grid resolution is improved (Fig. 
3 ) and is greatest for higher, less well resolved modes. The u, p formulated problem has no apparent inertial distortion 
(Fig. 4 , with dispersion curves closely matching those of Fig. 2  away from the inertial frequency). 

The change in the nature of the problem from elliptic to hyperbolic is evident through noise in the superinertial resonance 
fields (Figs. 2 and 4 ) and modal shapes (Fig. 5 ). This noise is due to inability to resolve the discontinuities and/or 
strong gradients that arise in cases with critical or near-critical bed slope. Dale and Sherwin also encountered noisy 
resonance fields, although, in their case of uniform buoyancy frequency, resolution was less critical and the noise less 
severe. Investigation of the effect of varying computational resolution on subinertial (σ/f  = 0.9) eigenvalues (Table 1 ) 
suggests that the calculated values are close to convergence. The same is true of superinertial (σ/f  = 1.1) eigenvalues (Table 
2 ), although they converge less predictably. In determining these (complex) superinertial eigenvalues, the offshore 
boundary condition has been set as described by DS.

The one-dimensional inertial eigenvalue problem, defined by (30)–(32), can be solved efficiently at high resolution. This 
provides a check on the accuracy of the modes of the two-dimensional p and u, p formulated problems. We again consider 
the topography (49) with stratification (50) and seek eigenvalues of k. Solution is carried out on a grid with vertical intervals 
of unform spacing Δz. Resolution tests (Table 3 ) suggest that, when 1000 levels are used, the eigenvalues have almost 
converged to the accuracy quoted (four significant figures). Modal pressure fields take the form p(x, z) = p0(z) exp(kx), 

with p0(z) for the first three modes shown in Fig. 6 . Agreement with the dispersion curves of the coupled u, p system is 

excellent (Fig. 4 ), with a discrepancy of less than 1% in wavenumber. Equivalent nonhydrostatic calculations (Table 3 
) demonstrate that, for this problem, the hydrostatic approximation was justified. 

For a given inertial solution, the first-order perturbation k1 to wavenumber k = k0 + k1 at slightly superinertial 

frequencies σ/f  = 1 +  can be evaluated directly using (48). The first three inertial modes have k1 = −0.532 × 10−4, −1.205 

× 10−4, and −2.063 × 10−4 m−1, respectively (calculated from the corresponding 10 000 level solutions), with the implied 
gradient of the dispersion curves agreeing closely with the resonance scans of the coupled u, p system (Fig. 4 ). 

5. Response of a primitive equation model  

Since a superinertial coastal-trapped wave has inherent three-dimensionality and cannot be perfectly described as a mode, 
a primitive equation model (the Bryan–Cox model: Cox 1984; Semtner 1985) will be used to investigate the differences 
between slightly superinertial and slightly subinertial waves. The Bryan–Cox model is nonlinear, Boussinesq, hydrostatic, has 
a rigid lid, and uses a z grid in which coordinate levels are horizontal, so there are fewer vertical grid levels in shallow water. 
Although viscosity and diffusion are set to zero, the model has some inherent numerical viscosity and mixing.



Simulations are made in dimensional coordinates, with an identical physical setting to the linear results of the previous 
section. Grid spacings are Δx = 2 km, variable Δy (see next section), and 20 vertical levels of uneven spacing, providing 
improved resolution toward the surface (8 × 25 m, 5 × 100 m, 4 × 200 m, 2 × 500 m, and 1 × 600 m). Alongshore 
boundaries are cyclic, the onshore boundary is walled, and the offshore boundary is open (Stevens 1990). It is not 
immediately obvious that such a model will well represent coastal-trapped waves such as those calculated in the previous 
section, so this question is addressed first.

