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ABSTRACT

A linear stability analysis of the shallow-water system in the tropical ocean 
examines the stability of the western boundary current and its latitudinal 
dependence. Despite a highly idealized formulation that assumes a purely 
meridional basic state and makes a local f-plane approximation, the stability 
analysis successfully predicts a length scale of the disturbance, a latitude for its 
origin, and a critical Reynolds number that agree well with accompanying 
numerical results. Realistic western boundary current profiles undergo a 
horizontal shear instability that is partially stabilized by viscosity. Calculations 
of the growth rate at several latitudes indicate that the instability is enhanced in 
the Tropics where the internal deformation radius is a maximum.

1. Introduction  

In a companion paper, Edwards and Pedlosky (1998) numerically investigated 
the potential vorticity transformation of fluid crossing the equator for varying 
degrees of nonlinearity. A β-plane, shallow-water model confined within a 
rectangular basin straddling the equator was forced by the injection of a constant 
mass flux through the northwestern corner. Dissipation was parameterized as 
momentum diffusion. The Reynolds number was defined by the ratio of the mass 
source per unit depth to the viscosity,

 

and characterized the nonlinearity of the system. For low Reynolds number flow (i.e., Re < Rec  30), the potential 

vorticity was easily modified through a frictional boundary layer that spanned the full boundary current. In this regime, the 
circulation asymptotically approached a steady state. However, beyond a critical Reynolds number, the system exhibited a 
transition to time-dependent motion in which an eddy field appeared in the western boundary current. The authors showed 
that in this nonlinear regime, the turbulent boundary layer was essential to the potential vorticity transformation process, 

Table of Contents:
● Introduction
● Formulation of the problem
● Inviscid shear instability
● Instability of the Munk
● Geostrophic perturbations
● The influence of viscosity
● Summary
● REFERENCES
● FIGURES

Options:
● Create Reference 
● Email this Article 
● Add to MyArchive 
● Search AMS Glossary 

Search CrossRef for:
● Articles Citing This Article 

Search Google Scholar for:
● Christopher A. Edwards
● Joseph Pedlosky 



transferring vorticity from the inertial to frictional portions of the boundary current. The important dynamical contribution of 
the eddy field in that work leads to the question of its origin.

Of course, the tropical oceans commonly display significant variability in the vicinity of the western boundary current, 
both in nature and in other numerical models. As determined through current meter, satellite, surface drifter, and SOFAR 
float measurements, Johns et al. (1990) and Richardson et al. (1994) report substantial eddy generation in the upper-
thousand meters of the tropical Atlantic Ocean. Deeper SOFAR float trajectories described by Richardson et al. (1993) 
reveal time-dependent trajectories extending down to 3300-m depth, and with current meters Johns et al. (1993) recorded 
fluctuations in the 4300-m core of the deep western boundary current at 8°N. Using a numerical model to study the tropical 
Indian Ocean, Cox (1979) described the development of eddies accompanying the sudden onset of monsoonal winds. 
Finally, in a study of the spinup of a cross-equatorial circulation, Kawase et al. (1992) found also in a three-dimensional 
ocean model the breakdown of the boundary current into a series of eddies propagating along the coast, even in the 
asymptotic limit of steady forcing.

The existence of these eddies and their dynamical role are now well established but their cause is not yet explained. The 
purpose of this paper is to analyze the instability of the tropical western boundary current and suggest a mechanism 
responsible for the eddy generation. Close examination of the eddy formation process in the numerical model applied by 
Edwards and Pedlosky (1998) reveals that the phenomenon is not only dependent on the Reynolds number of the flow but 
also on latitude. The eddies begin to develop for nonlinear flows with Re > Rec, and (in the no-slip case) they form 

preferentially near the equator. This behavior is illustrated by the series of numerical experiments shown in Fig. 1 . In all 
three cases, mass enters the basin in the northern end of the domain and leaves through a sink in the southern end. The basin 
has dimension, Lx = 3 and Ly = 20 (deformation radii), though the figures show only a fraction of this region to concentrate 

