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ABSTRACT

The authors present a theory on the transport and resuspension of fine particles 
in a tidal boundary layer when the ambient tidal flow is nonuniform due to a 
peninsula along the coastline. As a first step toward better physical 
understanding the authors adopt the model of constant eddy viscosity and a 
horizontal seabed. Attention is focused on a peninsula whose horizontal 
dimension is much smaller than the tidal wave length but larger than the tidal 
excursion length. General expressions of shear-induced dispersivities and 
convection velocity are derived in terms of the ambient flow field. 
Nonuniformity in the horizontal flow is found to have profound effects on the 
spatial variation of the dispersion tensor as well as the horizontal convection 
velocity. Two numerical examples are given for a semicircular peninsula: one 
for a particle cloud released near the peninsula over a nonerodible seabed, and 
one for the resuspension over an erodible belt around the peninsula.

1. Introduction  

Transport of suspended sediments in coastal waters is of importance to coastline 
evolution and has been the subject of investigation for a long time. Recent interest 
has been motivated by environmental concerns of coastal waste disposal and the 
ecological processes of larvae birth and growth.

Dispersion of a neutrally buoyant cloud in a horizontally uniform oscillatory 
current has been studied by a number of authors (e.g., Bowden 1965; Holly and 
Harleman 1965; Okubo 1967; Fukuoka 1974). For the dispersion of heavy particles, 
Yasuda (1989) also gave a theory for an oscillating horizontally uniform current 
within a Stokes boundary layer. The effective dispersivity at the final stationary 
stage was found to depend on the fall velocity of the particles. Carter and Okubo 
(1965) investigated a straight channel flow with linear variation of velocity in the two transverse directions and obtained 
solutions for the concentration distribution of a neutrally buoyant cloud. Although many important physical features have 
been revealed, these studies are applicable only when the sediment cloud size and the distance of advection are much smaller 
than the horizontal scale of the mean flow. If one is interested in the long-time fate of a particular cloud with horizontal 
dimensions comparable to the length scale of an estuary, a nearby island or a peninsula, the uniform-tide theories cannot be 
satisfactory.
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For the mixing and flushing of tidal embayments in the Dutch Wadden Sea, Zimmerman (1976, 1977) found that the large 

diffusivity (100–1000 m2 s−1) is attributable to horizontal mixing in a spatially varying flow. Since then a number of papers 
have addressed the effect of horizontal variation of bathymetry or topography on advection and dispersion.

There have been two approaches to model mixing in nonuniform tides. One is to compute the depth-averaged flow first. 
Then the trajectories (or Stokes drift) of a large number of marked fluid particles are computed numerically as an Euler–
Lagrange problem (Zimmerman 1986). If the computed time history is sufficiently long, the particle paths of this Stokes 
drift become chaotic. Effective diffusivity is then calculated from the variance of the particle separation. Using this approach 
Awaji et al. (1980) and Awaji (1982) studied the tidal mixing in an idealized strait. Signell and Geyer (1990) studied a similar 
problem for a peninsula that is small compared to the tidal excursion length so that separation eddies are a dominant feature. 
The second approach, taken by Young et al. (1982) is Eulerian. They examined an idealized flow field with simple 
dependence on depth and horizontal coordinates, and sinusoidal dependence in time. The three-dimensional convective 
diffusion problem was solved to enable the calculation of the effective horizontal diffusivity.

In this paper we extend the Eulerian approach to dispersion in tidal flows affected strongly by nonuniformities due to 
coastal topography. Our main assumptions are as follows. The topographical length scale is assumed to be greater than the 
tidal excursion length so that flow separation is not important. Let h denote the sea depth, ro the horizontal size of the coastal 

topography, A the typical tide amplituide, ω the tidal frequency, and   A(gh )½/h the typical horizontal flow velocity.1 

Just above the seabed, an oscillatory Ekman boundary layer of the thickness δ = O((νe/ω )½) is expected to develop, where 

νe denotes the eddy viscosity of momentum. The various scales involved in this problem are assumed to satisfy the 

following constraints:

 

They mean, respectively, that the tidal excursion is small compared to the island size, the Ekman layer is totally submerged 
near the sea bottom beneath the inviscid zone, the sea is very shallow compared to the topographical length scale, which is 
in turn very small relative to the tidal wave length 2π/k. In addition, we shall model the resuspension of fine particles from 
the seabed by the usual empirical formula that the erosion rate is a function of the shear stress at the seabed (Krone 
1962;Partheniades 1965) and assume that the heavy particles are kept in suspension by flow turbulence in the tidal boundary 
layer. Formation of agregates of cohesive sediments is not considered.

