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ABSTRACT

The authors consider the flow in a semienclosed sea, or basin, subjected to a 
destabilizing surface buoyancy flux and separated from a large adjoining 
reservoir by a sill. A series of numerical experiments were conducted to 
quantify the energetics of the flow within the basin, that is, the amount of 
kinetic and potential energy stored within the basin and the rate at which these 
quantities are transported to and from the reservoir via the exchange flow over 
the sill. The numerical experiments were formulated at laboratory scales and 
conducted using a boundary-fitting, clustered grid to resolve the entrainment 
and mixing processes within the flow and to facilitate quantitative comparison 
with previous laboratory experiments.

Volume and boundary integrated energetics were computed for both steady and 
time-varying flows. In the steady-state limit, the rate of energy flux through the 
surface is balanced by dissipation within the basin and advection of potential 
energy over the sill and into the reservoir. The analyses focus primarily on this 
latter quantity because it is closely related to the outflow density and volume 
transport in two-layered exchange flows. Scaling laws relating the energetics of 
the flow to the surface buoyancy flux and the geometrical scales of the basin–
sill system are derived and validated using the numerical results.

A second set of experiments was conducted to quantify the transient energetics 
in response to a sudden change in the surface forcing. These results, combined 
with a linear impulse–response analysis, were used to derive a general 
expression describing the advection of potential energy across the sill for 
periodically forced systems. The analytical predictions are shown to compare 
favorably with directly simulated flows and to be reasonably consistent with 
limited field observations of the seasonal variability through the Strait of Bab al 
Mandab.

1. Introduction  

In many semienclosed seas or basins the large-scale circulation is driven by lateral density gradients. Such buoyancy-
driven flows exist, for example, where processes within the sea maintain a net density difference between the sea and 
adjoining ocean, and therefore produce an exchange of fluid between the two. The dynamics of such systems are of wide 
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interest because they influence both local and remote oceanic environments (e.g., Reid 1979). This paper investigates the 
influence on the large-scale flow of mixing processes within a basin (or sea) that is partially separated from a large reservoir 
(or ocean) by a topographical constriction. We focus in particular on an idealized, convectively driven basin, that is, one 
subjected to a loss of surface buoyancy due to cooling, evaporation in excess of fresh inflow, or to the growth of sea ice 
(Fig. 1 ). The flow configuration is generic, and thus has relevance to semienclosed seas (e.g., the Red Sea), cooling 
ponds, lake side-arms, and arctic fjords. 

There have been several previous studies aimed at modeling similar systems theoretically (e.g., Stommel and Farmer 1953; 
Phillips 1966; Maxworthy 1997), in the laboratory (Harashima and Watanabe 1986; Sturman and Ivey 1998; Finnigan and 
Ivey 1999, 2000; Grimm and Maxworthy 1999), and numerically (Kowalik and Matthews 1983). With the exception of 
Kowalik and Mathews (1983), Sturman and Ivey (1998), and Finnigan and Ivey (1999), these studies have considered only 
steady flows. Field experiments have also been conducted, most notably in the Red Sea (Murray and Johns 1997; Smeed 
1997) and the Mediterranean Sea (Bray et al. 1995; Bryden and Kinder 1991), showing some aspects of the spatial structure 
and temporal variability of these unsteadily forced systems, particularly in the vicinity of the marginal constriction. In the 
present work, we consider both steady and unsteady forcing and characterize the spatial and temporal variability of the 
resulting flow.

We consider flow in the idealized marginal sea configuration shown in Fig. 1 . This model system consists of a basin 
with uniform depth H and width W, separated from an ocean of uniform density ρo by a sill with minimum depth h. An 

upward flux of buoyancy B through the surface of the basin (0  x  L, 0  y  W, z = H) results in a lateral density 
gradient across the sill and a consequent buoyancy-driven response. 

The surface forcing can be thought of as a flux of available potential energy into the basin. Some of this energy is 
converted to kinetic energy, associated with both turbulent motions and large-scale circulation and with the exchange flow 
over the sill. As we will show, an energetics analysis leads to a general description of both the steady and unsteady flow 
behavior. The potential and kinetic energy stored within the basin, and the flux of these quantities across the sill, can be 
simply related to the external parameters (B, L, W, H, h). We focus in particular on the flux of potential energy from the 
basin, over the sill, and into the adjoining reservoir because this is the energetics quantity most closely related to volumetric 
and scalar transport. This approach can be applied generally; it does not require that the exchange be reasonably 
approximated by a layered structure, and thus can be used to quantify the exchange in continuously sheared and stratified 
flows.

We present results from several numerical experiments based on solutions to the unsteady governing equations in three 
dimensions. The numerical methods and validation experiments are described in section 2. Numerical simulations allow a 
volumetric and time-dependent analysis of the energy storage and conversion rates within the basin, as well as the rates of 
kinetic and potential energy flux across the sill. The results are used to test and validate scaling relationships between energy 
fluxes and the external parameters characterizing the flow configuration. Steady energetics are described in section 3. The 
transient response to sudden changes in the surface forcing is discussed in section 4. An impulse–response analysis is used 
to extend these results to an oscillatory (seasonal or diurnal) forcing in section 5. Concluding remarks appear in section 6. 