a. Dispersion relations from a primitive equation model  

Consider a shelf edge topography of finite alongshore extent, but with periodic alongshore boundary conditions (Fig. 7 
). Such a model domain has an effective alongshore wavenumber k = ±2π/λ, where λ is its alongshore extent. From an 

initial rest state the model is subjected to periodic forcing of frequency σ and integrated for five forcing cycles. By varying λ 
and σ, the amplitude of the model response can be mapped out in dispersion space in a manner analogous to the approach 
used for the linear eigenvalue problem. The alongshore grid spacing Δy = λ/20 scales with λ, so the alongshore length scale 
of interest is always equally resolved. The forcing need not have any physical significance since the aim is merely to 
determine the tendency of the model to respond to various frequencies and length scales in the forcing. In practice, a 
perturbation to the barotropic streamfunction is applied with sinusoidal form alongshore, decreasing linearly from its oceanic 
amplitude to zero at the coast. The forcing amplitude is kept as small as is numerically acceptable to ensure that the model 
response is, to a good approximation, linear. A growth rate for the background model kinetic energy is determined by taking 
the time series of total model kinetic energy, determining the best fit (KE)/ t by linear regression, then normalizing this by 
the maximum kinetic energy of the imposed perturbation, which varies with λ. 

When topography and stratification are equivalent to those used in the modal calculations, resonances of the model agree 
remarkably well with modal dispersion curves (Figs. 4, 8, and 9 ). The form of the response at resonance peaks also 
matches the calculated linear modes well (Fig. 5 ). Note, in particular, that the resonance fields show no discernible 
change in model behavior at the inertial frequency. The close agreement gives confidence that the Bryan–Cox model is 
representing well the low modes of the linear, modal calculations, providing justification for the wave generation experiments 
that follow.

b. Wave generation by an oscillating alongshore flow interacting with topography  

The model domain of the previous section is extended to 750 km alongshore, and a spur is added by displacing the 
topography offshore by a Gaussian function of width 20 km (alongshore) and amplitude 20 km (offshore). Forcing is 
provided by an oscillating alongshore flow applied as a periodic perturbation to the barotropic streamfunction. This 
perturbation is a function of offshore distance only and is not modified by the spur, so the interaction between the spur and 
forcing flow is not accurately represented. In effect, the spur acts as a localized source of internal energy, and interest here 
is in the nature of the response away from the generation region. Peak velocities of the forcing current are small (0.01 m 

s−1, with total excursions of order 100 m) ensuring that the response is largely linear and is dominated by the forcing 
frequency. Nonlinearity of the model does, however, mean that other frequencies are also present.

Three forcing frequencies are considered: slightly subinertial (σ/f  = 0.9), slightly superinertial (σ/f  = 1.1), and more 
strongly superinertial (σ/f  = 1.5). The response in each case consists of a train of coastal-trapped waves at the forcing 
frequency and a radial scattering of nontrapped internal “ripples”  from the spur (Fig. 10 ). Evanescent modes (e.g., 
Webster and Holland 1987), which could potentially spread energy in the direction opposite to trapped, wave propagation, 
need not be considered here because they occur only when trapped wave dispersion curves peak at a subinertial frequency. 
The magnitude of the anomalies associated with the trapped component are similar at each forcing frequency (Fig. 11 , 
series A), with 0.05°C at 350 m corresponding to a vertical displacement of 5.5 m. In each case, the trapped component has 
a clear wavelength that matches linear predictions for a mode 1 coastal-trapped wave. This wavelength decreases with 
frequency as expected.

The relative importance of the nontrapped response increases with frequency. At σ/f  = 1.5, time series (Fig. 11 ) of the 
temperature anomaly offshore of the spur (C) and alongshore in the direction opposite to coastal-trapped wave propagation 
(B) contain primarily the forcing frequency. Vertical displacements are an order of magnitude smaller than the trapped 
response. At the near-inertial forcing frequencies (σ/f  = 0.9 and σ/f  = 1.1) the nontrapped response is weaker since energy at 
these frequencies is unable to propagate freely (σ/f  = 0.9) or propagates only slowly (σ/f  = 1.1). In each case, frequency 
spectra of the temperature anomaly at B and C peak above the forcing frequency, representing nonlinear transfer of energy 
to higher frequency, more rapidly propagating modes.

