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ABSTRACT

The evolution of the covariance of two tracers involves a quantity called 
codissipation, proportional to the covariance of the gradients of the two tracers, 
and analogous to the dissipation of tracer variance. The evolution of the 
variance of a composite tracer—a linear combination of two simple, primary 
tracers—depends on the“composite dissipation,”  a combination of the individual 
simple tracer dissipations and the codissipation. The composite dissipation can 
be negative (implying growth of the variance of the composite tracer) for 
structures in which the correlation of the simple tracer gradients are large 
enough (i.e., large codissipation). This situation occurs in the phenomena of 
double diffusion and salt fingering. A particular composite tracer called 
watermass variation, a measure of water-type scatter about the mean tracer 
versus tracer relationship, lacks production terms of the conventional form—
tracer flux multiplying tracer gradient—in its variance evolution balance. Only 
codissipation can produce variance of watermass variation. The requirements 
that watermass variance production and dissipation be in equilibrium, and that 
no other composite tracer variance be tending to grow due to codissipation, lead 
to a particular relation among codissipation and the simple dissipations and 
between the simple dissipations themselves. The latter are proportional to one 
another, the proportionality factor being the square of the slope of the mean 
tracer versus tracer relation. The same results can be obtained by modifying 
Batchelor’s argument to give the equilibrium cospectrum of two tracer gradients 
at high wavenumbers in a well-developed field of isotropic turbulence. As a 
consequence of these arguments, the turbulent eddy tracer fluxes are also 
proportional, with the mean tracer–tracer slope as proportionality factor. 
Further, the ratio of turbulent diffusivities of two tracers is unity. The 
dissipation of buoyancy, a composite tracer constructed from temperature and 
salinity, is proportional at equilibrium to thermal dissipation multiplied by a factor that depends on the stability ratio. 
This previously established result is obtained here under less restrictive conditions.

1. Introduction  

This paper examines the links between variance dissipations of several tracers and the watermass relations among the 
mean tracers. Dissipation by molecular diffusive processes of the variance of the concentration of a tracer is related, under 
temporally stationary and spatially homogeneous conditions, to the turbulent transport of the tracer down its mean gradient 
(Osborn and Cox 1972). This principle has been most commonly applied to infer vertical heat flux from thermal variance 
dissipation because this is the only tracer dissipation that has been amenable to direct observation in the ocean. It should also 
be possible to calculate salinity flux from salinity variance dissipation, although the small scales on which the salinity 
variance dissipation presumably takes place have resisted measurement (Gregg 1987). A similar statement could be made 
about the variance dissipation of any arbitrary tracer. The ability to infer one tracer variance dissipation from another would 
be an important tool for estimating and modeling mixing of tracer concentrations in the ocean. A firm appreciation of the 
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limitations and implications of such theoretical inferences is just as important. Stommel and Csanady (1980) showed how 
the large-scale heat and salt (or freshwater) transports that must be exchanged between watermasses determine the T–S 
relations of those watermasses. This poses a fascinating link, first considered by Stern (1968), between processes on the 
microscale (tracer variance dissipation and downgradient tracer fluxes) and the large scale (watermass relations and ocean 
circulation).

A quantity of considerable dynamical importance in the ocean is buoyancy, which is approximately a linear combination of 
temperature and salinity. It has been suggested that because of the stable temperature–salinity relation occurring in most 
parts of the ocean, the dissipation of salinity variance, and hence of buoyancy variance, can be related to temperature 
variance dissipation (Gregg 1987; Gargett and Moum 1995). If this can be done, diapycnal buoyancy flux can be inferred. 
Hence, the general relations among tracer variance dissipations, and mean watermass properties, are topics of considerable 
dynamical interest.