2. Numerical experiments  

a. Description  

In the laboratory experiments of Finnigan and Ivey (2000) it was found that the internal turbulent stress, or Reynolds 
stress, contributes significantly to the basin-scale horizontal momentum balance, which, in turn, determines the magnitude of 
the circulation and therefore the exchange across the sill. Small-scale processes thus influence the large-scale circulation. 
For the present study we have endeavored to design and implement a series of numerical experiments that represent, as 
close as possible, the relevant range of flow scales present in these laboratory experiments. To achieve this, the numerical 
experiments were performed on the same spatial scales as laboratory experiments and high-order methods were employed to 
solve the unsteady governing equations with fine spatial and temporal resolution (see below). Direct comparisons between 
laboratory and numerical results provide confidence in the numerical simulations, which are then used to expand the 
parameter range of the experiments and verify scaling laws based on external parameters. This ultimately leads to a set of 
general scaling laws that may be used to model the flow response in actual full-scale systems. 

Numerical experiments offer a number of conveniences. First, by specifying a semibounded domain we avoid the finite 
volume restrictions inherent to laboratory experiments. Simulation of slowly varying unsteady flows is thus possible. 
Furthermore, numerical experiments provide full three-dimensional data fields from which to compute volume and boundary 
integrated energetics. Finally, the forcing and geometrical parameters can be varied to investigate their effects.

b. Methods  

The simulations are based on the equations of motion for incompressible density-stratified flow,



 

where u = (u, , w) is the velocity vector in Cartesian (x, y, z) coordinates, ρ′ is the density perturbation about a constant 
value ρo, p is the perturbation about hydrostatic pressure in a fluid with density ρ(x, y, z, t) = ρo + ρ′(x, y, z, t), g is the 

gravitational acceleration, and z is the unit vector in the vertical direction z (positive upward). The coefficients Km and K
ρ
 

are the diffusion coefficients for momentum and density, respectively.

Equations (1)–(3) are solved numerically on a three-dimensional orthogonal–curvilinear grid such as that shown in Fig. 2 
. Details of the methods and solution procedure are given in Winters et al. (2000). The grid spacing is concentrated 

toward the surface so that relatively strong vertical gradients associated with the forcing surface are accurately resolved. As 
estimated by Finnigan and Ivey (2000), the smallest turbulence scales expected in the experiments are   1 mm. In an 
effort to resolve the turbulence directly, grids were constructed such that the spacing between computation points was on 
average Δx  Δy  Δz  . A subgrid-scale model, which depends on the local static stability and shear (see Winters and 
Seim 2000), was employed to enhance diffusion in regions where the turbulence is not adequately resolved. Results indicate 
that throughout most of the domain the turbulence is well resolved at the grid scale and the subgrid-scale model 
automatically specifies molecular values for the diffusion coefficients. However, directly under the forcing surface, where 
the turbulence is most energetic, the model specifies Km values typically 10%–20% higher than the molecular value ν = 

10−6. 

The boundary conditions were chosen to match those of the laboratory experiments. Referring to Fig. 2 , the lower, 
upper, and left side boundaries have u = 0. With the exception of the forced region of the surface, we specify ρ/  = 0 
over these boundaries, where n is the unit normal vector for each surface. These conditions correspond to those for a no-
slip insulated boundary. Over the area defined by 0  x/L  1, 0  y/W  1, and z/H = 1 we impose a buoyancy flux (per 
unit area),

 

by specifying nonzero ρ′/ z|z=H. The remainder of the upper surface is insulated. Conditions are periodic between the 

front (y/W = 0) and back (y/W = 1) boundaries, and we therefore effectively simulate the flow in a “slice”  of width W along 
the axis of a laboratory tank like that of Finnigan and Ivey (2000). At the open right boundary, an Orlanski-type radiation 
condition is used for momentum. The inflow density is held fixed at the ambient value ρo, while ρ′/ x = 0 is imposed on the 

outflow. A boundary condition is also required for pressure at the open boundaries. Periodicity is imposed in the y direction 
while at the right boundary a time-dependent Dirichlet condition corresponding to hydrostatic pressure is employed. We note 
that the right-hand boundary has been placed at the foot of the sill on the outside of the basin, that is, at a location where the 
flow is expected to be largely horizontal and stably stratified.

c. Experiments  

We conducted a total of 12 numerical experiments as listed in Table 1 . Experiments 1–7 demonstrate the effects of 
varying B and L and experiments 8–11 explore the dependence on the relative sill depth H/h. Each of these experiments 
contains both an unsteady phase and a steady-state phase. Experiment 12 was performed to investigate the response to 
oscillatory forcing. Referring to Table 1 , the initial state of each experiment is indicated by the value of Bo that pertains 

to time t < 0. Bo = 0 indicates a flow that is initially at rest and unforced. The experiment begins at time t = 0 when the 

forcing B = B
∞

 is suddenly imposed. For experiments with Bo  0 the flow for t < 0 is already at steady state and forced 

with the constant value B = Bo indicated in the table. In these cases, the forcing is suddenly changed at t = 0 and the flow 

adjusts in response to the change. The rightmost column in Table 1  refers to the forcing functions shown in Fig. 3 . 
Where the forcing for t > 0 is constant the flow eventually reaches a new steady state. In experiment 12 the forcing is time 
dependent and while the flow does not become steady, it does achieve an oscillatory state with a steady mean as will be 
described in section 5. 

d. Comparisons between laboratory and numerical results  

1) TEMPORAL AND SPATIAL FLOW FEATURES 

For the type of flows considered here, Finnigan and Ivey (1999) described the unsteady adjustment following application 
of the forcing. As they showed, the outward flux of buoyancy from the surface of the basin leads to turbulent convective 
motions that mix relatively dense fluid downward. The mean density of the basin was found to increase with time according 
to



 

This increases the density contrast between the fluid in the basin and the adjoining reservoir.