on the unforced portion near the western boundary and the equator. The system is accelerated from rest to a steady or 
quasi-steady state. In Fig. 1a , a western boundary current carries fluid laminarly from the source region across the 
equator to the sink region. Thus the flow is stable at this Reynolds number (Re = 25). In Fig. 1b , Re = 50 and the 
western boundary current is unstable, with eddies developing noticeably at the equator. Finally, Fig. 1c  presents a run at 
Re = 50 that does not cross the equator. Its central latitude is at y = 10, and the flow is stable. It is the combination of a high 
Reynolds number and a constraint to cross the equator that stimulates the observed eddy field in these experiments.

While analysis of a midlatitude quasigeostrophic model by Ierley and Young (1991) has revealed that the Munk and more 
nonlinear boundary current profiles are unstable to infinitesimal perturbations, the latitudinal-dependence of this instability has 
not been discussed. In this paper, an idealized stability analysis of the inviscid shallow-water system reveals that the 
boundary current suffers a shear instability whose growth rate depends on the ratio of the zonal scale of the current to the 
internal deformation radius, which is maximum at the equator. The analysis is highly simplified. The beta effect is ignored. 
Only the role of the magnitude of the f  as it determines the size of the deformation radius is considered. However, despite its 
shortcomings, the analysis predicts the properties of the instability as observed in the full numerical model with surprising 
accuracy and in a framework that is easily interpreted. The equatorially enhanced instability is responsible for the eddy field 
found in Edwards and Pedlosky (1998) which, in turn, expedites the cross-equatorial flow of the mean current. The addition 
of viscosity to the analysis merely damps the growth of the instability, suggesting that its inclusion is not essential to the 
eddy development except in its contribution to the structure of the mean field.

2. Formulation of the problem  

The following presentation assumes standard notation, using Cartesian coordinates (x, y) in which the velocity field is 
given by (u, ), the depth of the shallow water layer by h, and subscripts denote partial derivatives. Assuming artificial body 
forces that maintain a purely meridional, latitude-independent basic state,

u = 0;  = (x); h = h(x),(2.1) 

the perturbation equations of the shallow-water system take the form

 

Equations (2.2a–c) are in dimensionless form, with the prime variables representing variations from the basic state and 
overbars corresponding to the mean values. The coupled set of equations can be analytically simplified by making a stringent 
assumption. With the exception of the Coriolis parameter, y in this scaling, all of the coefficients of the dependent variables 
are functions of longitude only and not of latitude or time. If a local f-plane approximation is made and the Coriolis parameter 
is assumed to have a constant value, y0, then a modal decomposition of the dependent variables is possible in y and t. Let

 

where l is the meridional wavenumber of the disturbance and c represents its phase speed. The wavenumber-weighting of 
the zonal amplitude function in Eq. (2.3b) merely simplifies the ultimate form of the mathematical problem and represents no 



fundamental difference between the different components. The method outlined here is similar to that of Ni (1996) who 
considered a zonal flow in a multilayer, inviscid shallow-water model. 

The f-plane approximation that allows this decomposition is a significant limitation of the present analysis as the variation 
of the Coriolis parameter is usually essential in tropical dynamical studies. A full treatment of the problem must include both 
the meridional variation of f  and the downstream variation of the basic flow. However, it will be shown that this simple 
model provides surprisingly good agreement with numerical results, predicting the critical Reynolds number for onset of 
instability, the time and length scales associated with the perturbations, and the domain of their origin. In addition, it does so 
in a desirably simple and understandable framework that illustrates the essential dynamics of the breakdown of the boundary 
current. To be sure, there are equatorial modes that this model does not capture. However, these modes appear to be 
extraneous given the success of the simplified analysis to be presented. Furthermore, the numerical model results of 
Edwards and Pedlosky (1998) suggest that coupling to the equatorial waveguide begins at a higher Reynolds number than 
that at which the instability begins.