The conditions of Eq. (1.1) are easily met. Taking for estimate the tidal amplitude A = 1.75 m, average depth h = 30 m, 

then  = A(gh )½/h = 1 m s−1. Let the tidal period be 12 h so that ω = 2π/12 (1/h) = 1.45 × 10−4 (1/s), and the radius be ro 

= 50 km, then  = /(ωro) = 0.138 and is small. 

Concerning the eddy viscosity, there have been many depth-dependent models in the literature of gravity waves (Sleath 
1990) and of tidal currents (Soulsby 1990). It is known that despite the varieties of models (constant, linear, parabolic, 
exponential), the resulting first-order velocity profiles do not differ qualitatively (see, e.g., Soulsby 1990, p. 531). For 
achieving analytical results, we shall choose the simplest model of constant eddy viscosity with no-slip boundary at the 
seabed (Sverdrup 1927; Mofjeld 1980; Kundu et al. 1981; and Fang and Ichiye 1983). To help guide the estimate of order of 
magnitudes we use the usual assumption (Soulsby 1983)

νe = κu z,(1.2)
 

where κ = 0.4 is the von Kármán constant and u  = (τb/ρ )½ is the friction velocity, which depends on the local shear 

stress at the bed. As estimates we may take u* = 1 cm s−1 for a smooth mud bed and u* = 2.5 cm s−1 for a rippled sandy 

bed (Soulsby 1983, p. 196), then for a tidal boundary layer of depth 10 m, νe = 0.02–0.05 m2 s−1, which is consistent with 

the estimates by Bowden and Fairbairn (1953). Clearly (1.2) implies that the eddy viscosity is a function of local flow, but its 
full use would require a considerable numerical task, which is not attempted here.

Under our simplifying assumptions, we take advantage of two features of the phenomenon: (i) the existence of two vastly 
different timescales (time for vertical diffusion across the sea bed boundary layer and time for horizontal diffusion across the 
topographical length) and (ii) the problem is periodic on the shorter (micro) timescale, which is just the tidal period. These 
features enable us to employ the perturbation method of multiple scales (method of homogenization) for deriving the 
effective equation governing the horizontal convection and dispersion of the particle concentration. Both the dispersivities 
and convection velocities will be derived for general flow patterns with significant spatial variations produced by the 
interaction of tides with lateral boundaries. The analysis is an extension to our earlier works on gravity waves over a 
nonerodible seabed (Mei and Chian 1994) and an erodible seabed (Mei et al. 1997) without Coriolis effects. 



2. Flow in the tidal boundary layer  

Under the second assumption in Eq. (1.1), the boundary layer equations can be written:

 

where u = (u, ) denotes the horizontal velocity vector, w the vertical velocity component, νe the eddy viscosity, and Ω = 

Ωk  is the local angular velocity of the earth rotation, with Ω = 2π sin /day and  being the local latitude; UI denotes the 

horizontal velocty of the inviscid flow field just outside the boundary layer,

 

where asterisks signify complex conjugates.

The first assumption in Eq. (1.1) permits one to expand the velocity in the boundary layer as

u = u(1) + u(2) + · · · ,

 

where the superscripts indicate the order of magnitude in powers of . At the leading order, the horizontal momentum 
equation reads

 

The first-order horizontal velocity in the bottom boundary layer was given first by Hunt and Johns (1963) as follows:

u(1) = Re[(U0F1 − V0F2)e−iωt],(2.4)

 

(1) = Re[(U0F2 + V0F1)e−iωt](2.5)

 

in which

 

where

 

and

 

As has been shown by Buchwald (1971) that under the last two assumptions in Eq. (1.1), the inviscid tidal flow (UI, VI) 

can be described essentially by a two-dimensional, quasi-steady velocity potential, while the vertical velocity component is 
negligible. In particular,



 

It follows readily from continuity that the vertical velocity in the boundary layer is of the order

 

and is negligible (Lamoure and Mei 1977). As a further consequence the spatial factors U0 and V0 are in phase and may 

be taken as real quantities with respect to i. Based on these Lamoure and Mei have solved the approximate momentum 
equation at second order, O( ),

 

The period average of u2 gives the Eulerian streaming induced by Reynolds stresses in the tidal boundary layer. Using real 

notation, the second-order-induced streaming is given by

 

 

where

|U0| = (|U0|2 + |V0|2)1/2;(2.17)

 

angle brackets denote time averages over a tidal period, and HE( ) marks the vertical variation of Eulerian streaming in the 

boundary layer

 
(Click the equation graphic to enlarge/reduce size)

where

c = (1 + i)(f  )½.(2.19)

 

In Eq. (2.18) the expression in the second pair of braces is obtained from the first pair by the indicated change of 
parameters. This result has been derived and discussed by Lamoure and Mei.

