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ABSTRACT

The dynamics of an idealized wind-driven double-gyre circulation in 
an ocean basin are studied from a dynamical systems point of view 
in an effort to better understand its variability. While previous 
analyses of this circulation have mostly dealt with local bifurcations 
of steady states and limit cycles, this study demonstrates the 
importance of considering global bifurcations as well. In one case, a 
coherent picture of the global dynamics spanning a range of 
parameters from where there are only stable steady-state solutions to 
where there is chaotic eddy shedding is presented. A simple but 
novel use of power spectra along with dynamical projections of the 
dynamics suggests that just beyond the regime in which there are 
only stable steady states, the system exhibits a complicated global 
bifurcation known as the “Shilnikov phenomenon.” 

1. Introduction  

The world oceans are an important constituent of our climate system. 
They account for a significant fraction of the poleward heat transport 
(e.g., see Gill 1982) and are the main sources of long timescales in 
climate dynamics. The dynamics of ocean circulation are, therefore, 
expected to play a major role in climate variability. However, even the 
response of the oceans themselves to specified mechanical and 
thermodynamic forcings—wind-driven circulation and thermohaline 
circulation respectively—is, in general, very complicated. While simple 
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models are useful in understanding various individual features of this complicated response, realistic descriptions invariably 
require the use of ocean general circulation models. The downside of OGCMs, however, is their immense complexity 
resulting in part from the very large range of spatial and temporal scales and the large number of different physical processes 
involved.

The feature of ocean circulation of interest to us in this article is its variability. To reproduce the observed variability of 
ocean circulation in models requires, besides using realistic OGCMs, an extensive tuning of parameters and 
parameterizations of the models. On the other hand, even simple models are capable of significant variability [see, e.g., 
chapter 2 in Pedlosky (1996) and references therein; McCalpin and Haidvogel (1996); Nadiga and Holm (1997)]. While it 
would be almost hopeless to carry out a systematic analysis of the origin of variability in the OGCMs, we think that such an 
attempt can now be made at least for some of the simple models. Although it is not clear to what extent the results of such 
analysis will carry over to OGCMs, study of the simple models is a logical place to start, and may shed light on some of the 
fundamental dynamical mechanisms involved.

Simple models that have been particularly useful in understanding various aspects of the dynamics of midlatitude wind-
driven ocean circulation are those that assume the hydrostatic and possibly also the quasigeostrophic (QG) approximation, 
simplify the vertical representation to a few layers, idealize the domain into a closed rectangular basin, and idealize the wind 
forcing [see, e.g., chapters 2 and 3 in Pedlosky (1996) and references therein]. In this article, we consider a commonly 
studied QG model of this type wherein the upper ocean is represented by a single active layer overlying a deeper, quiescent, 
“half”  layer. The most serious shortcoming of such a model is that it does not support baroclinic instability; our justification 
for studying it is that the variability even for this case is not well understood.

Considering a barotropic model of the subtropical ocean gyre circulation forced by steady wind stress, computations 
performed by Bryan (1963), for the first time demonstrated a transformation of flow from a classical Stommel solution to 
one with an inertial recirculation to unsteady solutions as the degree of nonlinearity was increased. Vernois (1966), using a 
different dissipation operator, then pointed out a different transformation of steady states as the degree of nonlinearity 
increased, with more Fofonoff-like solutions emerging at large nonlinearities. These works were followed by various other 
investigations that noted the spontaneous generation of mesoscale variability in ocean circulation driven by steady winds at 
moderate values of nonlinearity. It was then pointed out by Holland and Haidvogel (1981), in the context of a baroclinic QG 
model, that a lower-frequency variability (than that of the mesoscales) appears at still higher values of nonlinearity. Le 
Provost and Verron (1987), by considering unsteady computations of the barotropic double-gyre circulation, identified two 
types of destabilization—meandering of the midlatitude eastward jet and Rossby wave radiation from the westward return 
flow. Moro (1988), considering computations of steady states, but with asymmetric double-gyre wind stress, demonstrated 
the possibility of stable standing meanders in the midlatitude jet.

However, detailed studies of variability in simple models of wind-driven ocean circulation began only more recently with 
the work of Jiang et al. (1995), when they showed the presence of multiple equilibria and periodic and aperiodic solutions in 
the context of a double-gyre circulation driven by symmetric wind stress and using a reduced-gravity shallow water model. 
(Henceforth, when we refer to the double-gyre circulation, the reader should assume that we are actually referring to an 
idealized realization of it in a simple model rather than its more realistic counterparts and, if we do not explicitly specify it, 
that it is driven by symmetric wind stresses.) At about the same time, Ierley and Sheremet (1995) demonstrated the 
presence of multiple equilibria in a barotropic single-gyre QG model, Cessi and Ierley (1995) mapped the (antisymmetric and 
symmetry-breaking) steady states of a barotropic QG double-gyre model as a function of frictional and forcing parameters 
and studied their stability, and Speich et al. (1995) did the same for the model used in Jiang et al. (1995). (Note that while 
the steady states of the barotropic QG case with no quiescent deep layer are the same as those for its reduced-gravity 
counterpart, the time-dependent dynamics of the two are different.) 

McCalpin and Haidvogel (1996), on the other hand, integrated a reduced-gravity QG model of the double-gyre circulation 
to study its low-frequency variability and suggested that the low-frequency variability that they observed was associated 
with irregular transitions among three preferred states—a high energy state with the midlatitude jet penetrating deep into the 
basin, a low energy state with a weakly penetrating jet, and an intermediate energy state. [These preferred states have been 
linked to the unstable steady states of that model by various authors (e.g., Primeau 1998; Scott and Straub 1998).] While 
Dijkstra and Katsman (1997) examined bifurcations of steady states and formation of limit cycles for the reduced-gravity 
and two-layer QG models of double-gyre circulation, Primeau (1998) mapped out the bifurcation of steady states for a 
barotropic QG model but with a different dissipation operator than used in Cessi and Ierley (1995). This was followed by the 
Berloff–Meacham program, which considered, rather extensively, the low-dimensional dynamics of the single-gyre 
circulation using both barotropic and baroclinic QG models (Berloff and Meacham 1997; Meacham and Berloff 1997; Berloff 
and Meacham 1998). In this context, they identified a sequence of Hopf bifurcations giving rise to an unstable toroidal 
attractor that, then, gives way to a strange attractor. Berloff and McWilliams (1999) consider the reduced-gravity and two-
layer QG models of double-gyre circulation with both symmetric and asymmetric wind forcing. In each of the cases, they 
find a primary (intermonthly) and a secondary (interannual) Hopf bifurcation and then go on to characterize the differences 
in the low-frequency variability of their different cases at higher nonlinearities using empirical orthogonal functions. Various 
aspects of the double-gyre circulation are considered in a recent study by Ghil et al. (2000, manuscript submitted to J. Fluid 



Mech.). Finally, in a recent article (published since this work was completed), Meacham (2000) in trying to explain large 
amplitude, low-frequency variability of aperiodic solutions in a barotropic double-gyre circulation, associated it with 
homoclinic bifurcations.

Thus, with the exception of Meacham (2000), all the low-dimensional dynamics that have been identified in the context of 
wind-driven circulation are local bifurcations of steady states and periodic solutions, and a comprehensive study of the role 
of more complicated solution types is still lacking. We note that a possible special solution in the problem under 
consideration is (what is called in the nonlinear dynamics literature as) a “homoclinic orbit”—which in the present context 
would mean a time-dependent double-gyre solution that tends asymptotically to a steady-state solution (discussed previously) 
in both forward and backward time. (An orbit would be called “heteroclinic”  if it connected two different asymptotic 
solutions.) Such an orbit provides the fundamental recurrence mechanism that makes possible the repeated “stretching and 
folding”  of phase space that is characteristic of dynamical chaos. Furthermore, it is now well recognized that bifurcations 
involving homoclinic orbits can act as “organizing centers”  for the dynamics of low-dimensional dynamical systems. That is, 
these solutions often play a fundamental role in the bifurcation of new solutions as parameters are varied and a crucial role in 
the onset of chaotic behavior. It is also easy to imagine how the recurrent structure of a homoclinic orbit can provide a 
setting wherein new periodic solutions can be created—bifurcating from the homoclinic orbit as parameters are varied. For 
examples of homoclinic and hetroclinic orbit as they occur in highly truncated (ordinary differential equation) models of 
geophysical flows, see Ghil and Childress (1987). 

