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ABSTRACT

A simple, nonlinear, two-layer, planetary geostrophic model of the large-
scale circulation forced by localized mixing over a sloping bottom is 
discussed. The model is forced by parameterized diapycnal mixing at the 
density interface and/or by a mass flux downward into (unresolved) deep 
topographic canyons. Two nondimensional parameters are identified: the 
ratio of the change in Coriolis parameter over the horizontal mixing length 
scale to the nominal Coriolis parameter and the ratio of the advective speed 
to the Rossby wave phase speed. The former controls the strength of 
horizontal recirculation gyres that are forced by spatially variable diapycnal 
mixing, while the latter is a measure of the importance of nonlinearity in 
the density equation. When bottom topography is introduced, bottom 
pressure torque becomes important and the traditional strong horizontal 
recirculation gyre found for mixing over a flat bottom (beta plume) is 
gradually replaced by a zonal flow into or out of the mixing region in the 
deep ocean. Bottom topography becomes important, and the zonal flow 
emerges when the topographic Rossby wave speed exceeds the baroclinic 
planetary Rossby wave speed. Nonlinear effects are shown to enhance the 
upper-layer recirculation for upwelling and to retard the upper-layer 
circulation for downwelling. The model is finally configured to represent a 
region of mixing over the western flank of the Mid-Atlantic Ridge in the 
deep Brazil Basin. The model upper-layer flow is toward the southwest 
and the deep flow is very weak, zonal, and toward the east, in reasonable 
agreement with recent observational and inverse model estimates. The 
bottom pressure torque is shown to be crucial for maintaining this weak, 
zonal deep flow in the presence of strong turbulent mixing.

1. Introduction  
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Recent tracer release and microstructure measurements suggest that diapycnal mixing is greatly enhanced in the vicinity 
of rough, sloping bottom topography (Ledwell et al. 2000; Polzin et al. 1997). The present study is partially motivated by 
these observations and the intriguing finding that the deep velocity field is very weak despite the presence of strong turbulent 
mixing (St. Laurent et al. 2001). These mixing regions are of fundamental importance to the global thermohaline circulation 
and to budgets of mass, heat, and other tracers. Understanding the circulation forced by such spatially variable mixing 
patterns is necessary to further our understanding of the abyssal circulation and the upwelling component of the general 
thermohaline circulation.

The traditional view of the buoyancy-forced abyssal circulation is based on the seminal work of Stommel and Arons 
(1960). They recognized that a weak poleward flow would be required to balance the large-scale downward diffusion of 
heat into the abyss and, through continuity, inferred that strong deep western boundary currents must exist to provide mass 
for the interior upwelling regions. They represented the abyssal ocean as a single moving layer and specified the vertical 
velocity as a function of space. Weak bottom topography is allowed by the theory, provided that the potential vorticity 
contours intersect the eastern boundary of the domain. Key aspects of this theory are that in the deep ocean linear vorticity 
dynamics hold, buoyancy forcing is dominant, and the downward diffusion of heat is balanced locally by upwelling.

Several investigators have extended this type of model to consider the circulations forced by large-scale upwelling when 
topography is sufficiently strong to introduce regions of closed potential vorticity contours. Straub and Rhines (1990) 
showed that a seamount or depression modifies the traditional Stommel–Arons circulation by introducing a strong 
recirculation over the topography and two zonal jets that connect the region of strong topography to the western boundary. 
Similar results were found by Kawase and Straub (1991) in a single layer shallow-water model with a mass source. Kawase 
(1993) extended this source-driven shallow water model to consider topographic variations on the basin scale. It was found 
that, for a basin that does not cross the equator, the weak poleward flow of Stommel and Arons is replaced by a basinwide 
cyclonic circulation with no western intensification. Basins with topography that cross the equator show circulation patterns 
very similar to that found for a flat bottom. Straub et al. (1993) also considered strong topography on the basin scale subject 
to both large-scale and localized forcing. They emphasize the importance of topography and nonlinearities in controlling the 
characteristic pathways and introducing boundary layers in regions where characteristics converge.

The baroclinic nature of the abyss is far more complex than can be represented accurately in a depth-averaged model 
such as used by Stommel and Arons. Joyce and Speer (1987) derived a linear, flat-bottomed, continuously stratified 
counterpart of the Stommel–Arons abyssal circulation model in which they could imbed localized temperature anomalies. 
They showed that the nature of the circulation and tracer distribution depends strongly on the ratio of the advective speed to 
the Rossby wave phase speed. Circulation anomalies, relative to the barotropic Stommel–Arons circulation, can extend 
eastward or westward depending on the depth in the water column and the strength of the thermal forcing. In the limit of 
very large Rossby wave phase speeds, the temperature anomaly is connected to the western boundary through two 
recirculating zonal jets connected by a strong meridional flow in the region of mixing. In this limit, their results are analogous 
to the beta plumes introduced by Stommel (1982). Pedlosky (1992) showed that zonal variations in the upwelling rate out of 
a stratified abyss would force a strongly baroclinic circulation with reversals in the meridional velocity with depth.

Most simple abyssal circulation models make the implicit assumption that the density equation is linear and obeys a local, 
one-dimensional balance between vertical advection and vertical diffusion. This allows one to infer the vertical velocity from 
estimates of the vertical diffusivity and stratification. Once the vertical velocity is determined, the horizontal circulation can 
be calculated by assuming a linear vorticity balance and the appropriate boundary conditions. Such a linearization of the 
density equation is a good approximation in the limit that the isopycnal slope is small. However, as the isopycnal slope 
becomes steep, the horizontal velocity component across the sloping isopycnal can contribute significantly to the diapycnal 
advection. The general parametric dependence of these nonlinear terms in the density equation, when they might be expected 
to be large, and their potential role in the general circulation remains unclear.

Hautala and Riser (1989, hereafter HR) developed a three-layer model of the wind- and buoyancy-driven circulation, 
including bottom topography, that takes into account some of these nonlinear terms in the density equation. Their model was 
forced with a specified wind stress curl and cross-isopycnal mass flux (intended to represent turbulent mixing processes or 
geothermal sources). However, the model retains the nonlinear density equation terms only in the main thermocline and 
neglects the nonlinear interaction between the abyssal circulation and the middepth ocean. This confines the topographic 
influences to the deepest layer. They applied their model to basin-scale circulations with midocean ridges and subtropical 
gyre wind forcing.

The present study considers the large-scale circulation forced by localized, spatially variable mixing over a sloping bottom. 
This study differs from previous works by focusing on the influences of nonlinearities in the density equation on the abyssal 
and upper-ocean flow and potential vorticity field, the circulation and mass budget required to balance localized mixing 
regions over a sloping bottom, and the dependence of the deep and intermediate circulations on a mixing rate that increases 
toward a sloping bottom.