3. Governing equation for particle transport  

Consider a dilute cloud of fine particles either released from a dredge boat or resuspended locally from an erodible bed. In 
general, the sediment size is distributed over a certain range. Since for a dilute cloud interaction among particles is negligible, 
one can divide the size distribution into a discrete set of particle sizes, each of which is characterized by a fall velocity wo. 



After analyzing the concentration of each size, the evolution of the entire cloud can be obtained by linear superposition. In 
the sequel only one size is considered.

We first give reasons that the inertia of sufficiently small particles can be ignored. The ratio of the relaxation time τ for a 
particle to adjust to the ambient mean flow to that of the tidal wave period can be estimated by

 

(Bagnold 1951) with d, ρp, CD, and Δu being respectively the diameter and density of the particle, the drag coefficient, 

and the representative initial velocity difference between a particle and the ambient fluid. With CD = O(1) and Δu = O(1) m 

s−1, this ratio is about O(10−5) for d = O(0.1) mm = 100 μm (fine sand) and is very small so that the particles are essentally 
inertia free. In a turbulent field, fine particles can also be considered inertia free relative to turbulent fluctuations if they are 

small compared to the Kolmogorov length, lk = (ν3l/u′3)1/4, which is the smallest length scale of viscous eddies; that is,

 

where ν is the molecular viscosity of water, l is the eddy size, and u′ the velocity scale of turbulent fluctuations. It is 
reasonable to use the boundary layer thickness δ as the scale of l and friction velocity u  = τb/ρ as the scale of u′, where τb 

stands for the bed shear stress. Estimating the tidal boundary layer thickness to be l = 10 m and u  = O(0.01) m s−1, we 
have lk = O(1.8) mm, which is much greater than the diameter of fine sand. We shall, therefore, ignore the velocity 

difference between the particle and its surrounding fluid.

Let D and Dh be the vertical and horizontal eddy mass diffusivities respectively. The convection–diffusion equation for the 

concentration C of a dilute particle cloud can be approximated by

 

where i = 1, 2 corresponding to the two horizontal coordinates. 

From the experiments by Krone (1962) and Patheniades (1965) for steady flow over an erodible bed, the net rate of 
erosion or deposition of cohesive sediments is related to the excess of bed shear stress above a threshold stress. In its 
simplest form it reads

 

where τc > τd and

 = αdwdC(3.5)
 

represents the rate of deposition, wd is the deposition velocity, αd is an empirical coefficient no greater than unity, and

 = E(|τb| − τc)(3.6)
 

represents the rate of erosion while E is another empirical coefficient. Normally τd ranges from 0.03 0.15 N m−2 for 

various types of sediments, while τc lies between 0.15 N m−2 and 1 N m−2; see Tables 11.3, 11.7, and 11.8 in van Rijn 

(1994). The surface layer of the seabed is usually covered with partially consolidated or unconsolidated particles for which 
τc is considerably less than the bed shear stress in the tidal wave boundary layer, namely, |τb|  τc. Thus, we shall neglect τc 

as well as τd (<τc) and approximate Eq. (3.4) by

 



Furthermore, in a steady turbulent flow, particles, once suspended, can remain in suspension without deposition if w0/κu  

< O(1) (Batchelor 1965), where u  and κ are the bottom shear velocity and the von Kármán constant, respectively. As an 

estimate let us take u  = O(0.01) m s−1, then the above condition is satisfied for wo > O(0.004) m s−1, which corresponds 

to a sand size d = O(0.1) mm or finer. In any case, inclusion of the small effects of τd and τc is merely cumbersome but not 

difficult.