Driven by this density contrast, the ensuing adjustment is characterized by two sequential stages. During the first stage 
the basin is continually mixed by convective turbulence with zero mean flow in the interior and an accelerating exchange 
flow over the sill. In the second stage the exchange flow develops further and slowly extends into the basin. The final steady 
state has an exchange flow that occupies the entire length of the basin. In Fig. 4  results from numerical experiment 1 are 
used as an example to demonstrate the unsteady adjustment. Velocity and density data were extracted along a central vertical 
(x–z) plane at specific times during each of the three stages just described. 

2) UNSTEADY FLOW AT THE SILL 

Following the initiation of buoyancy forcing B at time t = 0 the velocity at the sill was shown to develop as

 

where tt is the time of transition from the first to the second stage and

 

is the time required for the flow to reach steady state. Since tt  ttt (see Finnigan and Ivey 1999), we focus our attention 

on the second stage and the steady state. The volume flux per unit width q  uh implying from (7),

 

and therefore,

 

Numerical experiment 1 and laboratory experiment L (see Table 1 ) were configured similarly and are therefore suitable 
for comparison. In Fig. 5  we present results for the time-varying volume flow rate, determined in both cases by

 

where us(z, t) represents vertical profiles (from a single location in y) of the horizontal velocity component at the sill crest 

and z = i indicates the level at which us = 0, or the velocity interface. The results for q were scaled according to (11) and 

the time axis was scaled as t/tss. While the two experiments had slightly different external parameters the results are similar 

in both magnitude and temporal variation. This indicates that the scaling results (9) and (10) are appropriate and the 
numerical simulations are in quantitative agreement with the laboratory results. We hypothesize that the irregular peaks in the 
laboratory data are due to basin-scale internal waves or pressure pulses from a particle injector that was situated slightly 



upstream of the basin inflow.

3) STEADY-STATE HORIZONTAL TRANSECTS 

(i) Velocity scaling 

In the basin interior the steady-state mean horizontal velocity component of the upper layer is expected to vary as u  

(Bx)1/3 (Phillips 1966; Finnigan and Ivey 2000) and therefore |u3/B|  x. Horizontal transects of this quantity were obtained 
from results of two typical numerical experiments (1 and 6) with different values of L and from the laboratory experiment L. 
These are shown in Fig. 6 . A variation, consistent with the scaling, is observed in a central region of the basin away 
from endwall and sill effects. The width of the sill relative to the length of the basin is significantly greater for experiment 1 
than for experiments 6 and L, and the effect of this is evident in the range x/L > 0.7. Nevertheless, all three sets of results 
concur in the central region.

(ii) Density scaling and the role of the basin aspect ratio L/h 

The alongchannel variation of density can be characterized by the reduced gravity,

 

where ρ1 and ρ2 are characteristic density values in the upper (inflowing) and lower (outflowing) layers, respectively. 

From the numerical results, horizontal transects of ρ1 and ρ2 are obtained by averaging vertically across the layers delineated 

by the velocity interface u = 0. This allows a comparison with previous laboratory results, which were interpreted using 
(13). 

In Grimm and Maxworthy's (1999) experiments g′ was found to scale as B2/3x/h4/3 when the aspect ratio L/h > 20. In 
their experiments vertical mixing was confined to a relatively small region near the closed end of the basin. The g′ scaling 
was observed to change when L/h < 20 since the mixing region then occupied a significant portion of the basin. Their 
observations are in general agreement with the arguments of Finnigan and Ivey (2000), who showed that such mixing can 
only occur within a distance of about 10h from the endwall. For x  10h the density difference between layers is large 
enough to suppress mixing.

Figure 7a  shows the horizontal variation of g′, obtained from the steady-state results of two typical experiments (1 and 

6), and scaled such that g′   B2/3x/h4/3, as suggested by Maxworthy (1997). The solid line represents a least squares fit to 
the laboratory results of Grimm and Maxworthy (1999). The aspect ratio L/h > 20 for both the laboratory experiments and 
experiment 6 and the results scale similarly. For experiment 1 L/h = 10 and the results scale differently, due to the effects of 
mixing.

We now refer to Fig. 7b , which shows the same numerical results rescaled such that g′   (Bx)2/3/h (Phillips 1966), a 
form more appropriate for mixing-dominated flows. This scaling brings the two sets of results closer together, therefore 
indicating that experiment 6 (L/h = 30) also scales somewhat like the shorter, mixing-dominated basin. Experiment 6 must 
therefore lie in a transition region between the two scaling laws and, in summary, we suggest that

 

where the transition at L/h  30 is gradual. More extensive experimental work is required to determine the precise 
threshold between the scaling regimes. Since all of our numerical experiments have L/h  30, we shall generally use (14) in 
applications to our numerical results. In applications to longer basins we will employ (15). 

3. Steady energetics  

a. Energy storage and flux  

The experimental flows are driven by a diffusive flux of available potential energy into the basin through the upper 
surface. The resulting static instability leads to conversion of this potential energy to kinetic energy. The potential energy 
stored in the basin control volume (V), shown in Fig. 8 , is given by



 

and the stored kinetic energy by

 

Here Ep is expressed relative to the energy stored in a basin of uniform density ρo. The rate of change of Ep and Ek are 

written as

 
(Click the equation graphic to enlarge/reduce size)

where the subscript s indicates quantities at the sill crest and subscript H indicates quantities at the surface, and therefore Ss 

and SH represent the vertical and horizontal surface areas of the control volume at these locations, respectively (see Fig. 8 

). On the right side of (18) the individual terms are described as follows: advection of potential energy across the vertical 
boundary at the sill (asp), buoyancy flux (bf), diffusive flux of potential energy through the surface (sd), and the change in 

potential energy due to internal vertical diffusion (id). Similarly, in (19) the terms may be described as pressure work at the 
sill boundary (pw), advection of kinetic energy across the sill (ask), buoyancy flux (bf), and the rate of dissipation of kinetic 

energy (e). Note that the transfer of energy between the potential and kinetic energy fields is through the buoyancy flux, 
which appears with opposite sign in both (18) and (19).