Buoyancy variance is composed of a linear combination of thermal variance T′2, salinity variance S′2, and the covariance 
T′S′. An evolution equation can be obtained for the covariance of two tracers (Stern 1968). This contains a term analogous 
to the simple variance dissipations, which we call codissipation. The buoyancy variance evolution equation then contains a 
sum of terms proportional to the simple thermal and salinity dissipations and the codissipation. A similar statement can be 
made for the variance of any linear combination of temperature and salinity (or any other tracers). The appropriately 
weighted sums of simple dissipations and codissipation in the variance equations of such composite tracers appear to play a 
role analogous to dissipation for a simple tracer. The curious fact about composite-tracer “dissipation”  is that its positive 
sign cannot be guaranteed, especially when there is a wide disparity in the molecular diffusivities of the simple tracers of 
which it is composed. This characteristic is evident in the phenomena of double diffusion and salt fingering, where 
structures in mixtures of several tracers of disparate molecular diffusivities can grow if their gradients are correlated above a 
certain threshold.

One particular composite tracer we find especially interesting is the watermass variation between two tracers. This tracer 
is constructed by subtracting the simple tracers, each scaled by its mean gradient. This combination measures the variation 
from the mean watermass relation on the tracer–tracer diagram (Stern 1968, 1975). Its variance equation contains no 
production terms of the standard form of a turbulent flux multiplying a mean gradient (because the latter is zero by 
construction). Only the composite dissipation term appears, made up of the individual dissipations and the codissipation. 
Since, for equilibrium, the composite dissipation of watermass variation must vanish, a particular relation is implied between 
the codissipation and the simple dissipations.

The dissipation of an arbitrary composite tracer is a specific function of the correlation between the gradients of the 
turbulent fluctuations of the simple tracers. If fluctuation–gradient correlation exceeds a certain level, a certain range of 
composite-tracer variances will tend to grow. Only a particular value of the fluctuation–gradient correlation will ensure 
nonnegative dissipation of all possible composite tracers. This value determines a unique relation between the simple tracer 
dissipations and among the codissipation and the simple dissipations. The same relation is obtained by generalizing 
Batchelor’s (1959) argument for the form of the gradient spectrum of a passive tracer being deformed by a field of 
isotropic, homogeneous turbulence at statistical equilibrium. As all composite-tracer dissipations are then positive (except for 
watermass variation, whose variance dissipation is zero), the dissipation for buoyancy, in particular, is proportional to 
thermal dissipation. The proportionality factor depends on the stability ratio of the mean temperature and salinity gradients, 
according to a formula obtained by Gargett and Moum (1995) under more restrictive assumptions. 

2. Dissipation, codissipation  

In this section we derive evolution equations for tracer variance C′2j and for the covariance of two tracers C′1C′2. The 

former is routine, while the latter, though derived in a similar way, was obtained by Stern (1968). 

Consider a tracer whose concentration per unit volume is Cj in a turbulent solenoidal motion field. The tracer 

concentration is governed by

 

where Dj is the molecular diffusivity of the substance Cj. Suppose the motion and tracer fields consist of an ensemble 

mean and fluctuations:

u = u + u′, Cj = Cj + C′j.(2)

 

Substitute in (1) and average over the ensemble

 

where D/Dt = t + u·  is the substantial derivative following the mean motion. Subtract (3) from (1):



 

Construct an equation for the mean square of fluctuations by multiplying (4a) by 2C′j and averaging:

 

(no summation over j) where

χj  2Dj| C′j|
2(5b)

 

is the mean dissipation of variance of species j. 

Construct an equation for the correlation of fluctuations of two tracers C1, C2 by writing (4a) for j = 1 and j = 2, 

multiplying by C′2 and C′1 respectively, adding and averaging. The result is

 

where

χ12 = (D1 + D2) C′1· C′2(6b)

 

is the codissipation. Wyngaard et al. (1978) obtained a similar equation in which they called χ12 “molecular destruction.”  

They displayed cospectra of temperature and humidity measured in an atmospheric boundary layer, showing clear evidence 
of a (−5/3)-power wavenumber dependence in an inertial subrange.