Because sand particles are heavier than water, they are kept in suspension by the flow turbulence, hence are essentially 
confined inside the tidal boundary layer. We therefore assume that C vanishes at the upper edge of the boundary layer

C = 0, z  ∞.(3.8) 

4. Scaling and normalization  

There are three vertical length scales pertinent to the boundary layer:

δs = D/w0,δu = (2νe/ω )½,δc = (2D/ω )½.(4.1)

 

Here δs denotes the thickness of a steady concentration layer resulting from the settling of particles and the upward 

turbulent diffusion, and δu and δc are the boundary layer thicknesses corresponding to momentum and mass diffusion, 

respectively. For generality we shall assume that all three scales are comparable to one another and therefore characterized 
by a single scale δ; that is,

O(δ) = O(δs) = O(δu) = O(δc).(4.2)
 

and thus the Schmidt number is of order unity.

Sc = νe/D = (δu/δc)
2 = O(1).(4.3)

 

Indeed, if Reynolds analogy is assumed, Sc = νe/D is precisely unity.
 

Two small length ratios are crucial in this study. Compared to the horizontal dimension of the peninsula,

 

is a measure of the tidal excursion length, and

 

where 1 is a dimensionless measure of the boundary layer thickness. We shall assume that O( 1)  O( ), the 

consequence of which is that horizontal turbulent diffusion will remain effective in the long-term transport of sediment 

concentration. Estimating Dh/D = 104, δ = 10 m, and r0 = 50 000 m, we get 1 = 0.02, which is much smaller than ; 

hence our assumption is a generous one.

Let us introduce the normalized variables as follows:

 

In dimensionless form, the governing equation reads, with the asterisks omitted for brevity,



 

where Pe = w0δ/D is the particle Péclet number and z* =  by definition.
 

As shown by Mei et al. (1997), the characteristic concentration C0 can be estimated by balancing the rate of erosion and 

the net horizontal flux by Eulerian streaming within the boundary layer, namely,

 

where E denotes the scale of the Eulerian steady streaming. From (2.15) and (2.16) we can estimate

 

where  = A(gh )½/h for long waves in shallow seas; hence

 

The shear stress on the sea bottom can be estimated from the boundary layer theory as

 

therefore

 

Using this, the normalized boundary condition at the seabed reads

 

where

 

This scale estimate is consistent with field observations by Huhe and Yang (1996), Yu et al. (1993), and cited by Mei et al. 
(1997). 

In the present problem there are two timescales: One is ω−1 = T/2π = O(δ2/D), which characterizes the vertical diffusion 

across the boundary layer. The other is the timescale for horizontal transport by convection across the peninsula, r0/‹u(2)›; 

the timescale for horizontal diffusion r2
0/Dh is much longer and immaterial. Using either Eq. (2.15) or Eq. (2.16) we get ‹u

(2)›  = O( 2/ωr0). Therefore, the timescale for horizontal transport is r2
0ω/ 2. The ratio between two timescales for 

vertical and horiontal transport is O( 2). Accordingly we may introduce a slow time variable T = 2t. 

5. Effective equation for horizontal particle transport  

With these order estimates it is possible to return to physical coordinates by keeping the order symbols in order to mark 
the relative magnitudes. Thus, we have



 

 

As in Mei and Chian (1994) and Mei et al. (1997), we employ multiple-scale expansions

 

At the leading order O(1), the equation is quasi-steady and homogeneous.

 

subject to the homogeneous boundary conditions

 

Thus, the solution,

C(0) = (xi, T)e−Pe ,(5.8)

 

represents the time-averaged concentration, whose dependence on xi, T through the factor (xi, T) is yet unknown.
 

At O( ), we have the equation for the concentration fluctuation C(1) from the mean.

 

subject to the same boundary conditions, Eqs. (5.6) and (5.7). In Eq. (5.9) we have dropped the term w1 C(0)/ z because 

w1 is negligible near a small peninsula, as pointed out before in section 2. Let

C(1) = ReC11e−iωt.(5.10)

 

Using the solutions for u1i as given in Eqs. (2.4) and (2.5), the formal solution for C(0), and the boundary conditions for C

(1) we obtain

 



with

 

 

 

Note that Pe is the particle Péclet number, which increases with the particle fall velocity, hence its diameter;Sc is the 
Schmitt number measuring the ratio of momentum and mass diffusivities.