Using relations (2.3a) and (2.3b), the system (2.2a–c) reduces to

 

where y0 is the local value of y. Equations (2.4a–c) can be rewritten in the matrix form

A  = c ,(2.5) 

where

 

and

 

is the state vector. Solutions of the standard eigenvalue problem, (2.5) with nonzero imaginary components of the 
eigenvalue c signify growing and decaying modes. 

To apply the stability analysis to a realistic shear flow of a western boundary current, Eq. (2.5) is solved in a channel 
whose finite zonal extent is large compared to the boundary-layer width. Boundary conditions at the solid meridional 
boundaries are no mass flux and no slip,

 

The scales of the basic states are identical to those of Edwards and Pedlosky (1998). Thus length scales are given in 

terms of deformation radii, growth rates are scaled by βLD (with LD = (c0/β )½), and phase speeds are relative to the gravity 

wave speed c = (g′H )½. The nondimensional, undisturbed layer depth H0 is unity in all cases examined here. 

3. Inviscid shear instability  

Although Eq. (2.5) can be discretized and analyzed as written for a variety of mean fields, it is of interest to examine the 



simpler, inviscid system first. Setting the viscosity coefficient AH to zero eliminates viscous instability from the system. The 

matrix A then reduces to

 

and the order of the system is reduced, so only Eq. (2.8a) is relevant. The new eigenvalue problem is defined by

Â  = c .(3.2) 

The stability criterion for inviscid zonal flows on the β plane in the shallow-water system has been examined by Ripa 
(1983). The case with β = 0 corresponds to the present system. Stability is insured if (i)

 

and (ii)

[α −  (x)]2  h(x)(3.4)

 

for all x and any α. The potential vorticity is defined as

 

For the standard Munk boundary current as well as inertio–viscous profiles, condition (3.3) is generally violated assuming 
α in the range of the velocity. 

Eigenvalue equation (3.2) is discretized on a stretched grid in x with staggered variables. For this application, the 
stretching function is a simple exponential:

x(i) = d(esn/N − 1),(3.6)

 

where

 

N is the number of grid points, and s gives the degree of stretching. A value of s = 3 was chosen to adequately enhance 
the resolution in the rapidly varying western boundary region without introducing excessive deformation of the grid. All 
calculations were determined using a value of at least N = 100, though even N = 32 appears adequate to reveal the general 
behavior of the instability. The channel width is 20 Munk boundary layer widths or more. Eigenvalues, c, and eigenvectors, 

, are determined using the eigenvalue solver, eig.m, which calls industry standard EISPACK routines and is included in the 
basic distribution of Matlab. Checking the solutions using a different solver, sptarn.m, which applies a different algorithm to 
find selected eigenvalues produces virtually indistinguishable results. The numerical method for solution was checked against 
and agreed well with the asymptotic stability analysis of Lipps (1963) for a wall-free Bickley jet. 

4. Instability of the Munk boundary layer  

We begin with a simple basic state in which the fields are truly latitude independent. Thus any asymmetry that develops in 
the instability characteristics can then be attributed to the shallow-water system and not to the meridional variation in the 
potential vorticity structure of the basic state. It can be shown that using a more realistic, latitude-dependent flow field 
determined by the numerical model produces very similar results.

The analytic solution to the Munk boundary layer provides a convenient basic velocity profile:

 



where

 

Rather than use the geostrophically balanced height field, which varies with latitude, we set the height of the layer 
uniform:

h = 1.(4.3) 

The Munk layer is determined using δM = (AH/β)1/3 = 0.1 and for a boundary layer transport of S0 = 0.025, consistent 

with the numerical model runs in Fig. 1 . Equation (3.2) is solved for the profile, Eq. (4.1), and a Coriolis parameter, y0 = 

1. The basic-state velocity profile is shown in Fig. 2  along with the zonal gradient of the potential vorticity. The potential 
vorticity gradient passes through zero at multiple longitudes so the inflection point criterion is satisfied by this basic state. 