The structure of Eq. (5a) is familiar and has been often remarked on (Tennekes and Lumley 1972). The term −2u′C′j· Cj 

is called the turbulent variance production. Equation (6) is a little less familiar, though all its terms have counterparts in Eq. 
(5). The first two terms on the right may be called the covariance production; they tend to increase the covariance whenever 

the turbulent flux of one tracer is down the gradient of the other. Codissipation χ12 and covariance C′1C′2 may have either 

sign, while χj, C
′2

j are of course positive. In what follows, we shall neglect the molecular diffusion of variances on the right 

of (5a) and (6a). We shall also neglect the divergence of triple correlations among velocity and tracers on the left of (5a) and 
(6a). A scaling argument for this neglect will be presented below. 

3. Watermass variation  

Under certain circumstances, a linear combination of the fluctuations of C′1 and C′2 may be constructed, for which the 

variance equation contains no production terms of the form described above. We will call this combination the watermass 
variation. Its variance can only be increased by the codissipation’s assuming the appropriate sign. 

Suppose that the mean fields in (5a) and (6a) vary in one dimension only, which we label the z axis. Then the production 
terms in (5a), (6a) assume the form

−u′C′j· Ck = Fj zCk,(7a)

 

where

Fj = −w′C′j.(7b)

 

As the consequences of this simplification are very important in what follows, we shall examine the circumstances in 
which it is an adequate approximation. Suppose that the three-dimensional tracer flux can be related to tracer gradients by 
means of a diffusivity tensor K, that is,

−u′C′ = K: C, 

and that the principal axes of K can be found with characteristic values K1, K2, K3 such that K1  K2  K3. [The 

principal axes are often held to be aligned with the isopycnal surfaces in the ocean (Redi 1982; McDougall and Church 
1986), although this is not central to the present argument.] Take the z coordinate to be aligned with the third axis of the 
principal system. Then it is sufficient for the approximation (7a) to be accurate that the vectors C1 and C2 are aligned 



within order (K3/K1)1/2 radians of each other and of the z axis. For K3  10−5–10−4 m2 s−1 (Polzin et al. 1997) and K1  

103 m2 s−1 (Freeland et al. 1975), this alignment threshold is 1–3 (×10−4) radians. Inspection of oceanographic sections 
confirms that this requirement is often fulfilled in the ocean on the large scale.

Substituting (7) into (5a) and (6a) we see that the production terms become, respectively, 2Fj zCj and F1 zC2 + F2 zC1. 

If F1, F2 are eliminated among (5a) for j = 1, 2 and (6a), one obtains

 

where only the molecular transport divergence terms have been neglected and

 

is the slope of the mean property–property relation. If we assume that m varies only gradually in time and space, Eq. (8) 
may be written

 

where

C′’ = C′1 − mC′2(10b)

 

is the watermass variation, the combination of the tracer fluctuations C′1, C′2 that measures their displacement from the 

mean C1 versus C2 property–property relation. Obtaining this equation entails commuting mean gradients C1z, C2z, as 

though they were constant, with time and space derivatives. The neglected terms can be shown to be of order K3/L2
z times 

C′21 or m2C′22, where K3 is the “vertical”  turbulent diffusivity and Lz is a vertical scale over which C1z or C2z varies. This 

estimate can be obtained by supposing that turbulent flux of variance can be represented, for scaling purposes, by

−w′C′21  K3 zC′21,

 

with similar relations for other tracer-squared transports. An upper bound for K3 from microstructure and dye-release 

experiments on turbulent vertical diffusion in the ocean is 10−4 m2 s−1 (Polzin et al. 1997). Hence, by taking Lz  100 m, 

we obtain

K3/L2
z  10−8 s−1  (3 yr)−1.

 

If we assume that microstructure turbulence adjusts to energy production sources and sinks on a much shorter timescale 

than this, then the neglected terms are indeed small. The divergence terms on the left of (8a) are also of order (K3/L2
z)C

′2
’ 

and are negligible for the same reasons.