At O( 2) C(2) is governed by

 

Taking time average and integrating across the boundary layer and noting that the concentration vanishes at the top of the 
layer and that the vertical velocity must be zero at the bottom, we get the effective transport equation for C:



 

where overbars denote vertical integration across the boundary layer and F = e−Pe . Using the results Eqs. (2.4), (2.5), 
(5.11), and (2.15), we finally have the following effective transport equation:

 

The effective convection velocity UE has the components

 

where

 

with

 

and

 

Recall that α(f) and β(f) are defined in Eq. (2.10), while q(f) and c(f) are defined in Eqs. (2.8) and (2.19) respectively. 
The polar plot of complex coefficient H1 is presented in Fig. 1  for a wide range of f. Referring to (5.23), the effecive 

convection velocity field is the weighted depth average of the Eulerian streaming velocity, proportional to the Reynolds stress 
imposed by convective inertia in the inviscid flow above the boundary layer. The complex factor H1 combines the effects of 

shear and the concentration variation F inside the boundary layer. The ratio ImH1/ReH1 = tan−1θH gives the angle θH 

between the driving external Reynolds stress and the convection current, as a result of earth rotation. Thus, for f  − 0, ImH1 



= 0 so that the angle is zero. But as f  increases to 1, the convection velocity is inclined at 67° clockwise from the external 
Reynolds stress. For f  increasing past unity, the angle θH decreases again. 

The dispersion tensor is in general nonsymmetric and has the components

 

Note that all these components depend quadratically on the ambient velocity components. Moreover, the coefficients

 

 

in which {a1, a2, a3, a4} = {A1, −1, −A
α
, −A

β
}, represent the integrated effects of the vertical variation of the fluctuating 

velocity and concentration inside the Ekman boundary layer, hence the coefficients H4i, i = 1, 2, 3, 4, are functions of f, Sc, 

and Pe. Since U0, V0 are in phase and can be taken as real numbers, only the real parts of H4i are needed, and are plotted in 

Fig. 2  as functions of the particle Péclet number Pe for and three different values of Sc. To represent midlatitudes we 

select f  = 0.666, which corresponds to the Italian peninsula of Prom. del Gargano2 at latitude 41°50′ on the southwest coast 
of the Adriatic Sea.



The magnitudes of all of these coefficients achieve their greatest values near Pe  1. Dependence of these coefficients on 
f  is plotted in Fig. 3  for Pe = 1 and three values of Sc. Discontinuity in slope at f  = 1, that is, ω = 2Ω is a common 
feature caused by the change of sign in Eq. (2.9). 

The effective convection–dispersion equation can be written in conservation form

 

where

 

is the particle flux vector.

Under the present assumption of constant depth, the shore must be a vertical cliff normal to which there is no horizontal 
flux; that is,

 

For presentation of numerical results, it is convenient to renormalize the variables as follows:

 

where the concentration scale depends on the problem to be specified later. The effective convection–diffusion equation 
then becomes

 

In the following sections we shall limit our discussion to a semicircular peninsula. The first-order spatial dependence of 
the inviscid velocity field is then simple and is identical to that for uniform flow passing a circular cylinder

 

where r′ = r/ro. The mean velocity of Eulerian streaming is shown for f  = 0.666 in Fig. 4 , showing a distinct 

asymmetry due to earth rotation and a convergence to a coastal region near θ = 135°. In contrast, the mean streaming field 
in a nonrotating sea would be symmetrical with respect to the offshore (y) axis of the peninsula, with convergence toward 
the offshore tip of the peninsula (Lamoure and Mei 1977). 

In Fig. 5  we display the Cartesian components of the dispersion tensor Eij for the semicircular peninsula, for f  = 

0.666, Pe = Sc = 1. Again, the asymmetry is notable. For f  = 0 these components are symmetrical with respect to the y axis, 

as shown in Fig. 6 . For rough estimate let us take again  = 1 m s−1 and ω = 1.45 × 10−4 s−1. From Fig. 2  the 

typical value of Eij near the peninsula is 0.05, therefore the dispersivity is of the order Eij  0.05 2/ω = 345 m2 s−1, which 

is consistent with the data cited by Zimmerman (1976a, b) and far greater than the eddy diffusivity. 



In the following section we examine the spreading of a particle cloud for two examples. In the first a particle cloud is 
initially released into the bottom boundary layer near the peninsula; the surrounding sea bed is nonerodible. This is to simulate 
the fate of particles dumped into sea. In the second we examine the transport of sediments eroded from a strip of the sea 

bed surrounding the peninsula. The dimensionless horizontal diffusivity is taken to be D′
h = 0.001. For  = 1 m s−1, the 

physical diffusivity is Dh = 6.9 m2 s−1, which is about 350D and far smaller than the typical dispersivity to be discussed. 