In this paper we report evidence that suggests that the dynamics of the double-gyre circulation (in a reduced-gravity QG 
model) just beyond the regime in which there are only stable equilibria (steady states) exhibit a complicated global 
bifurcation, which is known in the literature as the “Shilnikov phenomenon”  (SP). We deduce this by comparing power 
spectra and dynamical projections of the double-gyre circulation with known characteristics of the SP. The SP, which was
first partially described by Shilnikov (1965), and later studied by Glendinning and Sparrow (1984), Gaspard et al. (1984), 
Tresser (1984), and others, involves the collision of limit cycles with saddle-foci equilibria in phase space creating 
homoclinic orbits and other dynamical structures. Thus, while previous bifurcation analysis of the double-gyre circulation 
have all involved only local bifurcations, to the best of our knowledge our evidence for SP seems to be the first instance of 
considering a global bifurcation in this context.

As has been shown in the previous studies, when nonlinearity is initially increased in the symmetrically forced double-gyre 
circulation, antisymmetric steady states give way to asymmetric steady states and then to periodic solutions through a series 
of local bifurcations. Moreover, in the context of the β-plane approximation, it is physically easy to see that the dynamics of 
the linearization about any one of the steady-state solutions would involve Rossby waves. In particular, considering the 
antisymmetric steady-state solution branch beyond the first (codimension one, pitchfork) bifurcation when it loses stability, 
the simplest picture of the dynamics of the linearization about that solution would be that of a saddle focus, with Rossby 
waves comprising the two-dimensional stable oscillatory mode. It is then easy to imagine the periodic solutions (asymmetric 
limit cycles, after they are possibly involved in other local bifurcations) colliding with this saddle focus, providing the basic 
framework necessary for SP.

Much of the work on Shilnikov chaos has been in the three-dimensional (phase space) setting, and it is this three-
dimensional theory that we consider here. The relevance of such a theory to the double gyre arises from the fact that, 
although the system of partial differential equations (pde) describing such a system (e.g., the reduced-gravity QG model) is 
capable, a priori, of exhibiting an arbitrarily large number of degrees of freedom in its dynamics, dissipative mechanisms 
suppress instabilities at wavenumbers above a threshold. This threshold increases with increasing wind stress, allowing 
finer-scale structure with more degrees of freedom to emerge as forcing increases. In the regime considered in this paper, 
the wind stress is small enough that only a few instabilities are present in the time-asymptotic dynamics and these involve 
only a small number of degrees of freedom. For many pde systems with driving and damping, such as the forced two-
dimensional Navier–Stokes equations in a bounded domain, the finite dimensionality of the asymptotic dynamics can be made 
rigorous via the concept of inertial manifolds (Constantin et al. 1985). While such a demonstration is likely to be possible for 
the double-gyre circulation, we remark that the question of the exact effective dynamical dimension for a pde in a given 
parameter regime is often a difficult question, and, in practice, dynamicists tend to rely on numerical measurements such as 
Lyapunov dimension instead of rigorous theory. Although we do not fully address this question in this article, there do 
appear to be some interesting and subtle aspects to the question of dynamical dimension for the double-gyre circulation, 
which we discuss further in section 6. 

Finally, in the context of using a double-gyre wind forcing, we note that although the details of bifurcation diagrams are 
bound to be dependent on the exact form of the dissipation operator and the associated boundary conditions, the possibility 
of “internal compensation”  is expected to reduce such a dependence. Internal compensation is the process wherein 1) the 
potential vorticity of a fluid parcel is changed by input of wind stress curl in, say, the subtropical gyre, 2) the fluid parcel is 
advected across the zero wind stress curl line to the subpolar gyre, and 3) the potential vorticity of that fluid parcel is reset 
in part by input of wind stress curl of the opposite sign by virtue of being in the subpolar gyre (see, e.g., Marshall 1984; 
Pedlosky 1996; Primeau 1998, Greatbatch and Nadiga 2000). The inviscid nature of this transport mechanism allows a weak 
dependence of the dynamics on dissipative processes in a weakly dissipative regime. It is, however, clear that once 



symmetry is broken the importance of dissipative processes has to reemerge. For example, it is perhaps because of internal 
compensation that low-frequency variability of the kind found by McCalpin and Haidvogel (1996) using a QG model persists 
in the primitive equation model studies of Spall (1996), the equilibria found by Jiang et al. (1995) in the shallow-water model 
are perturbed versions of those found by Cessi and Ierley (1995) in the corresponding QG model, and the time-mean 
circulation of turbulent double-gyre simulations in Greatbatch and Nadiga (2000) are practically the same (their Figs. 4 and 
5) when either free-slip or super-slip boundary conditions are used. It is also in the same vein that Scott and Straub (1998) 
point out that certain aspects of their nonsymmetric solutions appear insensitive to (poorly known) frictional parameters, 
when these parameters are smaller than certain critical values. In such cases, they point out that the flow organizes itself in 
such a way as to reduce the input of energy from the wind forcing when friction is reduced (also see Greatbatch and Nadiga 
2000). 

An outline of the rest of the paper is as follows. In section 2, we describe a simple model of the double-gyre circulation 
that we use, including details of the setup and the numerical integration scheme. In section 3, we briefly introduce the 
dynamical concepts used in this article and give a brief sketch of the Shilnikov phenomenon. After explaining the data types 
that we use in the analysis of the double-gyre circulation in section 4, we present evidence for the SP in the double-gyre 
circulation in section 5. Section 5 also considers two other better understood examples to validate our methodology. In 
section 6, we briefly discuss the issue of dimension of the double-gyre circulation in relation to exact mass conservation 
(Kelvin wave parameterization) and conclude in section 7. 

2. The reduced-gravity quasigeostrophic model  

We consider the reduced-gravity QG model in vorticity form to study the nonlinear dynamics of an idealized 
subtropical/subpolar gyre system. In this description of large-scale circulation, a single active layer of water of constant 
density ρ0 and variable thickness h, representative of the upper ocean, overlies an infinitely deep and quiescent bottom layer 

of density ρ0 + Δρ. The interface between these two layers, across which there is no mass transport, models the behavior of 

the permanent thermocline. We choose the equilibrium depth of the upper layer to be 1000 m, its density ρ0 to be 1022 kg 

m−3, and the density difference between the upper and lower layers, Δρ, to be about 3.3 kg m−3. We consider a rectangular 
model domain extending 1000 km in the east–west (x) direction and 2000 km in the north–south (y) direction, centered at 
30°N. The setup of the domain is shown in Fig. 1 . The Coriolis parameter is assumed to vary as f  = f0 + βy (β-plane 

approximation), where f0 = 2Ω sinθ = 7.3 × 10−5 s−1 corresponds to a latitude, θ, of 30° and β the latitudinal variation of 

rotation is assumed to be 2 × 10−11 m−1 s−1. The upper-layer flow is then described by

 

where  is the streamfunction,

 = 2
 

is the relative vorticity, J[ , ] is the Jacobian operator given by

 

τ is the wind stress forcing, and D represents dissipation. The quantity g′, the reduced gravity, is related to the 
gravitational acceleration g by

 

The streamfunction  is constant along the boundary to ensure that there is no flow normal to the boundary, but this 
constant can have a time dependence:

 



B = c(t). (2.2)

The wind stress τ is chosen to have an idealized double-gyre structure (see Fig. 1 ) given by

 

where τ0 is the magnitude of the horizontal wind stress (in N m−2). Note that with this wind stress, which is symmetric 

about y = 0, the dynamics of the double-gyre circulation is invariant under the transformation

  − , y  −y. (2.3) 

The dissipation operator D is chosen to be a combination of biharmonic mixing and Rayleigh damping of momentum, 
resulting in

D = −A0  − A4
4 ,

 

following Marshall (1984), to emphasize the importance of the eddy field in transporting potential vorticity across the zero 
wind stress curl line. While the highly scale selective biharmonic mixing allows for an effective removal of small-scale 
enstrophy, which results from nonlinear cascade processes, the scale insensitive Rayleigh damping allows for an 
equilibration of the energy of the system. For biharmonic friction, we choose free-slip boundary conditions:

 

where n is normal to the boundary. 