The nondimensional form of the nonlinear, two-layer characteristic equations are derived and interpreted in terms of wave 



dynamics, geostrophic velocities, and bottom pressure torque in section 2. In section 3, analytic linear and nonlinear 
solutions, as well as numerical integrations of the characteristic equations, are applied to several idealized examples to 
illustrate the influences of a sloping bottom and nonlinearities on the large-scale circulation and potential vorticity distribution 
forced by localized diapycnal mixing. Finally, in section 4, the model is configured to represent the region of strong 
diapycnal mixing over the western flank of the Mid-Atlantic Ridge in the Brazil Basin. The main points are summarized in 
section 5. 

2. Dynamics and the characteristic equations  

The nondimensional equations of motion governing the large-scale circulation forced by diapycnal mixing between two 
fluid layers of different density over a sloping bottom are derived. It is assumed that the large-scale circulation is governed 
by planetary geostrophic dynamics. The horizontal flow is geostrophic, but the horizontal divergences arising from the 
spatial variation in the Coriolis parameter, diapycnal mass fluxes, and the presence of bottom topography are retained. The 
equations also allow for large spatial variations in the stratification, or thickness of the isopycnal layers, and bottom depth. 
The diapycnal mixing due to small-scale turbulence is represented as a mass flux across the density interface. 

A schematic of the model configuration is shown in Fig. 1 . There are two moving layers in a finite depth ocean and 
the bottom pressure torque term (e.g., see Holland 1973 or Mertz and Wright 1992) is included. The thickness of the upper 
layer is h, the depth of the fluid is given by D, and the dynamic pressure in layer 2 is P. The stratification is represented by 
the reduced gravity between the two layers, given by g′ = g(ρ2 − ρ1)/ρ0, where ρ0 is a reference density for seawater. The 

diapycnal mixing is represented as a specified mass flux wi across the density interface. For simplicity, the bottom slope is 

assumed to vary in the zonal direction only with uniform slope Dx as D = D0 + Dx(x + Lx/2), where Lx is the zonal extent of 

the domain, D0 is the depth at x = −Lx/2, and x = 0 on the eastern boundary. 

A mass flux through the bottom, wb, is also permitted. This lower boundary condition is motivated by recent mass 

budgets based on tracer release and microstructure measurements in the deep Brazil Basin, where it has been found that 
there is a significant net downward mass flux from the interior of the deep basin into narrow canyons in the sloping bottom 
(Ledwell et al. 2000; St. Laurent et al. 2001). This downward mass flux is required to balance a turbulent diffusion that 
increases strongly toward the bottom. Once in the canyons, the mass is believed to be fluxed across sloping density surfaces 
toward lighter density through turbulent mixing. The deep flow in the channels is not explicitly represented here, but the 
mass flux into the deep channels is accounted for and returned to the upper layer where the density interface intersects the 
bottom. In this configuration, the deep layer in the model is intended to represent the deep flow above the depth of strong 
diapycnal upwelling in the canyons.

The characteristic equations are derived by substituting the geostrophic relations into continuity equations to obtain 
vorticity equations for the two moving layers. These two equations may be manipulated to form a characteristic equation for 
the deep pressure P and a diagnostic equation that relates the interface depth h to P and the forcing. The dimensional form 
of the equations, and scaling for nondimensionalization, are derived in the appendix. The nondimensional form of the 
equations are solved and discussed in the remainder of this paper. The characteristic equation for the pressure in the deep 
layer is written in terms of the characteristic velocities as

 

where s is the direction along the characteristics. The nondimensional characteristic velocities are defined as

 

The change in pressure along the characteristic is given by

 



There are two important nondimensional numbers, β = β*L/f0 and  = U/β*L2
d, where Ld = (g′H)1/2/f0 is the internal 

deformation radius and β* is the meridional gradient of the Coriolis parameter. The variation of the Coriolis parameter over 
the spatial scale of mixing L, relative to the nominal value of the Coriolis parameter f0, is given by β. This parameter was 

shown by Spall (2000) to control the strength of the horizontal recirculation gyre forced by diapycnal mixing over a flat 
bottom. The terms S1 and S3 arise as a result of nonlinear interactions between the deep flow and the bottom topography, 

while WB is due to a vertical mass flux into the bottom. These terms are defined in (8) and described in physical terms in the 

appendix. 

The parameter  is the ratio of the advective velocity U to the baroclinic Rossby wave phase speed. For weak advection, 
or strong stratification, the interface displacement is small compared to the resting layer thickness. As the stratification is 
reduced,  increases and the interface displacement required to balance the thermal wind increases. 

The slope of the characteristics is given by

 

In the linear limit (  = 0) advective effects are neglegible and the characteristic slope is simply the slope of contours of 
uniform potential vorticity in the deep layer. The nondimensional potential vorticity of layer 2 is given by q2 = βy/(D − h) and 

the slope of the potential vorticity contours is

 

In the limit of weak nonlinearity the interface is essentially flat (h = h0) and advection is weak. The characteristic paths 

are controlled by the competition between the planetary vorticity gradient and the thickness of the deep layer. This 
characteristic slope is also the ratio of the topographic β to the planetary β, or the topographic Rossby wave phase speed to 
the planetary Rossby wave speed. For topography that slopes upward to the east, the topographic Rossby wave phase speed 
is poleward and the zonal phase speed is to the west so that dy/dx < 0 and the characteristics enter the mixing region from 
the eastern and the equatorward side.

When   0, the characteristics within the forcing region over the sloping bottom are no longer lines of constant potential 
vorticity, although they do coincide with potential vorticity contours outside the region of active mixing and over a flat 
bottom. As nonlinearity increases, and advection becomes important, the characteristics speed up or slow down as a result 
of the barotropic geostrophic velocities generated by the bottom pressure torque and mass flux into the bottom. This 
barotropic flow forces the characteristics to cross potential vorticity contours. This is equivalent to the competition between 
the planetary Rossby wave phase speed and the wind-driven Sverdrup flow discussed by Luyten and Stommel (1986), 
although they did not relate it to the nonlinearity of the density equation. As will be shown in section 3, regions of isolated 
potential vorticity contours can be generated and forced into motion by the diapycnal mixing over a sloping bottom. 
However, if nonlinearities are sufficiently strong, the advective velocities can overwhelm the phase speed of the waves and 
reverse the direction of the characteristics. This coincides with the development of a region that is blocked from 
characteristic access from the equatorward side and the east, a situation that is not considered here.