The implied ratio 1 is much smaller than  for an island of 10–100-km radius. Details of the numerical scheme are 

described in appendix B. 

6. Release of a particle cloud  

Let the initial concentration be Gaussian and the maximum initial concentration be chosen as C0 for the scale of 

normalization. If the initial cloud has the dimensionless standard deviation S and is centered at x′c, y
′
c, then

 

where x′c = r′c cosθc, y
′
c = r′c sinθc. In all calculations we take r′c = 1.3 and S = 0.1. The Coriolis factor is taken to be f  = 

0.666. Three locations of initial releases have been considered: θc = 45°, 90°, and θc = 135°. In each case the snapshots at 

T′ = 1, T′ = 2, T′ = 3, and T′ = 4 are plotted. Note that for Prom. del Gargano ro = 35 km,  = 1 m s−1 ω = 1.45 × 10−4 

s−1. T′ = 1 corresponds to 2.1 days. For comparison the tidal timescale is 1/ω = 0.08 day. Only the results for θc = 45° and 

135° are shown here. In Fig. 7  we show the concentration contours when the initital cloud center is at r′c = 1.3, θc = 

45°. At T′ = 1 the initially concentric circular contours become tilted ellipses due mainly to the off-diagonal dispersivities 
(Exy and Eyx). Some particles are transported toward the coastline around the point (r′ = 1, θ = 45°) as a result of both 

Eulerian convection and diffusion from the cloud center. Since the normal flux vanishes at the vertical shore, particles tend 
to pile against the shore, and the local radial gradient of the concentration reverses; that is, C/ r changes from positive to 
negative. Consequently, two local concentration peaks appear, one, designated as P1, say, corresponds to the center of the 

initial cloud that is affected purely by convection, since the local concentration gradient is zero. The other peak corresponds 
to the accumulation along the coast, designated as P2, say, and moves along the circular coastline. Note that at T′ = 1, P1 

has not moved much from its original location owing to the small local convection velocity (cf. Fig. 7a ). However, P2 is 

displaced quite far from where the particle cloud first reaches the coast. More interesting is that P2 passes the point where 

the Eulerian streaming converges around (r′ = 1, θ = 135°), instead of stopping there. To understand this phenomenon we 
express in polar form the component of particle flux along the circular coastline,

 

The last term plays a small role in displacement of P2 where C/ θ vanishes. The second term on the right-hand side 

stands for the longshore flux due to the radial gradient, a result of the off-diagonal dispersivity E
θr. As shown in Fig. 8 , 

E
θr is positive along the entire rim of the island. Since C/ r is negative, the longshore flux is along the positive θ direction. 

Now the physical picture is clear:

1. When a peak is formed at the coastline due to local accumulation of particles, it is transported along the direction of 
increasing θ by both convection and diffusion. 

2. When the peak of accumulation P2 reaches the converging point of the convection field, the term representing off-

diagonal dispersibity E
θr C/ r dominates and tends to move the peak P2 past the point of velocity convergence. The 

clockwise convection velocity is too weak to counter the trend until the peak is finally stopped by the straight 
coastline.

From Figs. 7b–d  it can be seen that P1 moves from its original location (0.9, 0.9) in the x, y plane to about (0.8, 1.0). 

The concentration at P2 increases with time due to additional accumulation of particles. 

For other locations of initial release, the results are qualitatively the same [see Figs. 9a–d  for initial release at (r′c = 1.3, 

θc = 135°)]. Thus, regardless of the different locations of initial release, the peak of the concentration cloud eventually 

reaches and stays around the stagnation point at r′ = 1, θ = 180°. Translating these results for Prom. del Gangano, we may 



expect significant accumulation of suspended particles near the northwest corner, one or two weeks after dumping dredged 
mud somewhere nearby.

Along the equator the effects of earth rotation vanish since f  = 0; the velocity field is symmetrical with respect to the y 
axis. Accordingly, the convection field and the dispersivity tensor are symmetrical with respect to the y axis. No matter 
where it is initially released, the cloud finally moves to the coastline and converges to the offshore tip of the peninsula. We 

only show in Fig. 10  the results for the case where the center is released at r′c = 1.3, θ = 45°. Thus, convection by 

Eulerian streaming, already predicted by Larmoure and Mei (1977), dominates the phenomenon, unlike the case with f   0. 