The three-dimensional time-dependent simulation results are used to calculate time series for each of the terms shown in 
(18) and (19). As an example, Fig. 9  shows the time series results from experiment 1, which demonstrates how each of 
these quantities varies as the flow adjusts from the initial rest state to the final steady state. After the initial unsteady period 
(0  t  625 s), which was described above in section 2d(2), we note that dEp/dt = dEk/dt  0 and the flux quantities 

approach constant values. The shaded region in Fig. 9  indicates the steady state, during which we observe that the 
dominant terms in (18) are sd, asp, and bf and in (19) they are bf and e. 

b. Scaling  

1) ENERGY STORAGE: EP AND EK

 

Following the arguments of Phillips (1966) and Finnigan and Ivey (2000) the characteristic density scale for the basin as a 
whole is

 

where H is taken as the more relevant vertical length scale in this context. Here we have used the density scaling in (14) 
for basins with L/h  30. The results differ only slightly if (15) is used instead. 

When the sill is short relative to the total length of the basin the volume V  LHW and from (16) and (20) we find

Ep  ρoB2/3L5/3HW. (21)

 

We also expect Ep to depend on the sill depth h. In this configuration the two vertical lengthscales, H and h, both 

influence the flow but without further idealization and/or theoretical development, it will be difficult to incorporate the 
influence of this parameter. Invoking an idealized model of the flow at the sill (such as internal hydraulic theory) is 
inappropriate since it would introduce additional variables. Furthermore, such theories apply only under certain conditions. In 

order to maintain generality we choose to incorporate the effect of the sill with a dimensionless term (H/h)γ such that
 



Ep  ρoB2/3L5/3HW(H/h)γ, (22)

where γ is an unknown constant. We have thus incorporated the relative effect of the two vertical lengthscales (H and h), 
the weighting to be given by the experimental determination of the constant γ. This allows a simple description of the 
behavior without assumptions regarding the detailed structure of the flow over the sill.

The kinetic energy stored in the basin is related to the mean velocity field, which is dominated by a horizontal exchange 

flow with velocity u  (BL)1/3 (Phillips 1966; Finnigan and Ivey 2000). From (17) we therefore write

Ek  ρoB2/3L5/3HW(H/h)δ, (23)

 

where the (H/h)δ term arises by the same dimensional reasoning as for Ep. Clearly, for larger values of H/h the exchange 

between the basin and reservoir is restricted. We allow for different exponents for H/h in (22) and (23) because we expect, 
for example, that the stored potential energy must increase with H/h while the stored kinetic energy must decrease with H/h. 

We can investigate this dependence by considering the three experiments (9, 10, and 11) between which only h was 
varied. Time-averaged results from the steady-state portion of these experiments are shown in Fig. 10 . The linear trend 
for both Ep and Ek supports the scaling with respect to h and the slopes of lines fitted by the least squares method provide 

estimates for the values of γ and δ (see Table 2 ). As expected γ > 0 and δ < 0. With these values known we can now 
test the scaling laws (22) and (23) against the whole range of experiments. Results are shown in Fig. 11  where a linear 
fit to the Ep data shows that (22) is valid over the parameter range considered. More scatter is observed in the results for 

Ek, but a linear trend is still evident. Proportionality constants (cp and ck), obtained from the slope of the data in Fig. 11a and 

11b , respectively, may be used to relate the simulation results directly to the scaled forms (22) and (23). The resulting 
formulas are listed in Table 2  and will be used in subsequent sections. 

2) ENERGY FLUXES 

There is a constant flux of energy through the control volume, supplied via a diffusive flux of potential energy at the 
surface. The results in Fig. 9  showed that the dominant terms in the steady budget are sd, asp, bf, and e. By eliminating 

the buoyancy flux bf between (18) and (19) and neglecting relatively small terms the steady budget can be approximated as

asp = sd + e, (24)
 

where the dissipation term e is always negative. The imposed flux sd can be written

 

Measurements of steady buoyancy-driven convection (e.g., Anis and Moum 1994) have shown that the dissipation rate  
 B, which corresponds to assuming e  sd in our notation. However, the basin is subject to a lateral exchange and, as 

argued above, the sill depth must influence the energetics. We therefore bring in the relative influence of vertical lengthscales 
by writing

e  (sd)(H/h) , (26)

 

where  is an undetermined constant. 

At the sill the scale of vertical density variations is ρ′s  (ρo/g)(BL)2/3/h (Phillips 1966; Finnigan and Ivey 2000). Note 

that ρ′s > ρ′, which characterizes the basin as a whole. The advection of potential energy across the sill may now be written 

as

 

where us  (BL)1/3, Ss  hW, and z  H is the characteristic height of the flow at the sill. Although this suggests that 

asp scales in direct proportion to sd, we again introduce an additional dependence on the relative sill depth H/h and write

asp  (sd)(H/h)λ, (28)

 



where λ is an unknown constant. 

Time-averaged steady-state values of each of the flux quantities defined above in (18) and (19) are shown in Table 3  
for each experiment, except experiment 12 which is unsteady. In each case averages were computed over steady-state time 
segments, such as that shown for experiment 1 as a shaded region in Fig. 9 . Table 3  shows that the dominant energy 
flux balance (24), identified in section 3a for experiment 1, holds generally for all of the experiments. The normalized fluxes 
are roughly constant for experiments 1–7, between which only B and L were varied, and it therefore follows that these 
quantities scale with sd. However, the normalized fluxes, particularly aspn and en, are significantly different in experiments 9, 

10, and 11, between which only H/h was varied. Therefore, the relative sill depth H/h has a significant influence on the 
scaling and we find that the simulation results are reasonably well described by the simple forms of (26) and (28). 