6. Discussion and conclusions  

A previous work (DS) discussed the differences between linear coastal-trapped waves at sub- and superinertial 
frequencies. However, there remained considerable questions regarding the behavior of coastal-trapped waves close to the 
inertial frequency and the nature and significance of the transition through the inertial frequency. Here, the aim has been to 
improve understanding of the near-inertial frequency range and gain insight into the sub-/superinertial distinction, including 
the question of whether wave trapping suddenly breaks down at the inertial frequency, or whether there is a gradual 
transition in wave behavior.

Pressure-formulated linear theory is inaccurate close to the inertial frequency due to a spurious inertial mode. The 



approach of using a coupled u, p formulation is computationally more expensive than a p-only formulation, but has been 
successful in removing the spurious mode and consequent near-inertial distortion of the physical modes. Still, the u, p 
formulated problem is only of practical use in mode calculation at subinertial frequencies because the noise resulting from 
unresolved discontinuities/shear above the inertial frequency potentially dominates the calculations. This problem with shear 
is a failing of linear theory since, in reality, it would tend to be smoothed by friction and/or mixing. Perhaps more reliable 
superinertial calculations could be made by parameterizing this friction in some way, as, for instance, in linear internal tidal 
theory (e.g., Chuang 1980). 

One-dimensional linear calculations at the inertial frequency both confirm the accuracy of the two-dimensional u, p 
calculations, and suggest that, to first order in a small frequency increment, modes remain perfectly trapped as they become 
superinertial. This is significant in that it suggests a smooth transition in wave behavior at the inertial frequency, rather than a 
catastrophic breakdown of the linear approach.

A further problem with linear theory is the increasing three-dimensionality of the problem, in the sense that a modal 
description (in which alongshore dependence is written as a, possibly complex, wavenumber) becomes increasingly 
inappropriate as frequency rises above the inertial frequency. To gain some intuition for the three-dimensional nature of the 
superinertial problem, the nonlinear, primitive equation Bryan–Cox model was used. When wave amplitudes were kept small 
to maintain near-linearity, it was found that the model supported coastal-trapped waves that agreed very closely in structure 
and wavenumber/frequency with corresponding linear calculations, despite the apparently crude resolution used. Of course, 
although the Bryan–Cox model can represent the full three-dimensionality of the problem, it is unable to resolve the strong 
shears of linear theory, so this failing is common to all the approaches used.

Generation experiments involved an oscillating, barotropic, alongshore current interacting with a spur protruding from the 
shelf edge. These experiments were highly idealized and intended to give an intuitive impression of the differing behavior of 
locally generated sub- and superinertial internal energy in the presence of a topographic “channel”  of propagation (the shelf 
edge slope and coastline). A gradual change was found in the response to increasing frequency, with no clear distinction 
between sub- and superinertial frequencies. The balance between the trapped and nontrapped components of the generated 
internal wave field increasingly favored the more three-dimensional, nontrapped component as frequency increased, but 
there was no sudden transition in behavior. Of course, in reality, subinertial trapped waves lose energy both through friction 
and nonlinear transfer of energy to higher, nontrapped frequencies. Superinertial waves would be expected to lose energy 
more rapidly since energy at the wave frequency itself is imperfectly trapped and potentially scattered offshore by 
topographic irregularities.

It is still not clear to what extent near-inertial or superinertial energy is channeled alongshore or along topography in the 
ocean. The Bryan–Cox model runs give a graphic illustration of the potential for spurs and canyons to generate alongshore-
propagating internal tides. It would obviously be interesting to model more realistic settings, with realistic topography and 
forcing. The extent to which offshore scattering of energy by alongshore variations in topography would lead to enhanced 
decay of such coastal-trapped waves could also be addressed. Whether the (here inadequately resolved) shears that occur at 
superinertial frequencies modify wave behavior significantly or lead to significant energy loss is an important and perhaps 
more difficult problem.
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Tables  

TABLE 1. Resolution dependency of the modes of the u, p formulated eigenvalue problem. Eigenvalues are of k  (m−1) for fixed 
frequency σ/f = 0.9 

 
Click on thumbnail for full-sized image. 