7. Erosion and transport of bottom sediments  

We consider a peninsula surrounded by a ringlike strip of erodible seabed covering the region r0 < r < r1, 0° < θ < 180°. 

The bottom shear stress is dominated by the vertical derivative of the oscillatory horizontal velocity at z = 0, which can be 
evaluated from (Eqs. 2.4) and (2.5).

 

where q and s are defined in Eqs. (2.8) and (2.9). Limiting our discussion to f  = 2Ω/ω < 1 only, it can be shown that

 

The time average over a wave period is

 

in which I denotes the elliptic integral

 

which can be evaluated numerically.

We now choose the concentration scale to be

 

so that the normalized erosion term on the right of (5.44) is

 

Using Eq. (5.45), we find for the semicircular peninsula



 

which is plotted for r′1 = 1.5 in Fig. 11 . Note that this spatial variation is symmetrical with respect to the y axis and is 

unaffected by earth rotation because of the small size of the peninsula.

Computed results representing the evolution of the sediment concentration are shown for both f  = 0 and f  = 0.666. The 
corresponding elliptic integrals are I = 5.65685 and 6.12751 respectively. 

As in the case of a nonerodible bed, once the particles are eroded from the bottom and resuspended, they drift toward the 
shore, resulting in a very sharp radial gradient. The concentration contours are asymmetrical with respect to y axis for f   0 
but symmetrical for f  = 0, as expected. At large times, the peak of the resuspended sediment cloud moves past the region of 
velocity convergence and eventually settles around the stagnation point at θ = 180°, if f   0; see Fig. 12  for f  = 0.666. 
Without rotation, however, the cloud settles around the point of velocity convergence; see Fig. 13 . 

Since the source term ′ due to erosion is independent of time in our theory, the total mass in suspension increases with 

time at a constant rate.

8. Concluding remarks  

Due to vertical shear in the bottom boundary layer, the effective diffusion in the horizontal direction is magnified. This 
magnification is very large since the tidal period is long, resulting in a dispersivity much greater than the eddy diffusivity. It 
should be stressed that the flow inside the boundary layer is determined by the flow above, which is in turn affected by 
bathymetry and coastline configuration. Therefore, the effective diffusivity and convection velocity are directly affected by 
the overall nonuniformity of the flow field and must, in general, vary from place to place. This means, in particular, that the 
dispersivity coefficients cannot be regarded as empirical constants to be calibrated by field measurements at a few stations. 

For the special example of a semicircular peninsula we have found that the fate of a suspension cloud, whether it is 
released over a nonerodible bed or resuspended directly from an erodible bed, is determined jointly by the tide-induced 
circulation and dispersion. In general, for f   0, the off-diagonal components of the dispersion tensor can overwhelm 
convection and drive the particle cloud to points away from where the convection velocity converges.

Several extensions of the present theory are desirable. First, for coastal applications, the combined effects of depth 
variation and wind input are vital. Wind can of course induce both currents and short gravity waves. As the depth decreases 
toward the shore, the influence of waves increases while that of the current must diminish due to bottom friction. Erosion 
must be largely the work of wind waves, while the transport of suspended particles is taken up by currents driven both 
directly by wind and indirectly by wave-induced currents through wave-induced Reynolds stresses (which are, of course, 
also the results of wind). Second, a more sophisticated turbulence model, calibrated by extensive field measurements, would 
bring predictions and observations closer. In particular, if the depth-dependent model (1.2) is used, the eddy viscosity itself 
would vary with the local flow and would affect the present predictions quantitatively. Third, very fine suspensions do not 
remain close to the bottom and can reach the upper layers of the sea. Knowledge of convection and dispersion throughout 
the entire depth of water is therefore needed. Fourth, due to sediment consolidation the erosion rate cannot remain 
unchanged in time (van Rijn 1993). The relation between erosion and consolidation is an unchartered territory of sediment 
dynamics and awaits detailed study. Finally for very fine sediments cohesive interactions such as floculation involve 
physicochemical processes beyond hydrodynamics; proper theories are true challenges for the future.
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APPENDIX A  

9. List of Symbols  

1. D eddy mass diffusivity 

2.  rate of deposition 

3. δ boundary layer thickness 

4. Eij effective dispersion tensor
 

5.  rate of erosion 

6.  ratio of tidal excursion to island radius 

7. 1 ratio of boundary layer thickess to island radius
 

8. f  2Ω/ω 

9. F1, F2, F vertical structures in the boundary layer

 