A nondimensionalization of (2.1) using a length scale corresponding to the horizontal extent of the domain L, a velocity 
scale U given by the Sverdrup relation

 

and a timescale corresponding to the Sverdrup gyre-turnaround time L/U allows (2.1) to be written as

 

where q is the potential vorticity

 

Ro is the Rossby number

 

and LR is the Rossby radius of deformation

 

Finally, for convenience, we represent the inertial scale, (U/β )½, as a percentage of the horizontal domain size L by δ :



i

 

The midlatitude of the basin is now at y = 0, the northern and southern boundaries are at y = ±1, respectively, and the 
western and eastern boundaries at x = 0 and x = 1, respectively (see Fig. 1 ). We choose to vary the Rossby number, or 
in effect the magnitude of the wind stress, in our experiments for chosen values of dissipation coefficients. While we have 
experimented with various values for the dissipation coefficients and correspondingly different ranges of wind stress 
magnitude, for the case we consider in detail here, the Rayleigh damping timescale was about 193 days, the value of A4 was 

2 × 1010 m4 s−1 and the corresponding maximum wind stress magnitude was about 0.03 N m−2. 

Equation (2.4) is finite differenced using the Arakawa discretization (Arakawa 1966; Salmon and Talley) for the Jacobian 
and centered differencing for the spatial discretization of the other terms. The time stepping is carried out using a 
(nominally) fifth-order embedded Runge–Kutta Cash–Karp scheme (Press et al. 1992). In addition to providing adaptive time 
step control and better time accuracy compared to the usual leapfrog time discretization, this forward-time discretization 
obviates the need for time filtering used to remove the computational mode in the leapfrog discretization. In all our 
computations, we fix the resolution at 20 km or 0.02L. 

3. Sketch of the Shilnikov bifurcation  

In this section, we briefly sketch the Shilnikov phenomenon, assuming only an elementary knowledge of dynamical 
systems theory on the part of the reader. [General introductions to dynamical systems may be found in Wiggins (1990) and 
Guckenheimer and Holmes (1983)]. We will describe the SP for three-dimensional dissipative dynamical systems that 
possess complete inversion symmetry. Such a symmetry corresponds to the symmetry of the two gyres (2.3) (which our 
model possesses if and only if the domain and wind stress forcing are both chosen to be symmetric). Our summary is 
largely based on work by Glendinning and Sparrow (1984) and a second paper by Glendinning (1984). 

To illustrate the SP, consider a one-parameter dynamical system of the form

 

which has real parameters λ, ρ > 0, and R (note that the phase variables x, y, and z are not directly related to the spatial 
coordinates of our double-gyre model). In addition, P, Q, and W are assumed to be real-analytic functions of x, y, and z that 
vanish along with their first derivatives when x = y = z = 0. The latter, along with the absence of constant terms, implies that 
the origin is a stationary point, that is, a solution trajectory with the initial condition x(0) = y(0) = z(0) = 0 which simply 
remains fixed. The forms of the linear terms (involving parameters ρ, λ, and ω) are such that the fixed point at the origin is 
of “saddle-focus”  type, with one positive real eigenvalue, ρ, and a pair of complex eigenvalues, −λ ± iω. The positive 
eigenvalue ρ implies the existence of a pair of one-dimensional unstable manifolds on which phase trajectories depart from 
the origin at an exponential rate ρ (e.g., the initial part of the homoclinic trajectory in Fig. 2a ). Likewise, the complex 
pair of eigenvalues with negative real part ( − λ ± iω) implies that the origin has associated with it a two-dimensional stable 
invariant manifold on which solutions tend asymptotically to the origin in a spiral with an exponential radial contraction rate λ 
and oscillation frequency ω (e.g., the latter part of the homoclinic trajectory sketched in Fig. 2a ). 

A “homoclinic”  orbit occurs if there is an intersection of the stable and unstable manifolds. Such an intersection 
immediately implies the existence of a trajectory that tends asymptotically to the fixed point as t  ±∞. We now assume 

that the functions P, Q, and W are chosen such that a homoclinic of system (3.1) exists at R = 0. Symbolically, we 

represent this homoclinic solution by (x, y, z) = (xh(t; r0), yh(t; r0), zh(t; r0)), where r0 is any initial condition on this orbit at 

t = 0. An example of such a homoclinic to a saddle focus is illustrated in Fig. 2a . Assume now also that P, Q, and W are 
invariant under the inversion

(x, y, z)  −(x, y, z), (3.2) 

so that the system (3.1) possesses inversion symmetry. This implies that any solution of (3.1) (x, y, z) = (x(t; r0), y(t; r0), 

z(t; r0)) has associated with it another solution (x, y, z) = (-x(t; −r0), −y(t; −r0), −z(t; −r0)). There is, therefore, another 

homoclinic obtained by inverting the first, and such a pair, which interleave one another, is illustrated in Fig. 2b . 



The dynamical consequences of such a pair of homoclinics depend crucially on the ratio of the real parts of the 
eigenvalues, which we denote by δ:

 

Shilnikov (1965) first showed that, when δ lies in the interval (0, 1), such homoclinic solutions are accompanied at R = 0 
by the existence of a countable set of periodic and an uncountable set of aperiodic solutions (i.e., chaotic structure) in the 
proximity of the homoclinic. Shilnikov also showed that in this case there is an infinite, countable set of “multiple pulse”  
homoclinic solutions in any R interval containing the origin, each having its own sets of periodic and aperiodic solutions. 
Later work by Glendinning and Sparrow (1984), Gaspard et al. (1984), Tresser (1984), and Glendinning (1984) has partially 
explained how this complicated state of affairs comes about as the bifurcation parameter R is varied, and it is these results 
that are most relevant presently.

Before describing these results, we first digress to recap a few relevant details about bifurcations and periodic orbits:

● In the presence of inversion symmetry, we note that a periodic orbit can always be classified as either asymmetric or 
symmetric, with asymmetric orbits always occurring in pairs in which each member transforms into the other under 
the inversion operation, while symmetric orbits are unique. Both types of solutions are illustrated in Fig. 3 . 

● Second, recall that there are four types of local bifurcations common to dynamical systems—the Hopf, saddle-node, 
period-doubling, and symmetry-breaking bifurcations. Figure 4  illustrates the bifurcation diagrams associated with 
these four. A brief description of these follow. [For detailed explanations, see, e.g., Wiggins (1990) and 
Guckenheimer and Holmes 1983]. 

In a (supercritical) Hopf bifurcation, the real parts of the eigenvalues of a fixed point increase through zero from 
negative to positive, causing the stationary point to lose stability and a stable periodic orbit to be created. We shall see that 
this is the initial mechanism by which periodic orbits appear in the double-gyre circulation as δi is increased. 

In a saddle-node bifurcation, a pair of stationary fixed points, or a pair of periodic orbits, one stable and one unstable, 
are created simultaneously from the same locus of phase space as R is increased or decreased [this may be viewed as the 
collision and subsequent annihilation of a saddle and a stable orbit (or node) in reverse]. We shall see that this is the 
mechanism by which multiple orbits first appear following the initial Hopf bifurcation in our model of the double-gyre 
circulation.