The barotropic vorticity equation is used to relate the thickness of layer 1 to the properties of the deep layer:

h2 = h2
0 − 2 (S1 + βS2 + WB). (7)

 

The terms S1, S2, S3, WB retain the same physical interpretations as discussed for the dimensional equations in the 

appendix, but are calculated from the nondimensional variables as follows:



 

The geostrophic relations are written in nondimensional form as

 

The deep flow is along lines of constant P although, because the flow is horizontally divergent, the pressure is not the 

same as a streamfunction. The upper-layer flow is along lines of constant P + −1β−1h, but once again the flow is 
horizontally divergent along this path.

The solution procedure is as follows. The pressure in layer 2 and the interface height h are specified along the eastern and 
southern boundaries of the mixing region. The strength of the diapycnal mixing is specified as a function of space through 
wi and the strength of the mass flux into the narrow canyons in the sloping bottom is specified through wb. It is assumed 

here that the turbulent mixing rates wi and wb are independent of the large-scale mean abyssal circulation, as would be 

expected if they are driven primarily by tidal interaction with the bottom topography. The pressure in the deep layer is 
calculated by integrating along the characteristic paths as they transverse the model domain. On the first iteration, the 
nonlinear terms are assumed to be zero and linear solutions for P and h are obtained. The terms S1, S2, S3, and WB are then 

calculated from the first guess for P and h. The modified solutions for P and h are obtained with these updated forcing 
terms. This iterative procedure is followed until the solution has converged, usually after only a few (less than ten) iterations. 
The results presented below have been obtained by integrating along 300 characteristics initially uniformly distributed along 
the eastern and equatorward boundaries. The data are then interpolated back onto a uniform 150 × 150 grid for plotting and 
diagnostics.

While this approach is clearly very idealized, it allows for approximate linear and weakly nonlinear closed form solutions to 
be obtained, which include the bottom pressure torque terms, and provides complete nonlinear solutions through numerical 
integration. The idealized approach also identifies and lends simple interpretation to the critical characteristic pathways and 
nondimensional parameters that control the structure of the deep circulation and the relative magnitude of the nonlinear 
terms.

3. Large-scale circulation examples  

a. Topographic effects: Linear regime  

The effects of a sloping bottom are most clearly demonstrated by considering the large-scale circulation forced by a 
localized region of diapycnal mixing when nonlinearities are small. Consider first the case of a localized region of uniform 
mixing over a flat bottom. An example is carried out for which wi = 0.5 between 3.5 < y < 4.5, outside of this region wi = 0. 

The zonal extent of the basin is −2 < x < 0. The upper-layer thickness h0 = 4 and the depth D0 = 5, appropriate for diapycnal 

mixing of an abyssal water mass. The basic dynamics are most easily revealed by setting the mass flux into the lower 
boundary to zero, wb = 0. Because the main interest here is to understand the circulation forced by such a local region of 

diapycnal mixing, the deep pressure is set to zero along the eastern and southern boundaries. Influences from distant regions 
could be included by specifying P = P(x) at the southern limit of mixing. The Coriolis parameter is appropriate for a 
midlatitude mixing region, β = 0.25, and nonlinearities are small,  = 0.001. 

1) FLAT BOTTOM 

The deep pressure P resulting from this localized mixing over a flat bottom is shown in Fig. 2a . There exists a broad 
meridional flow with narrow jets extending to the west at the northern and southern limits of mixing. In this case, the 
potential vorticity is controlled by the planetary vorticity gradient and the characteristics are purely zonal (Fig. 2b ). This 
is the beta-plume circulation discussed by Stommel (1982), Joyce and Speer (1987), Pedlosky (1996), and Spall (2000). The 

strength of the horizontal recirculation gyre compared to the total amount of upwelled water is O(β−1). This can be 
calculated directly from the characteristic equations by first calculating the zonal pressure gradient at y = y0 as



 

The meridional transport in layer 2, M2, is calculated by zonally integrating across the region of diapycnal mixing from x = 

−Lx to x = 0, with y = y0 = β−1, to give

 

For the present example, wiLx = 1 and M2 = β−1 = 4.0 at the midlatitude of the mixing region.

 

The transport in the upper layer is of the same strength but in the opposite direction (anticyclonic). The depth-integrated 
transport over a flat bottom vanishes for   1. This strong horizontal recirculation is required in order to balance the 
vertical velocity wi. The change in pressure from the eastern boundary to the western boundary, and hence the meridional 

transport, increases with increasing latitude because the Rossby wave phase speed decreases with latitude. This gives rise to 
a meridional pressure gradient at x = −Lx and a zonal (eastward) flow into the mixing region required to balance mass. 

2) WEAK BOTTOM SLOPE 

The introduction of even a weak bottom slope changes the deep flow significantly. The deep pressure for a case with Dx 

= −0.1 is shown in Fig. 2c . This bottom slope is equivalent to a change in the depth by 10% of H over a horizontal 
distance L. The potential vorticity contours now slope toward the north and west because of the change in the lower-layer 
thickness (Fig. 2d ). The narrow jet at the southern limit of mixing that supplied the mass for the meridional flow in the 
flat bottom case has broadened so that there is a uniform zonal flow into the mixing region from the west. This zonal flow 
turns abruptly to the northeast before flowing out of the mixing region to the north. Once out of the mixing region, the deep 
flow is along contours of uniform potential vorticity toward the northwest.

The boundary that separates the region of zonal flow from the region of strongly meridional flow is the characteristic 
trajectory that originates at the intersection of the southern limit of diapycnal mixing and the eastern boundary. This 
characteristic is indicated on each of the pressure fields in Fig. 2  by the bold line originating at x = 0, y = ys. For the case 

of a flat bottom, this characteristic remains at the southern limit of the mixing region and the flow is primarily meridional 
(Fig. 2a ). However, as topography is introduced, this characteristic veers to the north through the mixing region and 
opens up a new regime in which the flow is zonal (Fig. 2c ). 

An analogous zonal flow regime is discussed by Pedlosky (1987) for a barotropic quasigeostrophic wind-driven flow over 
a sloping bottom. The analysis here builds on this simple example to consider planetary geostrophic dynamics (and the 
attendant mass budget considerations), nonlinearities in the density equation, and a strongly sloping bottom.