10. k wavenumber 

11. ni ith component of unit normal vector
 

12. νe eddy viscosity for momentum
 

13. Pe particle Péclet number

14. r radius in polar coodinates 

15. Sc Schmitt number

16. θ angle in polar coordinates 

17. u fluid velocity in the boundary layer 

18. U fluid velocity above boundary layer 

19. u(1), u(2), . . . Perturbation fluid velocity at the first, second, . . . , order

 

20. UE Eulerian streaming velocity induced by Reynolds stresses

 

21. x, y horizontal coordinates 

22. z vertical coordinate from the sea bed 

23. ‹X›  time average of X over a wave period 

24. X weighted depth average of X across the boundary layer. 

APPENDIX B  



10. The Numerical Scheme  

We first split the dispersion tensor Eij into symmetric Dij and antisymmetric Aij parts and rewrite the governing equation 

in the following form:

 

where

 

These are then transformed in polar coordinates,

 

with

 

 

As the radial variation near the peninsula is expected to be very rapid, we introduce the stretching: r = exp(2π ) and η  = 
θ/π so that Eq. (B.5) becomes



 

where

 

and

 

The alternating direction implicit scheme is unconditionally stable and allows us to use reasonably large time steps with 
second-order accuracy. A second-order approximation for the normal derivative is employed for the no-flux boundary 
condition on the coast.

As a confirmation of numerical accuracy, we check that total mass is conserved in the nonerosion case:

 

where the Jacobian determinant is given by

 

With time marching, the computed total mass, however, increases slightly due mainly to the temporal accumulation of 
numerical errors and the inaccuracy in numerical integration for the total mass. The improvement of numerical accuracy by 
denser grids is shown here where the relative mass increase is shown at a certain time after an initial release at a particular 
location.

Tables  

Table 1B. Dependence of numerical accuracy on density of grids.
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Figures  
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Fig. 1. Dimensionless complex coefficient H1 (f, Pe) for the mean convection velocity as a function of Coriolis number f = 2Ω sin

/ω for Pe = 1. 
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Fig. 2. Dimensionless dispersivity coefficients as functions of Pe for f = 0.666. Dash: Sc = 0.1, solid: Sc = 1 and, dash–dot: Sc = 
10.
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Fig. 3. Dimensionless dispersivity coefficients as functions of f for Pe = 1. Dash: Sc = 0.1, solid: Sc = 1, and dash–dot: Sc = 10. 
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Fig. 4. Weighted depth average of convection velocity UE in tidal boundary layer for f = 0.666 and Pe = 1.
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Fig. 5. Dispersivity tensor components around a circular peninsula for f = 0.666, Pe = 1, and Sc = 1. 
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Fig. 6. Dispersivity tensor components around a circular peninsula for f = 0, Pe = 1, and Sc = 1. 

 
Click on thumbnail for full-sized image. 

Fig. 7. Evolution of particle concentration. Cloud center is initially released at northeast (r′c = 1.3, θc = 45°) for f = 0.666, Pe = 1, 

and Sc = 1.
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Fig. 8. Off-diagonal dispersivity tensor component E
θr around a circular peninsula for f = 0.666, Pe = 1, and Sc = 1.
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Fig. 9. Evolution of particle concentration. Cloud center is initially released at northwest (r′c = 1.3, θc = 135°) for f = 0.666, Pe = 

1, and Sc = 1.
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Fig. 10. Evolution of particle concentration. Cloud center is inititally released at northeast (r′c = 1.3, θc = 45°) for f = 0, Pe = 1, 

and Sc = 1.
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Fig. 11. Dimensionless erosion rate around a circular peninsula due to tidal oscillations.
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Fig. 12. Evolution of concentration of resuspended particles. For f = 0.666, Pe = 1, and Sc = 1. Dash curve indicates outer edge 
of erodible bed.
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Fig. 13. Evolution of concentration of resuspended particles for f = 0, Pe = 1, and Sc = 1. Dash curve indicates outer edge of 
erodible bed.

 



 

 

 

Corresponding author address: Dr. Chiang C. Mei, Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Room 1-
353, Massachusetts Institute of Technology, Cambridge, MA 02139.

E-mail: ccmei@mit.edu 

1 These and other mathematical symbols are summarized in appendix A.
 

2 For reference, the shape of Prom. del Gargano is not too far from a semicircle with a radius of 35 km. The 50-m depth contour is about 20 km 
offshore. The coastline extends from northwest to southeast.
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