The potential energy Epn consistently represents about 98% of the total stored energy when H/h = 2. When H/h = 1.3, 

Epn drops to about 90% and Ekn increases commensurately. This occurs because a deeper sill not only allows a higher 

exchange rate, it also decreases the density of the outflow since the inflowing fluid moves more quickly past the forcing 
surface and allows it to exit the basin at a lower height. The values obtained for γ and δ are therefore consistent with the 
observations in general.

The value of λ in (28) is estimated using steady-state results from experiments 9, 10, and 11 as shown in Fig. 12 . 
With this result (see Table 2 ) we now apply the scaling (28) to all of the experiments. As shown in Fig. 13 , there is a 

clear correlation between computed asp values and ρoBLHW(H/L)λ. Table 2  summarizes the scaling relationships and 

experimentally determined constants for the important energetics quantities and the response timescale (described below in 
section 4). 

The storage and flux of energy in the basin control volume is shown graphically in Fig. 14 . The bracketed terms are 
derived from Table 2  by averaging over the values from experiments 1–7, for which H/h = 2. These results demonstrate 
that for every unit of potential energy input through the surface, 0.53 units are transferred to kinetic energy via buoyancy 
flux. Of this, 0.36 units get dissipated (or converted to internal energy) within the basin. Most of the remaining kinetic 
energy goes into pressure work at the sill boundary while a small amount is advected out of the basin. Almost all of the 
potential energy that is not transferred to the kinetic energy field is advected out of the basin across the sill. Vertical diffusion 
within the basin acts as a small source of potential energy (see also Fig. 9 ). 

c. The physical relevance of asp 
 

In the previous studies by Finnigan and Ivey (1999, 2000) and Grimm and Maxworthy (1999) the exchange flow in the 
vicinity of the sill was assumed to consist of two distinct layers within which the density was constant and the velocity 
purely horizontal. Such idealizations provide useful interpretations using the theory of internal hydraulics. In translating the 
results of such studies back to actual geophysical flows one is however faced with the realization that the assumptions 
underlying hydraulic theory are often violated in nature (Bray et al. 1995; Gregg et al. 1999). 

Consideration of the flux of potential energy across the sill requires no assumptions regarding the physical structure of the 
flow. Therefore asp offers a more general description of the exchange than either the volume flux qs or the reduced gravity 

g′, both of which are difficult to isolate unless the flow is assumed to be “two-layered.” 

Nevertheless, if the exchange can be considered two-layered, then for relatively short basins (H/h < 30) we have qs  

(BL)1/3h and g′   (BL)2/3/h, while for long basins (H/h > 30) qs  B1/3h4/3 and g′   B2/3L/h4/3 [see section 2d(3)]. In 

both cases the scaling satisfies the buoyancy conservation condition g′qs = BL and we can therefore write (28) as

asp  ρog′qsHW(H/h)λ, (29)

 

which yields a relationship between asp, g′, and qs. For practical purposes, if asp can be estimated from (28) and g′ 

measured at the sill, then (29) may be used to determine qs. 

In the more realistic situation when the flow is not two-layered, but rather characterized by continuous density profiles ρ
(z), then conservation of buoyancy implies that

 

and (29) becomes (up to a constant)



 

in which case qs is not easily isolated. Depending on the complexity of the ρ′s and us profiles these may be nontrivial to 

separate. If the stratification is near linear, then one might estimate ρ′s  (ρo/g)N2h, where N is the buoyancy frequency, 

and therefore asp  ρoN2hqsHW(H/h)λ; however, this is but a rough approximation. 

4. Unsteady response  

We have presented results for steady-state flows and shown how certain energetics quantities (Ep, Ek, and asp) scale 

with the external parameters. We now build on these findings by investigating how these quantities respond in time after an 
abrupt change in forcing is imposed. Results from this section will then be used in our treatment of the response to periodic 
forcing functions (section 5). 

a. Time scaling  

We consider the situation where the initial state of the flow is one of steady motion in balance with a constant surface 
buoyancy flux B = Bo. At time t = 0 the forcing is suddenly increased (or decreased) to a value B

∞
 and thereafter held 

constant. For t > 0 the flow adjusts to the step change in forcing and it gradually approaches a new steady state. This is an 
idealized representation of the response of a semienclosed sea to a change in the surface buoyancy flux that occurs rapidly 
relative to the time required for the flow to adjust.

A scale that characterizes the time required for the flow to adjust from rest to steady state was described in section 2d(2). 
The response timescale is determined as the difference between the steady-state timescales (tss) for the initial forcing value 

(Bo) and that imposed after the step (B
∞

). It is therefore expressed as

tr  L2/3(B
∞

 − Bo)−1/3(H/h) , (32)

 

where we have included the exponent ( ) by the same reasoning as above for the energetics. 

b. Rate of change of Ep and Ek  
 

A sudden change in the flux of potential energy through the surface results in a gradual change in the volume-integrated 
energies Ep and Ek. During the adjustment period dEp/dt and dEk/dt are nonzero. We begin by quantifying the rate at which 

a steady state is reestablished, focusing on sudden increases in B, that is, experiments 2, 3, and 7. 

Figure 15a  shows the changes in potential energy following a step increase in B. The quantity Ep*
 is the deviation of 

Ep(t) from the initial steady state Epo, normalized by the steady-state scaling such that

 

(see Table 2 ). Time is scaled by the time required for the flow to reach steady state, and we therefore define the 
dimensionless timescale t* = t/tr. With these definitions both Ep*

 and t* have values of unity at the moment the flow reaches 

steady state. The coalescence of data from the three experiments indicates that both the energy scaling and the response-
time scaling are appropriate. The experimentally determined constants associated with the timescale tr are shown in Table 2 

. 