Within the region to the west of the critical characteristic, where the flow is zonal, the deep pressure field may be 
calculated explicitly by integrating along the characteristics. The pressure at latitude y is calculated by integrating along the 
characteristic from the southern limit of mixing (where y = ys and P = 0) to give

 

Because wi and Dx are functions of y only, the pressure anomaly is independent of x, provided that there is no externally 

imposed pressure gradient to the south of the mixing region. Therefore, the resulting layer 2 geostrophic flow is purely zonal 
and uniform,

 

For upwelling (wi > 0) and topography that slopes upward to the east, Py < 0, Dx < 0, and u2 > 0. The vertical velocity at 



the bottom is simply −u2Dx = wi. The deep flow is zonal because it experiences no stretching in the vertical. The vertical 

velocity induced by the interaction of the zonal flow with the bottom exactly balances the diapycnal velocity wi. This 

stretching at the bottom is due to the bottom pressure torque term discussed by Holland (1973) and Mertz and Wright 
(1992). Recall that in the linear limit the vertical velocity is due only to diapycnal motions. The mass budget in the deep layer 
is satisfied by the zonal derivative of the zonal transport:

 

The upwelling wi is balanced by a zonal mass flux divergence that is achieved by the uniform zonal flow into a region of 

uniformly decreasing layer thickness. This regime of zonal flow will be referred to as the western, or topographically 
dominated, regime.

The flow and mass budget to the east of the critical characteristic are very different from that to the west. The flow in the 
east is nearly meridional in the deep layer with a weak zonal component to the east. The pressure in this region may be 
calculated by integration along the characteristics entering from the eastern boundary to be

 

This result is very similar to the flat bottom pressure field (11) except for the additional term proportional to the bottom 
slope Dx. For midlatitudes, xDx/2(D − h) = O(β)  1 so that the second term is small compared to the first. Terms of 

higher order in β have been neglected. The zonal flow is calculated as

 

The zonal flow vanishes at the eastern boundary (x = 0), increases linearly toward the west, and is independent of latitude. 
Once again, the similarity with the flat bottom beta plume is evident. Bottom pressure torque is very weak here, O(β), and 
the flow is forced primarily by the cross-isopycnal mixing.

The meridional flow is

 

The meridional flow is-only a weak function of longitude and increases with latitude. This is the equivalent of the 
traditional beta plume, rotated and modified slightly by bottom topography. It is clear that the strength of the meridional flow 
is proportional to the stretching in the deep layer. The stretching is reduced below that forced by the diapycnal velocity wi by 

an amount u2Dx [second term in (18)] due to the interaction of the deep zonal flow with the bottom. Note that, for 

midlatitudes, this bottom-induced vertical velocity is much smaller than the diapycnal velocity so that  remains O(y  β−1). 

The zonal mass flux divergence is [(D − h)u2]x = 2wi while the meridional mass flux divergence is [(D − h) 2]y = wi so 

that the sum balances the net diapycnal mass flux. The strength and direction of the circulation are analogous to the 
circulation in the upwelling region of the beta plume over a flat bottom and so will be referred to as the eastern, or beta-
plume, regime.

3) STRONG BOTTOM SLOPE 

In the limit of very tall topography the entire mixing region is within the topographic regime and the meridional 
recirculation that characterizes the beta plume is eliminated. An example of the deep pressure field for Dx = −1.0, so that the 

thickness of the deep layer vanishes at the eastern boundary, is shown in Fig. 2e . The corresponding potential vorticity 
contours are now nearly meridional (Fig. 2f ) and the critical characteristic is coincident with the eastern boundary. The 
flow is everywhere zonal and weak; the net transport into the mixing region is just sufficient to balance the net diapycnal 
mass flux into layer 1 (note the change in contour interval in Fig. 2e ). In this limit the deep flow is independent of the 
boundary condition at x = 0 because all of the characteristics originate from the southern boundary. The information is 



propagated along characteristic trajectories, not the streamlines of the flow that enter from the west.

The strength of the transport in the deep layer depends on the pathways and speed at which the characteristics pass 
through the mixing region. For a flat bottom, the characteristics are purely zonal and the meridional mass flux is given by 
(12). As topography is introduced, the characteristics turn toward the north due to the influence of topographic Rossby 
waves. The integrated influence of the diapycnal mixing on the pressure anomaly, and hence the net transport in the deep 
layer, depends on how long it takes the characteristics to pass through the mixing region. For very weak bottom slopes, the 
pressure anomaly is limited by the time it takes the trajectories to exit from the western side of mixing and the recirculation 
strength is given by (12). 

The introduction of significant bottom topography increases the propagation speed of the characteristics through the 
influence of topographic Rossby waves and the strength of the deep recirculation gyre is reduced. This reduction in 
meridional transport is large when the slope of the potential vorticity contours in layer 2 (or the ratio of the topographic 
Rossby wave phase speed to the baroclinic planetary Rossby wave phase speed) is greater than the aspect ratio of the 
mixing region,

 

The total meridional transport in the deep layer at y = y0 is shown as a function of the linear characteristic slope in Fig. 3 

. For a flat bottom the strength of the deep recirculation is β−1. This recirculation rapidly decreases with increasing 
characteristic slope. The previous example for weak bottom topography (Dx = −0.1) in Fig. 2b  has characteristic slope 

of dy/dx  −0.4 and Ly/Lx = 0.5. This dependence is essentially the same even when nonlinearities are large, as discussed 

further below.

This reduction in meridional transport may also be understood in terms of the beta-plume and topographically dominated 
regimes discussed above. When the topography is flat the entire region is within the beta-plume regime and the meridional 
flow is forced entirely by wi. With increasing topography the beta-plume regime diminishes in extent. Since the stretching at 

the bottom cancels the diapycnal mixing in the topographic regime, the meridional transport is confined to an ever smaller 
fraction of the mixing region and the total meridional transport decreases.

b. Topographic effects: Nonlinear regime  

For sufficiently large interface displacements, the horizontal component of the diapycnal velocity (the nonlinear term v ·
h) is not neglegible. It is anticipated that such a horizontal component will be important for the large-scale circulation, 

which is essentially controlled by the linear vorticity balance and the vertical derivative of the vertical velocity. The nonlinear 
effects here are confined to the density equation; the vorticity equation remains linear.

The influence of the nonlinear terms is demonstrated using a diapycnal mixing distribution wi = w0e−(y/l)2, where l = 0.5. 

This exponential decay in the mixing rate allows for a more extensive exploration of parameter space than can be attained for 
uniform mixing with an abrupt transition to zero mixing. The zonal jets that result in the uniform mixing case can give rise to 
very strong vertical velocities at the bottom and cause a reversal of the characteristic velocities even for very small values of 
. The exponentially decaying mixing rate retains the essential aspects of the nonlinear terms while avoiding discontinuities in 

the velocity field.