The growth rates, Im(lc) = ωi, of all nondecaying eigenmodes of the system are shown in Fig. 3a  as a function of the 

wavenumber l. The number of modes equals the dimension, 3N, of the system. Most modes are neutral, with zero imaginary 
component, and all modes are complex conjugates though only growing modes are shown. Equation (3.2) has complex 
conjugate solutions because Â defined by Eq. (3.1) is real. 

In Fig. 3a  a few sets of unstable modes can be traced as a function of wavenumber. In particular, one set of modes 
has the largest amplitude for all l, and its maximum occurs at a value of approximately l = 3.25. This set and the additional 
sets of modes that appear within its envelope are quite insensitive to the discretization and grid resolution. At high 
wavenumber there exist an increasing number of unstable modes of small amplitude. These are more fragile modes that 
depend more closely on the discretization of the system. While all unstable modes grow, it is the one with the largest growth 
rate that dominates the instability. Therefore these numerically sensitive modes can be neglected when considering also those 
more unstable. Within the approximations of the analysis, Fig. 3a  indicates that the Munk layer is unstable to inviscid, 
growing perturbations.

The phase speed of the fastest growing mode is shown as a function of wavenumber in Fig. 3b . The value varies 
between cr = −0.098 at l = 0.01 and cr = −.059 at l = 6, both in the range of  and consistent with Howard’s semicircle 

theorem.

The amplitudes of the eigenvectors (e.g., (UU* )½) associated with the fastest growing modes are shown in Fig. 4 . 
The zonal velocity and height fields are smooth functions of longitude, with a noticeable maximum between x = 0.3 and x = 
0.5, depending on the wavenumber. At high wavenumbers, the eigenfunctions show the rise of a second peak near x = 0.1. 
The V component also has an interesting two peak structure, with a third, particularly sharp, feature developing for high 
wavenumbers. The eigenfunctions are very smooth for long-wave solutions. The sharpest peak at high wavenumber is 
associated with the critical location where the Munk velocity profile equals the phase speed of the fastest growing mode,

(x) = c1
r.(4.4)

 

For a jet profile with the phase speed in the range of the velocity field, this relation is satisfied at least at two longitudes. 
From Fig. 3  it is clear that  = 0.059 corresponds to the phase speed of the fastest growing mode at l = 6. This line is 
overlayed as a dot-dashed curve in Fig. 2a . Equality (4.4) applies at the intersection of the two curves. The first 
intersection occurs at x = 0.275, which corresponds closely to the peak in the eigenvector amplitude at x = 0.029. The 
second intersection occurs at x = 0.262, where the potential vorticity gradient dq/dx is nearly zero. Thus the asymmetry of 
the Munk boundary layer appears to play a role in the development of the strong peak in the eigenvector curve. It occurs 
approximately at the location determined by Eq. (4.4) but the one that does not satisfy.

 

Identical analyses for a range of latitudes provide the growth rate as a function of wavenumber and latitude, y0. This field 

is contoured in Fig. 5a  for the same Munk layer used above. Solid lines separate intervals of a hundredth and two dot-
dashed contours at values of ωi = 0.058 and 0.0584 are used to aid the eye. A growth rate maximum [ωi]max = 0.0584 

resides clearly in the immediate vicinity of the equator, at a wavenumber l = 3.2 and at a latitude of y0 = −0.5. Note that this 

growth rate maximum is not located at y0 = 0. Since the basic state is independent of y, it appears that the shallow-water 

system is aware of the direction of the flow through the absolute vorticity, y0 + x, in matrix Â. 

The phase speed of the fastest growing mode is contoured in Fig. 5b  also as a function of wavenumber and latitude. 
For a given wavenumber, the phase speed of the most unstable disturbance decreases with latitude.

5. Geostrophic perturbations  



Although it is clear that the Munk boundary current is unstable to inviscid perturbations, the reason for the tropical 
enhancement is not clear from the form of matrix Â. To interpret this behavior, a simpler system is studied. Following the 
examples of Stern (1961) and Lipps (1963), and in dimensional form using f  = βy0, the mean flow is assumed only weakly 

nonlinear so that

x  f,(5.1)
 

and the perturbations must be geostrophically balanced:

 

Clearly these approximations are invalid very close to the equator, but the flow can be specified to be arbitrarily weak, 
leading to reliable calculations at latitudes arbitrarily close to y = 0. 