The kinetic energy is shown in Fig. 15b  where Ek is normalized via

 

The scaled results for the three experiments respond similarly and generally follow the same curve as for Ep*
. Oscillations 

of unknown origin are more evident in Ek*
 than in Ep*

. 

We assume that the rate of change of Ep and Ek depends on how close the system is to steady state. We therefore 



suggest that the normalized stored potential and kinetic energy vary as

Ep*
(t*) = Ek*

(t*) = 1 − e−α*t*, (35)

 

where α* is the dimensionless attenuation coefficient. Fitting (35) to the data shown in both Fig. 15a and 15b  gives α* 

= 4 ± 0.2, where the error is associated with the difference between best-fit lines in each figure. Note the system time 

constant tc = trα
−1

*
. The time derivatives are determined from (35) as

 

which will now be used in the interpretation of the unsteady response of flow over the sill.

c. Unsteady response of asp 
 

In section 3b(2) we used (18) and (19) to derive a steady-state equation (28) for asp (also see Table 2 ). We now seek 

an equation for the unsteady response to a step function input with magnitude ΔB = B
∞

 − Bo. The dominant terms in (18) 

and (19) combine to give

 

where (t) is the Heaviside stepfunction defined such that

 

and aspo is the initial condition (t < 0). We now define the normalized advection of potential energy across the sill as

 

and with (36), and the definitions (33) and (34),

 

where we have substituted α*t* = αt and utilized the fact that (B2/3
∞

 − B2/3
o)(B

∞
 − Bo)  ΔB. The terms within braces 

represent the transient response and the forcing term. The form of (40) is typical of classical mechanical systems that 
exhibit a first-order time-invariant response to a step function input. Here we have assumed a “slowly varying”  flow for 
which the steady scaling arguments of section 3b(1) are approximately valid at any instant. 

The initial conditions require that asp*
 = 0 at t* = 0 and it follows from (40) that the transient term has a value of −1 at t* 

= 0 and therefore



 

which suggests that , the exponent in the timescale (32), is itself a function of the ratio H/h. Mathematically, this is a 

consequence of introducing H/h in the scaling for Ep and Ek. It turns out that  is a weak function of H/h with values O(1) 

for moderate sill depths (i.e., H/h = 2). 

The unsteady response of the advection of potential energy across the sill may now be written simply as

asp*
(t*) = [1 − e−α*t*] (t*), (42)

 

which is shown in Fig. 16  along with results from experiments 2, 3, and 7. The agreement between the experimental 
and analytical results provides confidence in the assumptions and scaling laws developed above. The response equation (42) 
is generally applicable and, with the information provided in Table 2  and the definition (39), one can see that it is simply a 
function of L, H, h, W, Bo, and B

∞
. 

5. Periodic forcing  

The steady forcing and step function unsteady forcing scenarios considered in the previous sections may mimic situations 
found in nature under specific isolated conditions. More generally, semienclosed seas and other similar water bodies 
experience a surface buoyancy flux that is continuously varying and often periodic. Smaller systems are forced by diurnal 
heating and cooling. Larger systems, such as the Red Sea, are forced by the seasonal variation of the evaporation rate. We 
now consider this type of forcing and the associated flow response.

a. The transfer function  

The response equation for a step function input was developed in section 4c where it was noted that the system resembles 
one that exhibits a first-order linear response. Using the results obtained above, we now seek a more general formulation for 
the response to an arbitrary forcing function.

We focus here on forcing scenarios that are periodic in time. For such functions, the complex frequency is defined as s = 

iω where i = (−1 )½, or in dimensionless form s* = iω* where ω* = ωtr. Under step function forcing, the response equation 

(42) may be translated into complex frequency space by taking the Laplace transform such that

 

or by isolating the transform of the step function 1/s*,

 

where T(s*) is the transfer function and F(s*) is the transformed step-forcing function (e.g., Sanford 1965). The transfer 

function is independent of the forcing function yet it contains the natural attenuation and frequency response characteristics 
of the system. Note that T(s*) is a function of s* and α*, which, when dimensionalized, depend on the driving frequency ω 

and the attenuation coefficient α, respectively, along with the external parameters (L, H, h, W, Bo, B
∞

). When multiplied by 

any transformed forcing function, T(s*) effectively transfers the signal through the system to the output, which in this case 

is the advection of potential energy over the sill asp*
(s*). 

b. Sinusoidal forcing  

We now consider a situation in which the flow is initially at steady state in balance with a surface buoyancy flux B = Bo 

(for t < 0). At time t = 0 the surface buoyancy flux B(t) suddenly begins to oscillate sinusoidally about Bo. The unsteady 



forcing term is therefore

Fs(t) = [Bs sin(ωt)] (t), (45)
 

where Bs is the amplitude of the oscillation. In the frequency domain the nondimensional response to this input function is 

simply

 

where B* = Bs/ΔB. The inverse Laplace transform of (47) gives the response equation for asp*
(t*) in the time domain. By 

a partial fraction expansion this is found to be

 

where

 

which is again simply a function of the external parameters, the attenuation coefficient, and the parameters that 
characterize the input function (Bs, ω). The first term in (48) represents the small time unsteady adjustment following a step 

increase at t = 0 and the second term represents the unsteady response to continued periodic forcing. Only the second term 
is important for t  0 and in the absence of a step increase in Bo. 