An example of the deep layer circulation and potential vorticity field with upwelling w0 = 0.5, weak bottom slope (Dx = 

−0.1), β = 0.25, and  = 0.001 is shown in Fig. 4 . The deep flow is dominated by a broad eastward flow into the mixing 
region, which then turns toward the northwest along potential vorticity contours. This is similar to the circulation found with 
uniform upwelling (Fig. 2b ), but the transitions between regimes are less abrupt. The critical characteristic is indicated 
by the bold line and is coincident with a line of constant potential vorticity. The influences of increasing nonlinearity are 
demonstrated in Figs. 4c,d  for a case with  = 0.25. The strength of the deep flow has increased by approximately 30% 
(consistent with the theory in the following section), although the deep transport has not changed significantly because the 
thickness of the lower layer has decreased by a corresponding amount.

The deep potential vorticity field is now nearly zonal within the region of mixing as a result of changes in the interface 
depth and thickness of the deep layer (Fig. 4d ). The potential vorticity in the northern part of the domain is increased 
because the interface slope required to balance the horizontal circulation becomes large with increasing . The 
characteristics now cross potential vorticity contours, as demonstrated by the critical characteristic included in Fig. 4d . 



This crossing is forced by the bottom pressure torque terms, as indicated by (5). For sufficiently strong stretching at the 
bottom, there will be introduced a region of maximum in potential vorticity contours in the northwest region of mixing (e.g., 
q2 > 1.3). This region is not isolated from the rest of the abyss, however, as the characteristics are able to penetrate and 

directly drive the circulation there. This direct driving is different from previous linear and single-layer models with 
topography in which the circulation within regions of closed potential vorticity contours are controlled by diffusion and eddy 
fluxes.

The upper-layer circulation for the linear calculation is shown in Fig. 5 . The strength of the recirculation at y = y0 is 

the same as found for the uniform mixing case, but now the very narrow zonal jets that connect the mixing region to the 
western boundary are replaced by smoothly varying, large-scale flows. The strength of the upper-layer recirculation, in the 

absence of nonlinear effects, scales as β−1. The general characteristics of the upper-layer flow are insensitive to variations in 
 and Dx. 

The magnitude of the upper-layer recirculation, as measured by the maximum zonal transport into the mixing region, is 
shown in Fig. 6a  as a function of bottom slope and nonlinearity for a case with upwelling of strength w0 = 0.5 and β = 

0.25. There is only weak dependence of the upper-layer recirculation strength on bottom slope when nonlinearities are small 
(v · h  0). This is because the vertical velocity is equal to the imposed diapycnal velocity as long as the interface slope is 
small. This is the limit considered by HR. The strength of the recirculation is also independent of nonlinearity when the 
bottom is flat. This is because there is no barotropic component and v · h = 0 for a baroclinic geostrophic flow so, once 
again, the horizontal advection term vanishes. However, the upper-layer recirculation increases with increasing nonlinearity 
for weak bottom slopes. This dependence on nonlinearity is reduced, but still present, as the bottom slope increases.

The upper-layer recirculation strength decreases with increasing nonlinearity for a downward diapycnal mass flux, as 
shown in Fig. 6b  for w0 = −0.5. The dependence on  is somewhat weaker than it is for the upwelling case; however, 

the maximum effect is again located at weak, but nonzero, bottom slopes.

In order to understand the sensitivity of the upper-layer circulation to , the deep circulation and the interface 
displacement need to be explored in more detail. The linear potential vorticity balance requires that the thickness of layer 1 
increase (decrease) toward the west for wi > 0 (wi < 0). This change in h gives rise to a meridional flow required to balance 

the stretching wi. The zonal slope of the interface depth is estimated from (7), for   1, to be

hx = − β(yDxPy + DPx) + O( 2). (20)

 

The largest influence of the nonlinear terms arises as a result of the horizontal velocity interacting with the interface slope. 
In the eastern region, hx = O( ) while hy = O( β). The zonal velocity in the eastern regime u2 = O(1) while the meridional 

velocity is stronger, 2 = O(β−1). The nonlinear advection term in the eastern regime, v2 · h, is thus O( ). Note that, 

because the flow is geostrophic, v1 · h = v2 · h. 

In the western, topographically dominated, regime the dependence of the deep velocity on nonlinearity is calculated from 
the characteristic equations to be

 

For upwelling mixing, Py < 0, and increasing  results in an increase in the strength of the deep zonal flow, as found in 

Fig. 4 . 

The zonal gradient of the interface in the western regime is calculated from (20) to be O( DxPy). The nonlinear term u2hx 

in the western regime is then O( Py). The strength of the zonal flow Py depends on the slope of the potential vorticity 

contours, as discussed earlier for the linear case. When the bottom slope is weak, so that the slope of the deep potential 

vorticity contour yDx/(D − h)  O(1), the meridional pressure gradient scales as Py = O(β−1) and the nonlinear terms are 

then expected to be O( β−1). For steep bottom slopes of Dx  O(β), the deep pressure gradient scales as Py = O(1) and the 

nonlinear terms are smaller, only O( ). Thus, the nonlinear terms are expected to be most important in the western region 
when bottom slopes are weak but nonzero.



To understand how the nonlinear terms influence both the upper-layer and the deep-layer circulation, their effect on the 
vertical velocity needs to be considered. The vertical velocity may be expressed as the sum of the diapycnal velocity and the 
vertical component of the advection along the sloping interface that, for the western regime, is due to the zonal advection 
only. Conversely, one may think of the horizontal advection through the sloping interface as a component of the diapycnal 
advection. The result is the same for either interpretation:

w = wi − u2hx. (22)
 

For wi > 0, the interface slopes upward toward the east and the deep velocity is eastward. The resulting nonlinear term is 

upward, in the same sense to the diapycnal velocity. If the diapycnal velocity is fixed (as is the case here), increasing the 
nonlinearity must also increase the vertical velocity by an amount O( Pywi). 

Somewhat surprisingly, the nonlinear effect arising from the lateral advection along the sloping interface is largest for 

weak bottom slopes. In this case, the change in the vertical velocity as a result of the nonlinear advection is O( β−1wi). The 

upper layer responds to this increase in the vertical velocity by an enhanced meridional flow, through the linear potential 

vorticity equation, that is of O[β−1(1 + )], β−1 larger transport than for the linear case. Typical values for a midlatitude 
abyssal basin are β  O(1) and   O(1). 

When the bottom slope is large the nonlinear effects are greatly reduced. This is because the deep meridional pressure 

gradient Py = O(1) instead of the stronger recirculation of O(β−1) found for weak bottom slopes. The enhancement of the 

upper-layer horizontal recirculation gyre is then O(β−1 + ), a weaker dependence on nonlinearity than found for weak 
bottom slopes. These scaling results are consistent with the numerical calculations shown in Fig. 6a . 