The geostrophic approximation couples the different fields of the disturbance such that a single equation results, 
expressed in terms of a single variable. Adopting the above approximations and scaling the horizontal dimensions by the 
length scale L yields for the height anomaly H,

(  − c)[Hxx − (l
2 + F)H] − ( xx − F )H = 0,(5.3)

 

where

 

is the rotational Froude number. At the boundaries, the height of the disturbance is set to zero:

H = 0.(5.5) 

Equation (5.3) describes the initial development of the instability for weak mean flows until the Rossby number of the 
disturbance lU′/f, becomes order 1. For F = 0, Eq. (5.3) reduces to the familiar Rayleigh equation or the equation for 
standard barotropic instability. The additional terms proportional to F reflect the influence of the horizontal divergence in the 
velocity field that is included in the shallow water model.

The solution to Eq. (5.3) subject to boundary conditions in Eq. (5.5) gives remarkably similar results to that of the full 
system. The contour plot of growth rate as a function of wavenumber and latitude is shown in Fig. 6a  using the same 
basic state. Solid contours are uniform, every hundredth, and the dot-dashed contours correspond to values ωi = 0.058 and 

0.0584 as in Fig. 5a . The maximum of 0.0588 is located at a wavenumber of l = 3.26 and y = 0. Note that there is no 
asymmetry in this modified instability problem as Eq. (5.3) cannot distinguish between the Northern and Southern 
Hemispheres if the basic state is latitude independent.

The close similarity between Figs. 6  and 5  suggests that the physics of the tropical enhancement is essentially 
quasigeostrophic, appearing even in the presence of perturbations constrained to a geostrophic balance. One interpretation 
follows from the perspective of energetics. In the context of this simplified treatment, it is possible to derive the energy 
equation,

 

Here, the overbar symbol with a y superscript implies an averaging in the y direction. Zonally integrated, the time evolution 
of total energy of the disturbance depends on the ability of the disturbance to extract energy from the mean flow through the 

Reynolds stress, HxHy
y. 

The total energy is divided between potential, the last term on the left-hand side of Eq. (5.6), and kinetic, the first two 



terms, and their ratio is O(F). At midlatitudes, F is large, and most of the energy of the disturbance is partitioned into 
potential form (P). In contrast, near the equator the fraction of total energy that is kinetic (K) reaches its maximum. 
However, from the right-hand side of Eq. (5.6), it is clear that the growth of the instability is proportional to the Reynolds 
stress, and the Schwarz inequality allows

 

For solutions of the form

H = (x) cos[l(y − crt)]e
σt,(5.8)

 

it can be shown that

 

or

 

Thus the growth rate of the disturbance is bounded by the ratio of the kinetic energy to the total energy. When the 
partitioning favors potential energy, this ratio is small, and the growth rate is bounded by a smaller value than when more of 
the energy is in kinetic form. Not intended as a rigorous proof, this description nonetheless suggests that at the equator, 
where the system is most barotropic and the kinetic energy dominates, the disturbance extracts energy from the mean flow 
most efficiently. In contrast, at midlatitudes, much of the energy is stored in layer height variations. As a result, Reynolds 
stress is more strongly bounded, and the accompanying instability is more subdued. It follows from Eq. (5.3) that the 

stability boundary of the flow and, in particular ci, can only be a function of the square of the total wavenumber l2 + F. 

However, the growth rate σ is lci, so the maximum rate of growth for any mode of instability will occcur when F = 0, or in 

our parametric model, at the equator.

It is important to note that the original work of Lipps (1963) illustrated the stabilizing effect of divergence on a zonal 
midlatitude flow, and this work was extended to the equator by Philander (1976). 