The steady scaling of section 3b(2) shows that asp = cssd(H/h)λ, while the long term (t  0) unsteady response (48) 

implies that the amplitude (K2) under sinusoidal forcing is modulated by a factor α/(α2 + ω2)1/2. This effect is shown in Fig. 

17 , which demonstrates how the magnitude (K2) and phase ( ) of the response depend on frequency. For low 

frequencies (ω  1/tr) the magnitude approaches that indicated by the steady-state scaling of section 3b(2) and the 

response is “in-phase”  with the forcing. As the frequency is increased the magnitude decreases and the response lags the 
forcing. At high frequencies (ω  1/tr) the oscillation of the forcing at the surface is completely damped within the system 

and the flow over the sill is essentially steady, that is, K2 = 0. In Fig. 17a , the absence of a local maximum at a nonzero 

frequency signifies that there is no resonant frequency as expected in a dissipative system. 

c. Applications  

1) LABORATORY SCALE FLOW WITH SINUSOIDAL FORCING 

As an application of (48) we consider a laboratory scale flow with external parameters as listed in Table 1  for 
experiment 12. The surface buoyancy flux B(t) is shown graphically in Fig. 18a . With the parameters for experiment 12 
we compute, from (50) and (51), an oscillatory response with K2 = 0.77Bs and  = −54°. The response predicted by (48) 

is shown as a solid line in Fig. 18b  and the simulated response from experiment 12 is shown as a dotted line. After a 
short adjustment interval (not captured by the theory) both amplitude and phase are well aligned. The response at the sill lags 
the forcing by tl = /ω = 80 s. 

2) THE SEASONAL RESPONSE IN THE RED SEA 



As a second example we consider the response of the Red Sea to seasonal variability in the surface flux B. For simplicity 
we suppose that the evaporation, and associated surface buoyancy flux, varies sinusoidally throughout the year, though 
more realistic variability could be treated similarly. The Red Sea is known to have a mean annual surface buoyancy flux of 

somewhere between B = 2.2 × 10−8 m2 s−3 (Phillips 1966) and B = 4.0 × 10−8 m2 s−3 (Maxworthy 1997) so we will 

assume an average value of Bo = 3.1 × 10−8 m2 s−3 for this example. Since the buoyancy forcing decreases dramatically in 

summer, we estimate the amplitude of the seasonal oscillation to be 0.9Bo. The assumed temporal variation of B(t) over 

three years is shown in Fig. 19a . Given the dimensions of the Red Sea: L = 2000 km, W = 280 km, H = 150 m (upper 
circulating layers only), and h = 120 m, the response equation (48) predicts asp(t) as shown in Fig. 19b . Here we find 

that the flow at the sill (Strait of Bab al Mandab) reaches a maximum that is only 90% of the corresponding steadily forced 
value and the response lags the forcing by tl = 2 months. Assuming the outflow is reasonably described by a two-layer 

model, and approximating the reduced gravity as g′ = B2/3Lh−4/3 [see section 2d(3)], the volumetric exchange flow rate Q = 
qsW through the Strait of Bab al Mandab is estimated from (29) and is shown graphically in Fig. 19c . Since these 

predictions are based on scaling laws that have been confirmed only for basins with L/h  30, we must emphasize that 

application to the Red Sea, which has L/h  O(104), is speculative and approximate. Nevertheless, the mean flow rate of 

0.58 Sv (Sv  106 m3 s−1) and the lag of 2 months are not inconsistent with recent observations in the Strait of Bab al 
Mandab (Murray and Johns 1997). The assumed amplitude of forcing (0.9Bo) produces a seasonal variation in Q of 

approximately 0.4 Sv, comparable to the estimates of Murray and Johns (1997) and Smeed (1997). 

6. Conclusions  

While steady flow analyses of buoyancy-driven flows are generally informative, they lack what is arguably the most 
important component of dynamic systems, the time dependence. The analysis methodology developed and applied in 
sections 4 and 5 can be applied in other circumstances and may prove useful for examining the unsteady dynamics of 
seasonally forced buoyancy-driven seas, diurnally forced lake side-arms, and other similar systems. 

We have shown, using energetics analyses, how a buoyancy-driven basin responds to atmospheric changes. The storage 
of energy within the basin and flux across open boundaries has been quantified through numerical experimentation. These 
quantities together determine the transient behavior of the system. By relating the internal variables to known external 
parameters, the steady-state and time-dependent behavior has been revealed in a generally applicable way. 

By simulating the response of Ep and Ek to a step increase in B we determined the relevant timescale of response tr and 

the characteristic attenuation coefficient α = α*/tr. Both of these important quantities may be expressed as functions of the 

external parameters B, L, H, W, and h (see Table 2 ). This led to a general description of the flow response at the sill for 
arbitrary unsteady forcing functions (section 5). The response to a sinusoidally varying surface buoyancy flux was predicted 
for a laboratory scale flow. A comparison between the predicted response and a full numerically simulated flow (Fig. 18 ) 
indicated that the amplitude and phase characteristics of the flow are well represented by the theory. Upon closer inspection, 
we note that the rising and falling arms of the computed response curve differ slightly in slope. This suggests the presence 
of hysteresis in the system, which might be of interest in future studies. A simple application to the seasonal response in the 
Red Sea gave reasonable results despite the basin having an aspect ratio L/h orders of magnitude greater than the 
experimental basins. More detailed comparisons await a set of concurrent forcing and response field measurements, which, 
to our knowledge, do not yet exist.
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Tables  

TABLE 1. External parameter settings for the numerical experiments (1–12) of the present study and a laboratory experiment (L) 
of Finnigan and Ivey (2000). The far right column refers to the forcing functions shown in Fig. 3. For experiment 12, Bs = 0.5 × 

10−6 m2 s−3 and ω = 390 s 

 
Click on thumbnail for full-sized image. 