In a period-doubling bifurcation, which can involve only asymmetric orbits, an asymmetric “parent”  orbit loses 
stability and in the process a new stable (and asymmetric) orbit is created having twice the period of the original orbit. A 
period-doubling bifurcation is often followed by an infinite cascade of period-doubling bifurcations that culminates in the 
creation of a chaotic attractor. Only the first period-doubling of such cascades will be indicated in the bifurcation diagrams 
that follow (Figs. 5, 6, and 7 ). It is by this route that chaos first appears in the double-gyre circulation model. 

Finally, a symmetry-breaking (or pitchfork) bifurcation occurs when a symmetric orbit loses stability, creating a pair 
of stable asymmetric solutions. This is the symmetric analog of a period-doubling bifurcation. A symmetry-breaking 
bifurcation is also often followed by two infinite period-doubling cascades begining with the two asymmetric solutions 
created in the symmetry-breaking bifurcation. This is also the mechanism by which asymmetric steady-state solutions first 
arise in the symmetrically forced double-gyre circulation. 

We now discuss the Shilnikov phenomenon. Figures 5, 6, and 7  illustrate in an idealized way three basic bifurcation 
scenarios that have been discussed in the literature by Glendinning and Sparrow (1984), Gaspard et al. (1984), Tresser 
(1984), and Glendinning (1984). These describe the so-called principal periodic orbits near a homoclinic to a saddle focus in 
the presence of inversion symmetry and correspond to the following regimes in the parameter δ: 1/2 < δ  1 (case I; Fig. 5 

), 1/2  δ < 1 (case II; Fig. 6 ), and δ > 1 (case III; Fig. 7 ). In particular, Figs. 5–7  illustrate the bifurcation 
histories of the principal periodic orbit families of both symmetric and asymmetric kind. In these diagrams, we indicate the 
half period of the symmetric orbits and the full period of the asymmetric solutions in order to make the illustrations appear 
symmetric and easier to understand. We stress that not all the periodic solutions that exist in the phase space are 
represented—in fact, for cases I and II the vast (in fact infinite) majority are not. The principal orbits that are described, 
however, play a fundamental role in the creation of many if not most of the other periodic solutions that exist in the vicinity 
of the homoclinic.

In Fig. 5 , case I, we see that when R is much less than zero that there is only a single, stable, asymmetric orbit 
(which may, e.g., have been created in a Hopf bifurcation). As R is increased, a series of (forward) saddle-node bifurcations 



occurs, creating both asymmetric solutions and symmetric solutions, until the pair of homoclinics at R = 0 is reached. Then, 
as R is increased further, a sequence of (reverse) saddle-node bifurcations occur, until all that remains is a single, stable, 
symmetric orbit. Note that in any open interval in R that contains the origin there are an infinite number of saddle-node, 
period-doubling, and symmetry-breaking bifurcations. This entire process, that is, traversing from a single asymmetric orbit 
to a symmetric orbit, in either cases I, II, or III, is what we collectively refer to in this paper as Shilnikov phenomenon. 

Most importantly, note that although this process involves an infinite number of forward and backward saddle-node 
bifurcations, one may think of these bifurcations as involving only two families of periodic orbits by continuously tracing the 
curves of Figs. 5, 6, and 7 . These two families, the principal families, may be thought of as having deformed into the 
pair of homoclinics at R = 0. Of course, this interpretation requires one to accept the idea that principal orbits can have 
multiple representations at a given value of R. 

It is thought that for values of R sufficiently close to zero, each of the period-doubling and symmetry-breaking 
bifurcations illustrated in Fig. 5  lies at the beginning of a complete period-doubling cascade, which terminates in the 
creation of a chaotic attractor. Moreover, as we have mentioned previously, it is known that there is a countably infinite set 
of multiple-pulse homoclinics in any R interval containing the origin, and each of these is thought to possess all of the same 
associated structure we have so far described for the “primary”  homoclinic. Thus, there exist an enormous number of 
solutions and bifurcations occurring that are not shown in Fig. 5 . Obviously, there is the possibility of great variability in 
the temporal dynamics, including chaos, for case I (and case II).

The question of what attractors one is likely to see in simulations, for example, chaotic attractors and/or stable periodic 
orbits, depends a great deal on the specific example studied, and to the best of our knowledge there are few general 
statements that can be made. Likewise, the exact bifurcation histories of individual solutions created in the various period-
doubling cascades is also not known generally, although some specific case histories for some orbits have been described in 
the literature (see Glendinning and Sparrow 1984). 

Figure 7  illustrates the bifurcation diagram for case III SP; that is, δ > 1. (Case II is addressed below.) In this case, 
the bifurcation can be characterized as a “gluing bifurcation”; that is, a pair of stable asymmetric solutions simply deform 
smoothly into a pair of homoclinic solutions at R = 0, and then a single, stable symmetric orbit emerges as R is further 
increased (thus the two asymmetric orbits appear to have been “glued”  together). Note that this entire sequence involves 
only three periodic orbits and one pair of homoclinic orbits, and is thus vastly simpler than case I or II SP.

A possible bifurcation diagram for case II SP (1/2  δ <  1) is illustrated in Fig. 6 . This diagram is based on Fig. 
3.8 of Glendinning and Sparrow (1984) (except that we have added the symmetric orbit curve resulting from the inversion 
symmetry), and it is this sort of scenario that we believe is occurring in our reduced-gravity QG model of double-gyre 
circulation. We emphasize, however, that less is known about case II than for either case I or III SP, and significant 
variations. Note that the diagram resembles the diagram for case I very close to the homoclinic; that is, there is an infinite 
series of saddle-node bifurcations alternating on either side of the homoclinic as the period of the principal orbits approach 
infinity. Farther away from the homoclinic are pairs of outlying saddle-node bifurcations (sometimes called “S-shaped 
bifurcations”  in the literature), which can form if some of the lower-period alternating saddle-node bifurcations are shifted to 
one side and away from the homoclinic as δ increases. 

We remark that as δ is increased through one, that is, into case III SP, a finite number of these S-shaped bifurcations may 
persist, but the infinite set of alternating saddle-nodes approaching the homoclinic orbits must shrink and disappear. In 
general, as Glendinning and Sparrow (1984) point out, the bifurcation diagram for any system with variable δ must 
continuously deform as δ is increased from the regime in case I to that in case III, so the bifurcation diagram for case II will 
be an interpolation between the first and third cases in Fig. 6 ; this concludes our brief sketch of the Shilnikov 
phenomenon.

4. The use of spectra and phase projections for study of bifurcation  

In section 5 we present evidence for SP in the double-gyre circulation using two types of dynamical data—collections of 
power spectra plotted together, which provide us with a global picture of the dynamics as a function of δi; and projections 

of individual dynamical trajectories in phase space generated by “time-delay embedding”  of time series. In this section we 
explain why these data types are useful and complementary, and how they are obtained from the model.

The first data type—collections of power spectra—consist of a series of power spectra calculated from time series 
obtained from the model over an interval of inertial scales δi. (Recall that the inertial scale is the natural bifurcation parameter 

for this problem.) The particular quantity measured to produce these series is discussed at the end of this section. After the 
spectrum of each series is computed, the spectra were plotted together as a two-dimensional color-mapped plot for the 
entire collection with the inertial scale along the horizontal axis and spectral component on the vertical axis (e.g., see Figs. 8a 
and 8b ). Note that, contrary to conventional practice, the spectra in Figs. 8a and 8b  were plotted with temporal 



period on the vertical axis, instead of frequency. This was done so that the resulting plots can be directly compared with the 
SP bifurcation diagrams of Figs. 5, 6, and 7 , which are also plotted with temporal period on the vertical axis. 

The advantage of this approach is that it essentially furnishes us, at least in this particular case, with a bifurcation diagram 
for the dynamics of the system without having to perform the difficult task of isolating and tracking individual periodic 
solutions. The latter task is often undertaken for systems of coupled ordinary differential equations, but is extremely difficult 
to carry out for partial differential equations and entails the use of specialized and dedicated numerics.