The effect of the nonlinear terms is reversed for a downwelling diapycnal velocity. In this case, the nonlinear term u2hx is 

still upward because both u2 and hx change sign. However, it is now in the opposite sense as the diapycnal velocity so that 

increasing  reduces the vertical velocity at the interface and the upper-layer recirculation weakens, as found in Fig. 6b . 

The stronger dependence of the nonlinear term on  found for upwelling compared to downwelling arises because of the 

O( 2) terms neglected in Eq. (20). In physical terms, the enhanced upper-layer recirculation found for upwelling further 
increases the interface slope (through thermal wind), which then further increases the nonlinear terms. The reverse is found 
for a downward diapycnal mass flux; the interface slope relaxes slightly when the nonlinearities increase, acting to reduce 
further increases in the nonlinear effects.

Although the deep velocity in the western regime increases with increasing nonlinearity, Eq. (21), the flow remains zonal 
and the deep transport does not increase substantially. The flow remains zonal because the increase in w at the interface 
resulting from the nonlinear terms is exactly offset by an increase in the vertical velocity at the bottom, u2Dx. The stretching 

in the deep layer remains zero in the western regime. The deep transport does not increase substantially because the increase 
in deep velocity is largely offset by a decrease in the thickness of the deep layer (h increases toward the west). 

4. Application to the Brazil Basin  

The two-layer model is now configured to represent a region of mixing over the western flank of the Mid-Atlantic Ridge 
in the abyssal Brazil Basin. The measurements of Ledwell et al. (2000) and Polzin et al. (1997) indicate that the diapycnal 
mixing rate increases significantly toward the sloping bottom. A local heat balance indicates a downward mass flux that 
increases toward the bottom. As discussed by Ledwell et al. (2000) and St. Laurent et al. (2001), this is consistent with the 
downward spreading of a passive tracer released approximately 500 m over the tops of the deep canyons in the Mid-Atlantic 
Ridge. This tracer was found to spread into the canyons from above, and then to be carried eastward up the canyons 
toward the crest of the ridge. Deep in the canyons, the isopycnals become very steep and the eastward flowing water is 
mixed toward lighter density. This mixing scenario is represented in the two-layer model by a downward diapycnal flux at 
the interface h and a larger downward mass flux into the sloping bottom represented by wb. The diapycnal upwelling that 

occurs deep in the canyons is not explicitly represented in the model. Its effect is included by introducing into layer 1, at the 
eastern edge of the mixing region where the interface intersects the topography, a mass flux equal to the total amount of 
water downwelled out of layer 2 into the canyons to the west. This is done through the specification of h at x = 0. 

The model parameters are chosen as follows. The latitude of the model domain is centered at approximately 25° S, giving 

f0 = −5 × 10−5 s−1 and β* = 2 × 10−11 m−1 s−1. The thickness of the deep layer varies from 0 at the eastern limit of mixing 



to 1000 m toward the west over a distance of approximately 1000 km. The upper layer is taken to be 500 m thick over the 
crest of the ridge. Note that the model is applied only to the abyssal circulation, depths greater than approximately 3000 m. 

The spatial extent of the model domain is 106 m in both the zonal and meridional directions. The deep stratification N2 = 

10−6 s−1. The internal deformation radius Ld = NH/f0 = 20 × 103 m, where H is a representative layer thickness taken to be 

103 m. 

The diapycnal velocity above the topography wi = −1 × 10−7 m s−1 and is spatially uniform. Based on the inverse model 

results of St. Laurent et al. (2001), the mass flux into the canyons is specified to increase toward the pole as wb = wb0[0.2 + 

0.8(y − y0)], where wb0 = 1 × 10−6 m s−1 and y0 is the equatorward latitude of the mixing region. The downwelling into the 

canyons at the equatorward side of the region is approximately 6.3 m yr−1 and it increases linearly toward the pole to a 

maximum of 31.5 m yr−1. 

The nondimensional parameters of the model are now calculated. The vertical scale height H = 500 m, giving the upper-

layer thickness on the eastern boundary h0 = 1. The vertical velocity is scaled by W = 10−6 m s−1 and the horizontal length 

scale L = 106 m so that the horizontal velocity scale U = WL/H = 2 × 10−3 m s−1. The change in bottom depth of 103 m 

over 106 m zonal extent gives Dx = −2.0, resulting in the thickness of the deep layer vanishing at x = 0. The spatial scale of 

the mixing is relatively large compared to the central latitude of the region, so that β = β*L/f0 = 0.4. The nonlinearity is 

significant with  = U/β*L2
d = 0.25. 

The nondimensional mass flux into the deep canyons is shown in Fig. 7a , although the overall flow characteristics are 
not overly sensitive to the details of this meridional distribution. The deep pressure field is shown in Fig. 7b . As 
expected, the entire mixing region is in the western regime and the deep flow is zonal and toward the east. This deep flow is 
only sensitive to the difference between wb and wi. The eastward flow direction is required to supply the needed mass flux 

and is consistent with the stretching resulting from upwelling in the previous examples. The zonal flow increases toward the 

south but is very weak throughout, with a basin average value u2  0.05 cm s−1. 

The nondimensional depth of the interface h is shown in Fig. 7c . The interface shoals toward the west and toward the 

equator. The thickness of the upper layer varies by about 10%, or 50 m, over the 106 m extent of the model domain. 

The flow in the upper layer is toward the southwest, along lines of constant P + h, as shown in Fig. 7d . There is a 
westward flow into the upper layer at x = 0, where the interface intersects the topography, forced by the return of the deep 
waters downwelled into the canyons. The direction of flow in the upper layer is generally southwest, with a maximum 

strength of approximately 0.25 cm s−1. The direction of flow in the upper layer is sensitive to the difference between the 
middepth downwelling and the downwelling into the canyons. If the stretching of the deep layer is reduced, by either 
increasing wi or decreasing wb, the flow in the upper layer becomes more meridional. This is evident in Fig. 6d  as wb is 

decreased toward the equator. If the mixing at middepth is much less than the deep downwelling, as occurs toward the 
south, the upper-layer flow becomes more zonal. In the limit that the downwelling is all concentrated at the bottom, the 
upper-layer flow becomes purely zonal (not found here). 