TABLE 2. Summary of the main steady-state scaling results. The scaling relations (as numbered in the text) are converted to 
formulas using the experimentally determined constants

 
Click on thumbnail for full-sized image. 

TABLE 3. Energy flux and storage quantities for the numerical experiments. Fluxes appear normalized by the forcing flux sd, and 
storage quantities appear normalized by the total stored energy Ep + Ek, for each individual experiment 



 
Click on thumbnail for full-sized image. 

Figures  
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FIG. 1. A buoyancy-driven marginal sea. A sill at x = L restricts the exchange flow between the sea and the adjoining ocean 
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FIG. 2. Example of a numerical grid used in the simulations. This grid had 129 × 17 × 33 computational nodes. For longer basins, 
grids with 257 × 17 × 33 nodes were used
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FIG. 3. The form of the forcing functions used in the present study. The functions shown here are referred to in Table 1  
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FIG. 4. Velocity and density fields from experiment 1. (a) At early times the basin interior is occupied by turbulent convection 
while an exchange flow develops at the sill. (b) As time increases the exchange flow progresses toward the closed end of the 
basin. (c) Finally, a steady-state is reached when the exchange flow occupies the entire length of the basin. Red indicates lighter 
fluid and blue indicates heavier fluid. Note how the mean density of the convecting region and thus the outflow over the sill gets 
progressively more dense with time. For visualization purposes the velocity data have been interpolated onto a coarser grid, 
relative to the computational grid (see Fig. 2 ) 
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FIG. 5. Variation with time of the scaled volume flux at the sill crest q(B/H)−1/2h−3/2. Results from laboratory experiment L are 
shown as large circles and results from numerical experiment 1 as small dots. The solid gray curve (0  t/tss  0.6) represents 

the t1/2 scaling of (11), which is consistent with the observed results for both experiments. At about t/tss = 1 the flow reaches a 

steady state and q  (BL)1/3h (solid line) 
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FIG. 6. Alongchannel variation of the scaled horizontal velocity |u3/B| in the upper layer. Results from laboratory experiment L 
are shown as large circles. Results from numerical experiments 1 and 6 are shown as a dotted and solid line, respectively. The 
shaded objects indicate the width of the sill in each of the numerical experiments. Note how the wider sill affects the velocity 
variation of experiment 1. Results are consistent with the linear scaling (straight line) in the central region (between the vertical 
dashed lines)
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FIG. 7. Alongchannel variation of g′ scaled as suggested by (a) Maxworthy (1997) and (b) Phillips (1966). Results from 
numerical experiments 1 and 6 are shown as a dashed and dot–dashed line, respectively. The solid line in (a) represents a best fit 
to the laboratory data presented by Grimm and Maxworthy (1999) 
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FIG. 8. Schematic view of the basin control volume 
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FIG. 9. Time series for each of the energetics terms. (a) The terms represented in the rate-of-change of potential energy equation 
(18) and, (b) the terms represented in the rate-of-change of kinetic energy equation (19). Results were derived from experiment 1 
for which the flow was initially at rest and of uniform density. The residuals, which indicate how well the energy equations 

balance, were O(10−10) in both (a) and (b) 
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FIG. 10. Log–log plots of (a) Ep vs H/h and (b) Ek vs H/h for experiments 9–11. The slopes of best-fit lines give estimates of the 

constants γ and δ 
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FIG. 11. (a) Computed values of steady-state stored potential energy Ep in relation to the scaling prediction ρoB2/3L5/3HW(H/h)

γ with the value of γ given in Table 2 . (b) The analogous relationship between observed Ek and ρoB2/3L5/3HW(H/h)δ. Slopes 

of the fitted lines provide estimates for the proportionality constants, cp and ck (see Table 2 ). Experiment 1 not shown due to 

redundancy with experiment 3 steady-state results 
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FIG. 12. Log–log plot of asp vs H/h for experiments 9–11. The slope of a best-fit line gives an estimate of the constant λ
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FIG. 13. Computed values of steady-state advection of potential energy across the sill asp in relation to the scaling prediction 

ρoBLHW(H/h)λ  with the value of λ given in Table 2 . The slope of the fitted line provides an estimate for the proportionality 

constant cs (see Table 2 ). Experiment 1 not shown due to redundancy with experiment 3 steady-state results 
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FIG. 14. Schematic representation of the flux of energy relative to the basin control volume. The bracketed quantities are 
average steady-state values from experiments 1–7 for H/h = 2 
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FIG. 15. Time variation in response to a step increase in B at t = 0 of the normalized stored energy quantities (a) Ep*
 and (b) Ek*

. 

The time coordinate is normalized such that t* = t/tr 
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FIG. 16. Time variation in response to a step increase in B at t = 0 of the normalized advection of potential energy across the sill 
asp*

. The time coordinate is normalized such that t* = t/tt. Note the apparent signal delay indicated by the shifted response 

curve. This is caused by the finite time required for a change in the surface forcing to be detected at the sill. It is most evident in 
the results of experiment 7, which had a longer basin
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FIG. 17. Magnitude and phase plots for the response of asp*
 as a function of frequency ω. The magnitude has been normalized 

by its maximum value B* 
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FIG. 18. Variation of asp(t) with time in response to a sinusoidal forcing function. (a) Surface buoyancy flux variation. (b) The 

response of asp(t). Computed results are shown as small dots and the dimensional form of the response equation (48) is shown 



 

 

as a solid line
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FIG. 19. Seasonal response of the Red Sea as estimated from likely external forcing parameters and the response equation (48) 
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