Generally, power spectra of chaotic time series associated with chaotic evolution exhibit a broadband structure, that is, 
energy at infinitely many frequencies, making it hard to discern the frequency characteristics of individual orbits. In the case 
studied in this paper, however, the chaotic attractor of the double-gyre circulation appears to be tightly compressed in phase 
space around what we suspect are the principal orbits involved in a SP bifurcation, causing the spectra to have a strong 
component at the principal orbit's frequencies that stand out against the broadband background. The reason for this 
compression appears to be because the parameter δ [see (3.3)] is close to one. This issue is further explored when the 
attractor projections are examined in section 5. 

The second type of data we consider in this paper are three-dimensional projections of individual phase trajectories (see 
Fig. 9 ). These provide us with direct information about attractor structure and are obtained by the widely employed 
technique of time-delay embedding of time series. That is, given a time series q(t) derived from the system, we choose a 
delay time τ and plot the triplet [q(t), q(t − τ), q(t − 2τ)] in three-dimensional phase space. If the dynamics that produced the 
time series in the first place is also three-dimensional, then this approach generally produces topologically accurate and very 
useful projections of the dynamics. For detailed discussions of time-delay embeddings, see, for example, Sauer et al. (1991). 

We now take up the question of how time series were obtained. At the very least, the time series should be choosen such 
that they contain information about the symmetry of the flow because the SP bifurcation diagrams with which we are to 
compare the model dynamics display a change in orbital symmetry as a principal characteristic. After some experimentation, 
we found that summing the streamfunction i(t) over two areas located symmetrically about y = 0 (the zero wind stress 

curl line) seems to provide useful time series for our purposes. Thus we define

 

This quantity clearly contains information about the symmetry of the flow—if a flow is symmetric about the y axis and 
consists of two counterrotating mirror image gyres, then this quantity is identically zero. If a flow is asymmetric at any 
given time t, then α(t) will (typically) be nonzero, and its sign will invert under the transformation y  −y. 

We remark that for the full range of parameters considered in this article, the maximal zonal penetration of the separated 
midlatitude jet is about a quarter of the horizontal extent of the domain and thus the measure α(t) is biased to characterize 
behavior in the vicinity of this midlatitude jet. The necessity for this bias is related to some subtle aspects of mass 
conservation and the effective dynamical dimension of the double-gyre circulation. We defer discussion of this issue to 
section 6. Finally we remark that all of the embeddings and the power spectra presented in this paper were generated from 
reasonably long samples (typically 8 gyre-turnaround times) of α(t) measured after the flow was allowed to relax (16 gyre-
turnaround times) to an attractor. All statements in the following are thus to be taken as pertaining to the time-asymptotic 
dynamics of the double-gyre circulation. 

5. Evidence for Shilnikov bifurcations in the double-gyre circulation  

We begin by examining plots generated from 61 power spectra (generated from time series α(t) as described in the 
foregoing section) for inertial scales extending from δi = 1.25 to 1.55 in increments of 0.005. These spectra are plotted 

together in Fig. 8a and 8b , and, as we now describe, provide a global picture of the bifurcations occurring as the inertial 
scale is varied. Note that the spectra in Fig. 8a  are plotted with the base 10 logarithm of the period on the vertical axis so 
as to compress the range in period and to make the structure at smaller periods more visible. In addition, the spectral energy 
at zero frequency (infinite period) is also included in the topmost data point at the top of Fig. 8a  because, as we will 
describe later, this component contains useful information about the symmetry of the flow. Figure 8b , on the other hand, 
is plotted with a linear period scale, and is included for ease in identifying period-doubling relationships. 

We first draw attention to the yellow curves beginning in the lower left corners of Fig. 8a and 8b , beginning at an 
inertial scale of about δi = 1.28. (The power spectra are color-coded such that blue–black corresponds to the lowest energy 

levels and yellow corresponds to the highest energy levels.) These are labeled “fundamental (asymmetric branch)”  and 
“harmonics”  in the figure. At about δi = 1.374 the time series become chaotic and the spectra become broadband. 



Interestingly, the yellow curves appear to persist despite the broadband structure. This apparently occurs because, as we 
will illustrate and discuss later, the chaotic attractor in this regime is tightly compressed in phase space; that is, it has the 
form of a slightly thickened periodic orbit, so its power spectrum retains a clear characteristic frequency.

Notice that these curves appear to diverge in period as they approach an inertial scale value just slightly less than δi = 

1.395 (the vertical locus corresponding to this value is optimistically labeled as the “homoclinic point”  in the figure). We 
conjecture that this divergence is associated with the formation of a pair of homoclinic orbits slightly prior to δi = 1.395. 

Assuming that this is the case, we will denote the exact (but unknown) value of δi as δhom
i. Notice also that a similar set of 

curves exists in δi > δhom
i, which are visibly more diffuse in appearance and harder to discern (the uppermost of these is 

labeled “fundamental (symmetric branch).”  These curves appear to diverge in period as δi  δhom
i from above. 

We now conjecture that the uppermost curves correspond to the fundamental period of families of exact periodic orbits of 

the double-gyre circulation. (The curves below the fundamental, for example, those labeled “harmonics”  in Rh < δhom
i are 

the super-harmonics of the fundamental, and they lie below the fundamental because we have plotted period instead of 
frequency on the vertical axis.) This will be directly confirmed for δi < 1.374 (and also at δi = 1.405), where the flow is not 

chaotic, by examining phase projections. We will also show that all the attractors in the region (δi < δhom
i) are asymmetric 

(implying that there are really pairs of asymmetric attractors), whereas in the region Rh > δhom
i the attractors are symmetric 

or very nearly so.

All of the phase projections discussed in this paper, and generated in the way discussed in the foregoing section, are 
collected together in Fig. 9 . All of these projections were generated from the same time series used to generate Fig. 8  
so that we may establish direct correlations between the figures: note that the letters along the bottom of Fig. 8  and the 
letters indexing each projection in Fig. 9  correspond. The delay-time τ used to generate these projections was equal to 
1/128 in Sverdrup gyre-turnaround time units and was chosen on the basis of mutual-information analysis (e.g., see Fraser 
and Swinney 1986)—it was also found simply to give the best visual images of the dynamics. 

Projections a–f in Fig. 9  clearly display closed trajectories and therefore directly confirm the conjecture that the 
uppermost curve in Fig. 8  corresponds to the fundamental period of families of periodic orbits for δi < 1.374. Next, 

projections a–h display asymmetric attractors, with both left-hand and right-hand versions visible. For example, projections c 
and d are almost mirror images—not exact mirror images since they occur at slightly different values of δi. On the other 

hand, projections i–l appear to be symmetric in structure. 

That all the attractors we have sampled in δi < 1.395 (including those not included in Fig. 9 ), chaotic or otherwise, 

are asymmetric can be verified by examining the zero-frequency component of the power spectra. Recall that this 
component is included along the top edge of Fig. 8a . If this component is nonzero, then the orbit must be asymmetric; 
that is, the time series that generated it is not symmetric about the time axis. It can be seen in Fig. 8a  that there appears 

to be significant and nearly constant zero-frequency energy everywhere in δi < δhom
i. At δi = δhom

i (around 1.395), the 

zero-frequency component becomes suddenly darker. Figure 10  plots this component by itself, showing that it drops 

suddenly more than three orders of magnitude near δi = δhom
i, indicating a sudden dramatic change in orbital symmetry. 

Beyond this point, the component begins to increase slowly and irregularly as the inertial scale is increased.

To make the physical interpretations of these dynamical structures clear, Figs. 11, 12, and 13  demonstrate the 
connection between orbital symmetry, as seen in the phase-space embeddings, and the double-gyre circulation. In these 
figures, the streamfunction for the full domain is color coded so that blue–black corresponds to the minimum and yellow to 
the maximum values. In the approximation of the reduced-gravity QG model, the difference between this upper-layer 
streamfunction and the streamfunction of the bottom layer (which presently is identically zero) is proportional to temperature 
at the base of the upper layer and therefore blue–black in these figures corresponds to lower temperatures (cold) and red–
yellow corresponds to higher temperatures (warm).