6. The influence of viscosity  

As viscosity is an essential part of the dynamics of the mean flow, it can be expected to influence the dynamics of the 
perturbation. Indeed, that the system is stable for some Reynolds numbers shows that its effect is not negligible. The 
eigenvalue problem including dissipation along with the extra, no-slip boundary condition is solved similarly to the above 
inviscid calculations. This section describes the stability of two basic states both taken from the full shallow-water numerical 
model results under different parameter settings. Their stability is examined for a range of viscosities applied to the 
perturbations. The first basic state is shown in Fig. 1a , and it has a Munk boundary layer width of δM = 0.1 and a source 

strength of S0 = 0.025. The second is identical except that δM = 0.05 and S0 = 0.003. 

Numerical results, not shown, for the first mean state indicate that this flow is unstable for a range of Reynolds numbers. 
Unlike in the inviscid calculations, the eigenmodes are no longer conjugate pairs, but one set of modes clearly shows 
growing perturbations over a window of wavenumbers. Another change from the previous calculations is a shift in the 
wavenumber of maximum growth rate, from near l = 3.25 in the inviscid case to approximately l = 4 with viscous 
perturbations.

The amplitudes of the eigenfunctions of the unstable modes determined using a viscosity, AH = 2.5 × 10−4 (Re = 100), 

are shown in Fig. 7 . Their similarity to the inviscid case is striking, even using a slightly different basic state. One 
distinguishing feature of the viscous modes is found in the amplitudes of the V eigenfunctions. As in the previous example, a 
peak appears at small x in the functions corresponding to large wavenumber. However, the peak is broader than in the 
inviscid case suggesting that viscosity plays an important role in the dynamics of the critical layer.

Calculations at several latitudes show similar bullseye patterns of growth enhanced near the equator but with reduced 

amplitude depending on the magnitude of the viscosity employed. For example, using a viscosity of 8.333 × 10−4, which 



corresponds to Re = 30, gives a maximum growth rate, [ωi]max = 0.014, centered at l = 3.8 and y = −1.2. Increasing the 

dissipation appears to drive the instability further south of the equator and lengthen the time needed for its development. The 
shift to a higher wavenumber is found consistently at all latitudes.

This highly idealized viscous theory indicates that the numerical model should be unstable for Re = 25. In fact, numerical 
integrations indicate that the instability begins near Re = 32. This small discrepancy may result from the approximations of 
the instability calculation itself (e.g., neglect of the variation in f). Also, the numerical model may in fact be unstable for Re = 
25. The timescale for growth of the instability at this Reynolds number is O(5000) time units, a very long integration that has 
not been examined. At Re = 32 the timescale is O(300) time units, which is the timescale over which they are observed to 
develop. Thus the numerical model may be unstable at smaller Reynolds numbers than Re = 32 but so slightly that the time-
dependent motion escapes detection.

A second measure of the accuracy of the instability calculation is to compare the length scales of the disturbance 
predicted by the theory to that found in the numerical experiment. After reaching an approximate steady state at Re = 31.25, 
the viscosity of the numerical model was changed slightly to Re = 32.25, and integrated further in time. Figure 8  
presents the difference in the height fields after 300 time units have elapsed. Height anomalies appear just south of the 
equator as expected from the theory and develop farther to the south. There is some variability being swept eastward from 
the western boundary near the southern boundary of the plot, where the boundary current veers eastward as part of the 
Southern Hemisphere sink. Approximately one full wave is visible in the figure, and it has a wavelength of approximately 1.5 
deformation radii. This wavelength agrees well with that predicted by the theory: if l = 3.8, λ = 1.65. Thus even with the 
extensive idealizations of the theory, it predicts the behavior of the disturbances found in this numerical model, in location 
for growth, in wavelength, and in the critical Reynolds number.

The numerical example described above contains eddies that are approximately of the deformation scale, consistent with 
the linear theory and the basic state applied. To show that these results are not coincidental and thus further support the 
relevance of the highly idealized analysis to the full numerical model results we examine a second numerical experiment in 

which the viscosity has been reduced by a factor of 8. Setting AH = 1.25 × 10−4, a steady solution results from using H = 1 

and S0 = 0.003. For these parameters, Re = 24 is just below the critical value at which time-dependent motion begins, which 

indicates that Rec is not a universal number but varies with model parameters, such as δM/LD. 