A schematic of the buoyancy-forced circulation in the deep and intermediate layers is shown in Fig. 8 . The middepth 
diapycnal velocity is downward. There is also a downward mass flux into the deep canyons, represented here as a mass flux 
wb through the bottom. The difference between the downward mass flux at middepth and the downward flux into the 

canyons is supplied by an eastward zonal flow in the deep layer. The deep flow remains zonal because the stretching 
provided by wi − wb is exactly balanced by the interaction of the horizontal flow with the bottom u2Dx. This is true as long 

as wi − wb is independent of x. This mass flux into the canyons is returned to the upper layer above where the deep layer 

intersects the topography, parameterizing the diapycnal upwelling that must take place within the canyons. The upper-layer 
flow is toward the west and toward the pole. The poleward flow is balanced dynamically by the middepth downwelling. 
This poleward sense of the flow is the same as found for the standard Stommel and Arons model, but the stretching is 
provided by wi increasing toward the bottom, not by it increasing toward the main thermocline. The zonal flow recirculates 

some of the upwelled water into the mixing region, the remainder is advected out of the domain toward the southwest.

This general circulation pattern is similar to that calculated using an inverse model based on hydrographic and turbulence 
measurements by St. Laurent et al. (2001). Their circulation also produces a deep eastward flow into the canyons and a 



southwestward flow at middepths in the south and weaker southward flow in the northern part of the region. The strength 

of the deep eastward flow is O(0.05 cm s−1), similar to that found here. The middepth flow is O(0.3 cm s−1), only slightly 
stronger than that found in the present model.

The most fundamental difference between the present model and the inverse analysis is the sense of the horizontal 
component of the vertical velocity just above the ridge crests. St. Laurent et al. (2001) find that v · h < 0, indicating an 
upward contribution, while the present model finds v · h > 0. This arises because the deep flow is eastward and the 
interface deepens toward the east. Both of these characteristics are also found in the inverse model, but the eastward flow is 
confined much more closely toward the bottom. The discrepency may be an artifact of the limited vertical resolution of the 
two-layer model, or the manner in which the mass flux into the canyons is treated. In any case, the nonlinear contribution is 
only O[ wi(wb − wi)] = 0.05. If the middepth mixing wi = 0, the upper-layer flow is zonal so hx = 0 (so that v · h = 0), 

while if wb = wi, then the nonlinear term vanishes because u2 = 0. 

While some similarities with the data are expected because the model forcing was drawn from the analysis of St. Laurent 
et al. (2001), there are several important aspects of the circulation that are not imposed. The strength of the deep flow is 
very weak in spite of the strong turbulent mixing. This is because the bottom pressure torque term balances the vertical 
stretching, as discussed in the previous idealized problems. This importance of the topographic interaction is inevitable for 
such strong topography and is not a consequence of details in the model forcing. The direction of the deep- and upper-layer 
flows are also not specified and, if one neglects this topographic interaction, there would be a strong meridional component 
to the deep flow, in disagreement with the inverse model results of St. Laurent et al. (2001). This barotropic component of 
the flow also alters the direction of the flow in the upper layer. The simple examples in section 3 clearly demonstrate the 
dynamics in this topographically dominated regime. This application to the Brazil Basin suggests that similar dynamics are 
important there.

5. Summary  

The large-scale circulation forced by diapycnal mixing over a sloping bottom is considered. A simple nonlinear, two-layer 
planetary geostrophic model is developed in which the circulation is forced by diapycnal mixing between the fluid layers and 
by a downward mass flux into deep (unresolved) canyons in the sloping bottom. Analytic linear and nonlinear solutions and 
direct numerical integration of the characteristic equations are provided. Novel aspects of this study include the influences of 
nonlinearities in the density equation on the abyssal and upper ocean flow, the circulation required to balance localized 
mixing regions over a sloping bottom, and the dependence of the deep and intermediate circulations on a mixing rate that 
increases toward a sloping bottom.

For a flat bottom, the familiar beta-plume horizontal recirculation is reproduced. However, when topography is introduced 
such that the topographic Rossby wave phase speed exceeds the baroclinic planetary Rossby wave phase speed, the strong 
beta-plume recirculation is replaced by a weak zonal flow in the deep layer. The mass budget and vorticity balances in this 
topographically dominated regime are entirely different than are found in the beta-plume regime, which becomes confined 
ever more closely to the eastern boundary.

Nonlinearities, as measured by the ratio of the advective speed to the Rossby wave phase speed, can either enhance or 
reduce the strength of the upper-layer recirculation and are shown to be most important for weak, but nonzero, bottom 
slopes. Nonlinearity also forces the characteristics, or geostrophic contours, to cross isolines of potential vorticity when 
bottom topography is present. This can result in regions of closed potential vorticity contours that are not isolated 
dynamically from the rest of the abyss but instead directly forced by turbulent mixing over the sloping bottom.

The model is applied to the region of strong diapycnal mixing over the western flank of the Mid-Atlantic Ridge in the 
abyssal Brazil Basin. The model is forced by a downward mass flux at the interface above the topography and a stronger 
downward mass flux into the deep canyons of the ridge. This flow into the canyons is returned to the upper layer where the 
deep layer intersects the bottom. The model produces a weak eastward flow in the deep layer and a stronger southwestward 
flow in the upper layer. This general strength and circulation pattern are in reasonable agreement with recent observations 
and inverse model results in the Brazil Basin (Ledwell et al. 2000; St. Laurent et al. 2001). It is found here that bottom 
pressure torque is essential to producing such a sluggish deep flow in the presence of very strong turbulent mixing.

These results identify the basic nondimensional parameters that control the large-scale deep circulation forced by 
diapycnal mixing over a sloping bottom. The primary influence of the sloping bottom is to introduce a new flow regime in 
which the deep flow is zonal. Although details of the mass balance differ, this zonal flow regime persists even when 
nonlinearities in the density equation become large. Bottom slopes that are typical of the abyssal ocean are sufficiently steep 
that most of the deep ocean is expected to be in this topographically dominated regime. In addition, the vertical velocity does 
not need to be exactly balanced by the diapycnal mass flux, as is often assumed in simple models of the abyssal circulation, 
and significant differences can be expected as the advective speed approaches the Rossby wave phase speed.
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APPENDIX  



6. The Characteristic Equations  

The characteristic equations are derived for the two-layer planetary geostrophic fluid over a sloping bottom. Similar 
derivations can be found, for example, in Luyten and Stommel (1986) and Hautala and Riser (1989). Although similar in 
approach, the formulation here differs from each of these previous models in important ways.