When the phase-space attractors are asymmetric, the circulation patterns in physical space are such that the separated and 
eastward flowing midlatitude jet oscillates asymmetrically about the zero wind stress curl line (y = 0). Figures 11 and 12 , 
which correspond to the asymmetric projections g and h in Fig. 9 , respectively, demonstrate this. In Fig. 11 , cold-
core rings are seen to dominate, while in Fig. 12  warm-core rings dominate. Further visual inspection of the flow 
patterns seems to suggest that the shedding of eddies only occurs on the dominant side. On the other hand, when the 
attractors are symmetric (or nearly so), the oscillation of the midlatitude jet is symmetric about y = 0 (or nearly so) so that, 



when eddy shedding occurs, cold-core and warm-core rings are equally preferred (or nearly so). This is demonstrated by 
Fig. 13 , which corresponds to the symmetric projection l of Fig. 9 . 

Finally, we note that the fast oscillations, for example, seen very clearly in projections e–h of Fig. 9 , correspond to 
mesoscale variability. For the representative set of physical parameters mentioned in section 2, this mesoscale variability has 
a timescale of about 110 days whereas the overall oscillation occurs on a timescale that varies between roughly 1 and 8 
years. Furthermore, it is clear from Fig. 9  (and Fig. 8 ) that the amplitude of this mesoscale variability is quite small 
compared to the amplitude of the overall (interannual) oscillation. Now, we get back to presenting the evidence for SP.

The Hopf bifurcation that created the asymmetric branch in δi < δhom
i is indicated in Fig. 8  (see the key included in 

the figure). This is the point at which an asymmetric steady state became unstable, leading to the onset of periodic 
oscillations in the gyres. We confirmed that a Hopf bifurcation, and not a bifurcation such as a saddle node, was responsible 
for the birth of the asymmetric periodic oscillation by examining many phase projections near the bifurcation, and this is also 
evidenced in part by Fig. 8 . In this figure, note that the super-harmonics of the newly created orbit become visible only 
somewhat beyond the initial appearance of the fundamental period indicating that the orbit was initially almost purely 
fundamental (sinusoidal). This is what one expects for a Hopf bifurcation, and not, for example, in a saddle-node 
bifurcation. In Fig. 9  it can also be seen that the orbits with the lowest inertial scale are the simplest in structure, 
reflecting their initial elliptical structure.

Having conjectured, and in some cases demonstrated, that the yellow curves of Fig. 8  correspond to families of 
periodic orbits, we now point out that the overall features of Fig. 8 , in fact, conform very closely to the features of case 
II SP. First of all, the observed trend that both sets of curves corresponding to periodic orbits appear to diverge as they 

approach δi = δhom
i; that this event accompanies a dramatic change in attractor symmetry strongly hints at the presence of a 

pair of homoclinic orbits near δi = 1.395. The existence of these is of course a crucial prerequisite for SP. The existence of 

the homoclinic is also suggested by the sequence of projections in Fig. 9 : Projections a–h show that as δi increases these 

trajectories pass nearer to and spend increasingly longer periods of time in the vicinity of the origin in these plots [the 
homoclinic fixed point in this problem must be located at the origin because this point is associated with a symmetric steady 
state on which the measure α(t) is identically zero.] At projection i, in particular, note that the (now symmetrical) chaotic 
attractor is very tightly compressed in phase space, and actually resembles a projection of a pair of homoclinic orbits.

These projections also exhibit dynamical behavior very consistent with the existence of a saddle-focus type fixed point at 
the steady state—another crucial feature of SP. To see this, first note that as δi is increased to 1.395 the trajectories show 

an increasing tendency to exit the vicinity of the origin along a specific axis inclined at about 70 degrees to the horizontal in 
the plots (this is particularly evident in projections g–l). This behavior suggests that the fixed point at the origin possesses a 
real, positive eigenvalue (the “saddle”  part). Second, while exiting the origin, the trajectories also show a tendency, which 
increases with δi, to oscillate around this inclined axis. When δi  1.395, these oscillations are found to decay while the 

trajectory is exiting. This is clearly exhibited in the time series at δi = 1.395, plotted in Fig. 17 , corresponding to 

projection i. This behavior suggests that the steady state also possesses a complex pair of eigenvalues with negative real part 
(the “focus”  part). 

A third cardinal characteristic of SP in the presence of an inversion symmetry exhibited in Fig. 8  is that the symmetric 
principal orbit branch on one side of the homoclinic has twice the period of the (asymmetric) principal orbit branch on the 
other side. This can be seen to be the case in Fig. 8b  if points on the uppermost yellow curves on opposite sides of but 
near to and equidistant to the suspected homoclinic point are compared.

As noted previously, in projection i the chaotic attractor appears to be very compressed such that it closely resembles a 
pair of homoclinic orbits, and this is apparently the reason why there exist clearly discernable yellow curves in Fig. 8 , 
even where the power spectrum is broadband. We suspect that this compression occurs because, as we conjecture later on 
other grounds, the parameter δ is quite close to one. To understand why we might expect compression of the attractor in 
this case, recall that, as discussed in section 3, as δ approaches one the infinite alternating sequence of saddle-node 
bifurcations approaching the homoclinic must disappear. This implies that, when δ is close to one, the onset of chaos 
associated with these bifurcations must be closely confined in parameter space to the vicinity of the homoclinic.

We remark that although this compression phenomenon has not been definitively studied for SP to the best of our 
knowledge, a similar phenomenon is known to exist in the real eigenvalue analogue of SP, the “homoclinic explosion”  route 
to chaos. For example, similarly highly compressed chaotic attractors associated with homoclinic orbits were found by Luce 
(1995) (e.g., see Fig. 6  of that paper), and shown to be compressed specifically because the analogue of δ was close to 

one. If the system of equations (21) from Luce (1995) are integrated, with μ = −4, ν = 5.5, k = 4π2, and with R ranging 
from 43.96 to 44.02, and the power spectra are plotted together, one obtains the plot shown in Fig. 14 . This plot is quite 



similar in overall form to Fig. 8 . 

We now discuss some evidence for certain other local bifurcations in Fig. 8 . First, note once again the discontinuities 

that the yellow curves corresponding to the periodic orbit families in δi < δhom
i exhibit—that is, points where there appear to 

be discontinuous jumps in period (the discontinuities close to the suspected homoclinic are actually most clearly seen in the 
harmonics of the asymmetric families). These jumps, as we demonstrate later with a known example, are exactly what we 
can expect to see in the spectral plots if pairs of saddle-node bifurcations (S-shaped bifurcations) are present. We have thus 
labeled some of these discontinuities as saddle-node bifurcation pairs in Fig. 8 —six are clearly visible in Fig. 8a  by 
looking at the first harmonic of the asymmetric branch, while four more appear to be barely distinguishable in the second 
harmonic (just into the chaotic regime). While there are more of these bifurcation events as δi approaches the homoclinic 

point, they are not visible on the scale of the plots in Fig. 8 . 

Next, as described in section 3, in case I and II SP we generally expect period-doubling bifurcations to occur in between 
the pairs of saddle-node bifurcations and symmetry-breaking bifurcations, especially when close to the homoclinic point. We 
can verify that some period-doubling bifurcations do, in fact, occur in the double-gyre sequence. For example, in the power 
spectra of Fig. 8 , isolated “islands”  of spectral power at higher periods can be seen, visible as blotches of lighter color at 
periods larger than the fundamental (these are labeled as “fundamentals from period-doubling”  in the figure). Figure 8b  
has a linear period scale and can be used to quickly verify that these islands occur at multiples of two, four, and eight times 
the fundamental. Additional islands can also be seen in the harmonics, as should be the case. It is verified directly from the 
phase projections that these are due to period doubling of the principal orbit. Projection f in Fig. 9  is an example where 
the period doubling can be seen explicitly, and corresponds to the most visible period-doubling island in Fig. 8 . As 
another example, the trajectory in projection e is also seen to be slightly period doubled (although this is hard to detect 
visually) and is associated to a correspondingly weaker looking island. More detailed considerations suggest that the period 
doubling is the mechanism for the onset of chaos around δi = 1.374. 