The growth rates and phase speeds for this experiment using AH = 1.071 × 10−4 (Re = 28) are shown in Fig. 9  as 

functions of meridional wavenumber and latitude. Note that the growth rate maximum occurs at a meridional wavenumber 
of l = 7.6, approximately twice the value in the former experiment and consistent with the smaller boundary current of this 
experiment. The bullseye for this run is also somewhat more extended meridionally from the previous examples, showing 
that as the boundary current narrows with respect to the deformation radius and the system becomes more barotropic, the 
tropical enhancement to the instability is less pronounced.

To compare the growth rates predicted by the theory to those observed in the model, we further integrate this numerical 

experiment at the lower viscosity (AH = 1.071 × 10−4). This exercise generates cyclonic structures in the vicinity and south 

of the equator much as in Fig. 1b  but of a smaller scale. Showing the zonal velocity anomaly, du = u(t0 + Δt) − u(t0) at 

intervals of Δt = 400, Fig. 10  presents the time evolution of the instability. The contour interval is the same in each plot 
(du = 0.002c). After the first time interval, the western boundary current has superposed on it a series of very weak 
structures of alternating sign. After Δt = 800 well-defined eddies of alternating sign emerge between y = −1 and y = −5. As 
time continues, the variability grows in strength and in meridional extent. After 1600 time units, the eddies exist north of the 
equator, and the strength of those near y = −3 have peaked in strength. 

Although the negative anomalies (dashed in the figure) tend to be slightly larger in magnitude than the positive, there is 
very good symmetry between positive and negative features. This remains true for the meridional velocity and height fields 
as well, though the vorticity field shows a more pronounced asymmetry favoring positive anomalies. This symmetry 
supports the present analysis as the anomalies are consistent with the modal decomposition of the u, , and h fields in Eqs. 
(2.3a) and (2.3b). The timescale for the eddy development in the model is 800 to 1000 time units, slightly less than the value 
predicted by the viscous theory of 1300 but somewhat longer than that predicted by the inviscid calculation (roughly 250). 
The fully developed anomalies in Fig. 10d  have a characteristic wavelength of between 2/3 and 1 deformation radius, 
depending on the latitude at which the estimate is made. The value predicted by the stability analysis is λ = 2π/7.6  0.8. The 
purely inviscid calculation predicts a wavelength of approximately 1 deformation radius. The simple, highly idealized theory 
predicts reasonably 1) the time and space scales of the eddies, 2) their location for development, 3) their structure, and 4) 
the critical Reynolds number at which they appear.

The addition of viscosity to the system has adjusted the instability properties slightly, shifting the wavenumber at which 
the maximum growth rate is found and reducing the amplitude of the growth. However, it has not produced a qualitative 
change in the development of the system. Viscosity acts as a stabilizing influence, but the physics of the instability remains 
unaltered. These features suggest that the instability mechanism responsible for the growth of the eddies in the time-
dependent model is classical shear instability and not viscous instability.

7. Summary  

A linear stability analysis of parallel flow in a shallow-water model using a local f-plane approximation indicates that the 



western boundary current is unstable to infinitesimal perturbations and that this instability is greatest in the vicinity of the 
equator. The simplified calculations successfully predict the time and length scales for the growth of the instability, the 
critical Reynolds number at which time-dependent motion appears, and its tendency to form near the equator, as found in a 
β-plane numerical model. 

Close similarities in properties of growing modes between the shallow-water and a more restrictive quasigeostrophic 
model suggest that the latitudinal dependence of the instability reflects the meridional variation of the internal deformation 
radius. At the equator where the deformation radius is a maximum, the system is most barotropic, and the Reynolds stress is 
most efficient at extracting energy from the mean flow to drive the perturbations. This behavior is well known in 
quasigeostrophic zonal flows (e.g., Lipps 1963; Philander 1976), but its relevance to meridional flows on a β plane is not 
obvious a priori. Indeed, the agreement between the simplified analysis and the numerical results is somewhat remarkable, 
given the strong variation of the planetary vorticity in the region.