TABLE 2. Resolution dependency of the modes of the u, p formulated eigenvalue problem at frequency σ/f = 1.1 
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TABLE 3. Wavenumber k  (m−1) of modes of the one-dimensional inertial eigenvalue problem (30)–(32) for varying resolution. 
The first two columns are hydrostatic, the third is nonhydrostatic
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Figures  
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FIG. 1. Configuration of axes 
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FIG. 2. Resonance scan for the two-dimensional problem formulated in terms of p only. Shading has a log scale, with dark 
corresponding to strong resonance. Topography is given by (49) and buoyancy frequency by (50); Δx = 1000 m, 20 vertical 
levels. White circles indicate solutions of the corresponding one-dimensional inertial eigenvalue problem 

 
Click on thumbnail for full-sized image. 



FIG. 3. Near-inertial distortion of the lowest subinertial-mode dispersion relation at three different computational resolutions: Δx 
= 2000 m, 10 vertical levels (solid line); Δx = 1000 m, 20 vertical levels (dashed line); and Δx = 500 m, 30 vertical levels (dotted line). 
A white circle indicates the mode of the corresponding one-dimensional inertial eigenvalue problem 
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FIG. 4. Resonance scan for the two-dimensional problem formulated in terms of both u and p. Topography is given by (49) and 
buoyancy frequency by (50); Δx = 1000 m, 20 vertical levels. White circles indicate solutions of the corresponding one-
dimensional inertial eigenvalue problem, with the gradient of the dispersion curves implied by calculated k1 shown. Black circles 

indicate resonances of the Bryan–Cox model at σ/f = 0.9 and σ/f = 1.1 
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FIG. 5. Comparative modal shapes of the u, p formulated linear problem (left column, as the real part of the pressure perturbation 
p) and at corresponding resonances of the Bryan–Cox model (right column, as an alongshore velocity ). Shading represents 
sign, and the scaling is arbitrary. The first two modes are shown at subinertial and superinertial frequencies σ/f = 0.9 and σ/f = 1.1, 
respectively
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FIG. 6. Vertical pressure distribution p0(z) of the first three inertial modes. Topography is given by (49) and buoyancy 

frequency by (50). Wavenumbers k  = −0.489 × 10−4, k  = −1.104 × 10−4, and k  = −1.883 × 10−4 m−1 
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FIG. 7. A schematic representation of the method used to determine the response of the Bryan–Cox model to forcing at varying 
frequency σ and alongshore length scale λ. Alongshore boundaries are cyclic, so A and A′ are the same point 
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FIG. 8. Background kinetic energy growth rate of the Bryan–Cox model when subject to forcing of varying frequency σ and 
alongshore scale λ. Dark shading indicates strong resonance. The shading scale is not linear. The relative strength and 
wavenumber extent of resonances can be seen in Fig. 9  
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FIG. 9. Kinetic energy growth rate for the Bryan–Cox model when forced with frequency σ/f = 0.9 (solid) or σ/f = 1.1 (dashed) 
and varying effective wavenumber 2π/λ 
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FIG. 10. Temperature anomaly at 350 m after three inertial periods of forcing by an alongshore flow oscillating at three different 
frequencies: slightly subinertial (σ/f = 0.9), slightly superinertial (σ/f = 1.1), and strongly superinertial (σ/f = 1.5). A temperature 
anomaly of 0.05°C corresponds to a vertical displacement of 5.5 m
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FIG. 11. Time series of temperature anomaly at 350-m depth for the three locations A, B, and C of Fig. 10  and three forcing 
frequencies σ/f = 0.9 (solid line), σ/f = 1.1 (dashed line), and σ/f = 1.5 (dotted line) 
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