To validate our interpretation of the spectral features in terms of saddle-node bifurcations and period doublings, we briefly 
consider an example system in which the existence of SP has been established. To this end, we consider system (18) of 
Glendinning and Sparrow (1984):

 

with b = 0.8. For the range of values of c in (5.1) that we are interested in, the linearized flow at the origin (the fixed point 
of interest to us), has a complex conjugate pair of eigenvalues whose real part is negative and one real positive eigenvalue 
like explicitly indicated in (3.1) [see Glendinning and Sparrow (1984) for further details]. This system displays both case III 
SP and S-shaped and period-doubling bifurcations. While the reader is referred to Glendinning and Sparrow (1984) for 
details of the dynamics, Fig. 15  compares one of that paper's figures to our method of spectral analysis of this system 
for 1.69  c  1.71. Figure 15a  is an approximate reproduction of Fig. 4.7 (ii) of Glendinning and Sparrow (1984), 
whereas Fig. 15b  plots our type of spectral graphic. The color-coded spectra are shown with the bifurcation parameter c 
on the x axis and the period (linear scale) on the y axis. In this comparison, the correspondence between the jump in the 
dominant period at c between 1.694 and 1.695 in Fig. 15b  and the saddle node at about the same value of c in Fig. 15a 

 is clear. (On zooming in, a second jump is also clear in our spectral analysis at a value of c close to 1.706.) The island 
indicating a period-doubled orbit in Fig. 15b  beginning at a c value of about 1.699 is not seen in Fig. 15a  because 
Glendinning and Sparrow (1984) obtained their figure using continuation techniques that ignored this orbital branch. 

Finally, guided by our knowledge that a series of saddle-node and symmetry-breaking bifurcations occur on the 
symmetric branches for case I and II SP, we have (very optimistically) labeled as symmetry-breaking bifurcation pairs what 
appears to be a systematic pattern of irregularities in the fundamental of the symmetric branch in Fig. 8 . Specifically, we 
suspect that these irregularities result from other bifurcations that directly change the chaotic attractor structure, such as 
period-doubling cascades, each of which follows a symmetry-breaking bifurcation involving the principal periodic orbit. Our 
conjecture here is supported somewhat by the irregular behavior of the zero-frequency component beyond the homoclinic 
point in Fig. 10  because such irregular behavior would be consistent with the occurence of a series of local symmetry-
breaking events that contiguously and only slightly break the symmetry of orbits (unlike a global homoclinic event that 
produces a discontinuous change in symmetry). Moreover, the overall increase in this irregularity as we leave the vicinity of 
the homoclinic is also what we expect because in general we expect bifurcations on the principal orbit to produce large 
changes in period further from the homoclinic.

Summarizing the evidence presented so far for the double-gyre circulation, we see 1) that there is evidence suggestive of 
a homoclinic bifurcation involving a saddle focus, 2) that a change from asymmetric to symmetric attractors with a 
corresponding doubling of period occurs at the suspected homoclinic, and 3) that there appears to exist saddle-node, period-
doubling, and possibly symmetry-breaking bifurcations arranged in a way consistent with SP. Based on this we propose that 
SP is occurring in the double-gyre circulation. 



We now take up the more specific question of what kind of SP—case I, II, or III—is presently occuring in the double-
gyre circulation. We notice from Fig. 8  that the two branches of periodic orbits do not noticeably appear to cross back 

and forth across the suspected homoclinic point at δi = δhom
i. This seems to rule out case I SP (see Fig. 5 ). Likewise, 

the ubiquitous chaos for inertial scales above δi = 1.374 appears to rule out case III. We thus suspect case II SP. 

To strengthen the evidence for case II SP, we attempted to measure the value of parameter δ for the double-gyre 
circulation near the suspected homoclinic point. Recall that equation (3.3) defined δ to be the ratio of the attracting rate to 
the repelling rate of the saddle focus, and that for case II SP δ lies in the range 1/2  δ <  1. We therefore attempted to 
compute δ by measuring the exponential rate of decay of oscillations and the overall exponential growth during periods of 
time that a (near-homoclinic) phase trajectory was in the vicinity of the origin and where the evolution is dominated by the 
linear eigenvalues of the fixed point.

To carry out this measurement, we examined the time series, shown in Fig. 16 , corresponding to projection i in Fig. 9 
 (δi = 1.395) and two other time series very close to the suspected homoclinic (δi = 1.393, and 1.394). We first note that 

each of these chaotic series is seen to repeatedly exhibit episodes of decaying oscillations accompanied by overall exponential 
growth when the trajectory “dwells”  close to the steady-state solution. The ratio of the decay rate of these oscillations to the 
overall exponential growth rate is therefore the quantity of interest to us for measuring δ. 

Figure 17  shows the result of fitting a nonlinear function containing exponentially decaying oscillations and exponential 
growth to the longest of these dwelling episodes, where the trajectory is thought to be making its closest approach to the 
fixed point. One segment is drawn from the series in Fig. 16b  and the other from Fig. 16c . The function fit was

 

which describes a linear combination of exponential growth (the saddle part), decaying Rossby waves (the focus) and 
also a nondecaying background Rossby wave field. The last of these was found to be necessary for obtaining a robust fit if 
the integral of the streamfunction is conserved, an issue that is taken up in the next section. The values for δ obtained for the 
segments shown in Fig. 17a and 17b  were δ = λ/ρ  0.85, and 0.91 respectively. These values clearly favor case II SP. 
If the integral of the streamfunction is not conserved (see the next section for further discussion of issues related to 
conserving or not conserving this integral), the value of δ obtained close to the homoclinic was also approximately 0.9. 

Finally, for the set of values chosen for the physical parameters in section 2, the timescale corresponding to ω obtained in 
the above nonlinear fit is about 112 days. In this context we note the following: 1) Using the Rossby wave dispersion 
relation, the above frequency, ω, corresponds to a wavelength of about 250 km, and the existence of oscillations on this 
scale was independently confirmed by examining movies of the flow. This aspect of the nonlinear fit, therefore, validates the 
assertion that the oscillatory behavior in the vicinity of the saddle focus is associated with Rossby waves. 2) That the 
oscillatory timescale obtained in the above nonlinear fit also corresponds to the characteristic timescale of mesoscale 
variability (e.g., seen very clearly in projections f, g, and h of Fig. 9 ) points to the fact that the origin of this Rossby 
wave field is directly related to mesoscale variability. 3) While the amplitude of the mesoscale variability is always small 

compared to the lower-frequency (interannual) oscillation, the former is further suppressed close to δhom
i, at values of 

forcing close to the suspected homoclinic. Refering to Fig. 2  this seems consistent with the manner in which the 
homoclinic orbit(s) exit the vicinity of the fixed point.

6. Dimensionality of the dynamics and conservation of   

When mass is exactly conserved in the reduced-gravity QG model, the effects of Kelvin waves are parameterized in a 
system that does not explicitly allow for such waves (e.g., see Milliff and McWilliams 1994). If for convenience, we rewrite 
(2.4) as

 

then the streamfunction (t) can be decomposed as

(x, y, t) = I(x, y, t) + c(t) B(t),
 



with

 

Such an implementation results in a propagation of the effects of Kelvin waves around the basin with infinite speed.

In a separate control experiment, wherein the Kelvin wave parameterization (KWP) is neglected, we find that the signature 
of the westward propagating Rossby wave field is related almost entirely to the relaxation phase of the oscillation of the 
midlatitude jet after it has meandered away farthest from its antisymmetric state. On the other hand, in the simulations that 
we have presented in this article, a KWP was used, and in these simulations, we find that in addition to the Rossby wave 
field associated with the relaxation phase of the midlatitude jet, the parameterized Kelvin wave gives rise to an additional 
background field of Rossby waves. These Rossby waves originate at the eastern boundary of the domain and propagate 
westward in a north–south symmetric fashion as, for example, in the study of Milliff and McWilliams (1994). 