The instability of the western boundary current has previously been investigated at midlatitudes by Ierley and Young 
(1991) and Cessi and Ierley (1993). These studies conclude that viscosity plays a fundamental role in generating the eddy 
field. In contrast, we find that the growth rate is maximum in the limit in which the perturbation dynamics are inviscid. The 
addition of viscosity to the analysis offers no significant qualitative difference in the eigenfunctions that describe the growing 
modes. As viscosity does not appear to be necessary to transfer energy from the mean field to the perturbation, we argue 
instead that the instability does not result from or depend primarily on viscous processes, but is basically an inviscid shear 
instability.

One important implication of this conclusion is that the generation of the eddy fields found in tropical models is inevitable 
for sufficiently nonlinear flow. Given sufficient resolution of the boundary current, such models should produce eddy fields 
consistent with those found in nature, regardless of the dissipative parameterization, provided that it produces a physically 
realistic western boundary current profile with an inflection point in its profile. Thus the dynamical role attributed to the 
eddies in Edwards and Pedlosky (1998) represents a robust aspect of the nonlinear shallow-water system and is not critically 
dependent on the choice of dissipation applied.
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Fig. 1. Velocity and height fields in a subdomain of the basin with source in the north and sink in the south at t = 1000: (a) Re = 
25 and central latitude is the equator; (b) as in (a) but with Re = 50; (c) as in (b) but with central latitude at y = 10. 
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Fig. 2. (a) Velocity and (b) potential vorticity gradient for the Munk boundary layer with δM = 0.1 and S0 = 0.025. Only shown 

to x = 1, though xE = 2 in calculations below. Dot-dashed curve marks the intersection,  = 0.059, which equals the phase speed 

of the fastest unstable mode with l = 6. 
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Fig. 3. (a) Growth rates as a function of meridional wavenumber for the velocity profile in Fig. 2  in the inviscid shallow-
water system. Decaying modes (not shown) are complex conjugate solutions. (b) Phase speeds for the fastest growing modes in 
(a).
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Fig. 4. Eigenfunction amplitudes of the most unstable modes in Fig. 3  at intervals of l = 0.5: (a) U, (b) V, and (c) H. The 
dashed curve corresponds to l = 0.01. 
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Fig. 5. As functions of meridional wavenumber and latitude, the (a) growth rate and (b) phase speed of the fastest growing 
mode for the Munk boundary layer in Fig. 2 . The dot-dashed curves in (a) mark ωi = 0.058 and 0.0584. 
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Fig. 6. As functions of meridional wavenumber and latitude, the (a) growth rate, and (b) phase speed for the fastest growing 
mode as in Fig. 5  but assuming geostrophic perturbations as in Eq. (5.3). 
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Fig. 7. Eigenfunction amplitudes of a subset, l = 1 to l = 6 in intervals of 0.5, of the fastest growing modes obtained using the 
basic state in Fig. 1a  and Re = 100 for the perturbation: (a) U, (b) V, and (c) H. Notice the broad peak in the V eigenfunction 
near x = 0.05. The dashed curve corresponds to l = 1. 
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Fig. 8. The height field anomaly after instability begins. The difference in height fields between steady solution at Re = 31.25 to 
Re = 32.25 after 300 time units.
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Fig. 9. As functions of meridional wavenumber and latitude, (a) growth rates and (b) phase speeds of the most unstable modes 

for the basic state (not shown) with δM = 0.05, using a viscosity of AH = 1.071 × 10−4 (Re = 28 for the perturbations). The dashed 

contour corresponds to a value of ωi = 10−4 and divides the domain into regions of growth and regions of stability. 
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Fig. 10. Zonal velocity anomalies for the basic state described in Fig. 9  at intervals of Δt = 400 showing the development of 
the eddy field after the time t0 = 1000 when the Reynolds number of the system was adjusted from 24 to 28. 
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