The velocities in the deep layer u2 and 2 are related to variations in the deep dynamic pressure P through the geostrophic 

relations as

 

where the subscripts (x, y) indicate the partial derivative (note that P has dimensions of length). The Coriolis parameter is 
assumed to vary linearly with latitude as f  = f0 + β*y. The velocities in the upper layer are calculated relative to the deep 

velocities using the thermal wind relation as

 

The continuity equation for the upper layer is written as

(hu1)x + (h 1)y = wi, (A3)
 

while the continuity equation for layer 2 is

[(D − h)u2]x + [(D − h) 2]y = wb − wi. (A4)
 

The main difference between the present model and that of Luyten and Stommel (1986) is the introduction of a finite 
bottom depth. This introduces some additional terms, and results in a nonlinear system of equations, but allows for the 
consideration of stretching at the bottom and the resulting barotropic motion. The equations retain the nonlinear advection 
terms in the density equation (v · h) and also permit the thickness of the deepest layer to vanish by intersecting tall 
topography. The application in mind is the large-scale circulation forced by mixing over topography in the ocean abyss, so 
that, for simplicity, wind forcing at the surface has been neglected.

The barotropic vorticity equation is derived by substituting the geostrophic relations into the continuity equations and 
adding:

 

This result is similar to that obtained by LS and HR, the main difference being the additional term on the right-hand side 
that results from the interaction of the zonal flow in layer 2 with the sloping bottom (DxPy). This gives rise to a vertical 

velocity at the bottom and can thus drive a barotropic flow. This term is the equivalent of the generalized bottom pressure 
torque term discussed by Holland (1973) and Mertz and Wright (1992). Note that the mixing rate wi does not appear 

explicitly in (A5); however, it is shown that the barotropic flow is not independent of wi because of the bottom interaction 

term DxPy. 

Hautala and Riser included wind forcing and bottom topography in a similar three-layer model, but the influences of the 
bottom topography on the upper and middepth ocean were neglected. This allowed them to solve for the upper-ocean 
circulation and layer depths independent of the bottom topography and bottom pressure torque terms. It will be shown that 
the interaction of the abyssal flow with the bottom does alter the upper-layer circulation, most strongly for weak, but 
nonzero, bottom slopes.

An expression for the thickness of the upper layer may be found by integrating (A5) in the zonal direction from the 
eastern boundary:

 



h2 = h2
0 − 2(S1 + S2 + WB). (A6)

The thickness of the upper layer on the eastern boundary is h0, which may be a function of y. The right-hand side terms 

are defined as

 

The first term S1 represents the integrated upwelling at the bottom resulting from the interaction between the zonal flow 

and the sloping bottom. The second term S2 is proportional to the integrated meridional transport in the deep layer. The third 

term is the integrated mass flux into the bottom topography (canyons). Equation (A6) represents the linear vorticity balance. 
The difference between the net vertical motion at the bottom (first and third terms) and the meridional transport represented 
by the zonal gradient in the deep pressure gives rise to a zonal slope in the interface between layers 1 and 2 and meridional 
flow in layer 1 such that the barotropic linear vorticity balance is satisfied. The terms S1 and S2 depend on the strength of 

the deep flow.

Following LS, the zonal and meridional gradients of h may be calculated from (A6) and substituted back into the layer 2 
continuity equation (A4). The result may be written as

 

where

 

Luyten and Stommel and HR derive similar equations that are linear in P, which they solved using the method of 
characteristics. The characteristic slopes are given by the coefficients of the Px and Py terms and the change in P along the 

characteristic path is given by the right-hand side. The addition of bottom topography introduces the nonlinear terms S1, S3, 

and the term proportional to P2
y. Nonetheless, the equations may be solved by following a similar approach and iterating to 

include the nonlinear terms, as outlined in section 2. 

Although it is instructive to carry out the derivation using dimensional variables, the dependence of the solutions on the 
model parameters is made clear by considering nondimensional forms of the equations. The following scaling is appropriate 
for a nearly geostrophic flow with similar dominant spatial scales in the zonal and meridional directions and interface 
displacements and bottom depth changes that are as large as the mean layer thicknesses:



 

The equations presented in section 2 result from substituting this scaling into Eqs. (A6), (A7), (A8), and (A9). All 
equations solved in the body of the paper use nondimensional variables. The characteristics are interpreted, and the solution 
procedure is outlined, in section 2. 

Figures  

 
Click on thumbnail for full-sized image. 

FIG. 1. Schematic of the model configuration. The upper layer has thickness h; the depth of the fluid is D. The fluid is stably 
stratified with ρ2 > ρ1. Turbulent mixing at the fluid interface is parameterized as a diapycnal mass flux wi, and mass flux into deep 

(unresolved) canyons is represented by wb 
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FIG. 2. The deep pressure (and flow direction) and potential vorticity for flat bottom (a) and (b), weak bottom slope Dx = −0.1 (c) 

and (d), and strong bottom slope Dx = −1.0 (e) and (f). The bold line on the pressure fields marks the critical characteristic that 

originates from the southeastern corner of the mixing region and separates the western, topographically dominated regime from 
the eastern, turbulent-mixing-dominated regime
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FIG. 3. Strength of the deep meridional flow at y = y0, scaled by β−1, as a function of the deep characteristic slope, which is also 

the ratio of the topographic Rossby wave phase speed to the baroclinic Rossby wave phase speed
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FIG. 4. Deep fields for weak bottom slope (Dx = −0.1) with exponentially decaying upwelling of strength w0 = 0.5 in the linear 

limit (  = 0.001) pressure (a), potential vorticity (b) and for moderate nonlinearity (  = 0.25) pressure (c) and potential vorticity (d). 
The bold line on the potential vorticity fields marks the critical characteristic that originates from the southeastern corner of the 
mixing region and separates the western, topographically dominated regime from the eastern, turbulent-mixing-dominated regime 
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FIG. 5. Streamlines and flow direction for layer 1 (P + −1h−1) forced by upwelling with an exponential decay and a flat bottom
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FIG. 6. Magnitude of the upper-layer recirculation as a function of nonlinearity  = U/β*L2
d and bottom slope Dxfor (a) 

upwelling w0 = 0.5 and (b) downwelling w0 = −0.5 
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FIG. 7. Application to the abyssal Brazil Basin. (a) Distribution of downward mass flux into the deep canyons. (b) Pressure and 
flow direction in layer 2. (c) Thickness of layer 1. (d) Streamlines and flow direction in layer 1
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FIG. 8. Schematic of the circulation forced by diapycnal mixing over the western flank of the Mid-Atlantic Ridge in the abyssal 
Brazil Basin. The diapycnal mass flux is downward at the interface depth h and more strongly downward into the bottom 
canyons. The deep flow is weak and toward the east while the upper-layer flow is stronger and toward the southwest. The flow in 
the canyons is indicated schematically by the dashed arrows; it is not explicitly resolved in the model
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