Thus, we suspect that while in the case without KWP, energy wholly remains in the gyre modes, whereas with KWP, a 
part of this energy is diverted into the Kelvin–Rossby wave production mechanism. Indeed, we find that, when KWP is 
neglected, it is not necessary to include the term  cos(ωt + ), which accounts for the background Rossby wave field, in 
the nonlinear fit (5.2) to obtain a robust fit and that the values obtained for δ are found to be considerably less dependent on 
the way α(t) is obtained; that is, the areas over which α(t) is obtained can be varied greatly with little effect on the values of 
δ. With KWP, consistent measurements for δ necessitate that the patches be significantly localized over the aforementioned 
region. In contrast to this, the global bifurcation picture obtained via power spectra, that is, Fig. 8 , is found to change 
little in form with or without KWP and regardless of patch size.

These facts lead us to suspect that 1) with KWP the dynamical dimension of the entire system is increased relative to the 
non-KWP case due to the Kelvin–Rossby wave mechanism and 2) the dynamics of the gyres themselves are still well 
characterized as exhibiting the SP bifurcation both with and without KWP. The latter fact accounts for the invariance of the 
global bifurcation picture, while the former explains the need to localize the measurement for α(t) with KWP. We are 
presently examining this issue in greater depth.

7. Conclusions  

It is now well recognized that simple models of wind-driven circulation in midlatitude oceans can exhibit a rich variety of 
variability including those on the mesoscale and interannual timescales. Most previous studies, with the exception of 
Meacham (2000), have considered steady states and periodic solutions and their local bifurcations and have suggested the 
existence of a multiplicity of such simple solutions or a sequence of Hopf bifurcations (leading to a strange attractor) as the 
primary cause of such variability. Complementary to these studies, we show that other solution types like, for example, 
homoclinic orbits (formed by a collision of periodic solutions and steady states in phase space), and their associated global 
bifurcations, can play a central role in organizing the variability of the wind-driven circulation. 

In particular, by considering the double-gyre circulation as represented by a reduced-gravity QG approximation, we have 
shown that its dynamics exhibits a structure resembling a bifurcation scenario called Shilnikov phenomenon. This 
interpretation of the dynamics provides an underlying coherence to the double-gyre circulation despite the fact that its 
dynamics are seen to change drastically at some parameters with a small change in the forcing. Thus, while one may have 
concluded that the model is structurally unstable in the sense of variability as a function of parameters, it can be better 
understood from a global perspective. We remark that it would be very difficult to extract these details of the dynamical 
structure by direct observation of the flow patterns. This also demonstrates the utility of the dynamical systems tools and 
concepts used here for the analysis of ocean dynamics.



The primary implication of this study to the double-gyre circulation is that, if global bifurcations and dynamical chaos 
occur in an approximation like the reduced-gravity QG model, they are likely to be of importance in more realistic models 
and that, therefore, homoclinic bifurcation mechanisms like SP may explain in part the variability of wind-driven circulation. 
In the future we hope to give a more comprehensive overview of global bifurcations of the double-gyre circulation and 
resolve some of the questions raised in this paper about dynamical dimension.
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FIG. 1. Layout of the model 
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FIG. 2. Homoclinic orbits to a saddle-focus for (a) a single homoclinic and (b) a pair of homoclinics in the presence of inversion 
symmetry
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FIG. 3. Periodic orbits in the presence of inversion symmetry for (a) a pair of asymmetric orbits, and (b) a single symmetric orbit 
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FIG. 4. Four important local bifurcations. Solid and dashed lines indicate stable and unstable solutions, respectively 
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FIG. 5. Bifurcation diagram for a case I Shilnikov phenomenon (1/2 < δ  1), indicating the half period of the symmetric 
principal orbit and the full period of the asymmetric principal orbit. The principal orbits are asymptotic to a pair of homoclinic 
orbits at R = 0 
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FIG. 6. Bifurcation diagram for a case II Shilnikov phenomenon (1/2  δ < 1) 
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FIG. 7. Bifurcation diagram for a case III Shilnikov phenomenon (δ > 1) 
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FIG. 8. Power spectra of the time-asymptotic circulations, calculated from the measured time series α(t), plotted together as a 
function of the inertial scale. The spectra are color coded such that blue–black corresponds to the lowest energy levels and 
yellow corresponds to the highest energy levels. The figure on the left uses a logarithmic scale for the period, includes a larger 
range than the right-hand figure, and includes the zero-frequency component along the top (for determining the symmetry of the 
circulation). The figure on the right uses a linear scale for the period (to assist in identifying period doubling)
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FIG. 9. Phase trajectories reconstructed from time delay embeddings of the time series α(t). The letters labeling each projection 

correspond to the same labeled points in Fig. 8a . Projections a–h show asymmetric attractors for δi < δhom
i. In such cases, 

both left-hand and right-hand versions are present and map onto each other under the inversion symmetry of the system. 

Projections i–l display apparently symmetric attractors for δi > δhom
i (there may be slight asymmetry here in some cases). The 

coordinate axes for the first two embeddings are not shown since the origin of the three-dimensional phase space is far removed 
from the location of those trajectories
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FIG. 10. The zero-frequency component of the spectrum of α(t) as a function of the inertial scale. Note the sudden drop at 

around δi = δhom
i  1.395, indicating a sudden transition from asymmetric to symmetric circulations. Also note the irregular 

behavior of this component for δi > δhom
i, which may be due to local symmetry-breaking bifurcations 
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FIG. 11. Snapshots of the streamfunction at δi = 1.375 corresponding to an asymmetric attractor (projection g in Fig. 9 ). The 

streamfunction for the full domain is color coded so that blue-black corresponds to the lower values (and hence cold 
temperatures) and yellow to the higher values (warm temperatures). The flow is seen to be asymmetric as well—in particular, only 
cold-core rings are seen to be shed
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FIG. 12. Snapshots of the streamfunction at δi = 1.380 corresponding to an asymmetric attractor (projection h in Fig. 9 ). 

Here, only warm-core rings are seen to be shed 
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FIG. 13. Snapshots of the streamfunction at δi = 1.410 corresponding to a symmetric or very nearly symmetric attractor 



(projection 1 in Fig. 9 ). Here, the system sheds both cold-core and warm-core rings symmetrically (or very nearly 
symmetrically)
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FIG. 14. Power spectra of the time-asymptotic behavior of time series from system (21) of Luce (1995), with ν = 5.5, μ = −4, and k  

= 4π2. This system possesses a homoclinic at R = Rh = 43.9778. Note the overall similarity of this plot to Fig. 8 , particularly the 

divergence at (R–Rh) = 0 (where the homoclinic explosion occurs). Unlike Fig. 8 , saddle-node, period-doubling, and 

symmetry-breaking bifurcations are absent 
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FIG. 15. Our method of analysis (right) of a simpler ode system in which the Shilnikov phenomenon is better understood further 
reinforces the analysis of the double-gyre circulation. The figure on the left is an approximate reproduction of Fig. 4.7 (ii) of 
Glendinning and Sparrow (1984) 

 
Click on thumbnail for full-sized image. 

FIG. 16. Time series of the asymmetry measure at three values of forcing close to the forcing at which the homoclinic is 
suspected. From top to bottom, the value of the inertial scale δi is 1.393 (a), 1.394 (b), and 1.395 (c) 
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FIG. 17. Nonlinear fit (continuous lines) of segments of time series α(t) (symbols) in Fig. 16  to Eq. (5.2) to extract the 
parameter δ [Eq. (3.3)]. The fits are performed at parameter values corresponding to near-homoclinic circulation, and consist of a 
duration during which the phase trajectory is close to the saddle-focus fixed point where its evolution is dominated by the linear 
structure in the vicinity of the saddle focus. To ensure robustness, two different segments are used. The first segment is chosen 
from Fig. 16b  (δi = 1.394) and the second segment is chosen from Fig. 16c  (δi = 1.395) 
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