Equation (10a) is notable for lacking production terms of the form (7a), that appear in (5a) and (6a). The dissipations χ1 

and χ2 certainly act to decrease C′2’, while the codissipation χ12 can increase or decrease C′2’, depending on whether it has 

the same or opposite sign as m. In any case, it follows from (10a), at least on the adjustment timescales of microstructure 

turbulence, that only χ12 can increase C′2’.
 

4. Watermass equilibrium and evolution  

Next we consider the conditions under which watermass variance C′2’ can achieve equilibrium, DC′2’/Dt = 0. We 

introduce the correlation coefficient of gradients,

 

(where, of course, |r|  1), in terms of which the codissipation may be written



 

where

 

(Note that r0  1) Hence the right side of (10a) may be written

 

Net production of C′2’ is only possible for |r| > r0; otherwise C′2’ decays. Watermass variance C′2’ is in steady state if the 

expression (13) is zero; that is,

 

These expressions are only meaningful for |r|  r0. We may call them the metastable limits for the property–property 

slope m. Stern (1968, 1975), considering temperature and salinity as the tracers and defining

 

obtained (14) as a relation between q and r. For r = ±r0, the metastable limits coincide in what might be called the stable 

limit:

 

If the two tracers are indeed temperature and salinity, for which D1 = 1.4 × 10−7 m2 s−1, D2 = 1.0 × 10−9 m2 s−1, 

respectively, then r0 = 0.17. This modest value does not seem an insuperable barrier for |r| to attain or exceed. For more 

closely matched molecular diffusivities D1 and D2, r0 is nearer to 1, so it seems conceivable that |r| < r0. The complex value 

given by (14) in that case for the property–property relation slope simply means that equilibrium for C′2’ is impossible while 

|r| < r0. We shall return to this case in a moment. 

If m attains a value given by (14) at which C′2’ becomes stationary, it is plausible that C′21, C′22 also become stationary, 

so that from (5a) and (7), divergence of triple correlation terms being neglected,

2Fj zCj = χj(16)
 

for j = 1, 2. This situation depicts the well-known production–dissipation model proposed by Osborn and Cox (1972). 
Substituting (16) into (14), one obtains for the metastable property–property slope

 

When |r| = r0, the stable slope is

 

Stommel and Csanady (1980) obtained a value for the T–S slope exactly like (18) from consideration of the steady 
throughput of large-scale heat and freshwater flux between two distinct watermasses. 

If one supposes that the turbulent flux of a property is down its mean gradient,

Fj = Kj zCj,(19)
 



with turbulent diffusivity coefficient Kj, then one obtains for the turbulent Schmidt number, the ratio of the two 

diffusivities

 

The two possible values are reciprocals of each other. For |r| = r0, the turbulent Schmidt number is 1.
 

In any case, nonzero r, and hence nonzero codissipation, is essential for the attainment of an equilibrium for the positive 

definite quantity C′2’. Otherwise the right side of (10a) is purely negative. Evidently some minimal degree of organization of 

the fluctuating gradients of the random fields C′1, C′2 is necessary so that a correlation of at least |r| = r0 [given by (12b)] is 

attained in order to achieve equilibrium. This conclusion is rather unexpected since it seems plausible in Eq. (6a) for the 

evolution of the covariance C′1C′2 to neglect the codissipation term χ12. It is not obviously positive as χ1, χ2 are, nor are the 

gradients C′1 and C′2 obviously correlated, and anyway they are multiplied by the sum of molecular diffusivities D1 + D2, 

which is small. Indeed, in writing down an evolution equation for buoyancy variance (see below), Gregg (1987) neglected 
the codissipation. On the contrary, however, the molecular diffusivities determine the threshold value (12b) of the gradient 
correlation, which must be attained or exceeded for equilibrium.

Some qualitative remarks can be made about the evolution of C′2’, the gradient-correlation coefficient r, and perhaps on a 

longer timescale, the property–property slope m from the form of Eq. (10a). The right side of (10a) must be negative if |r| < 
r0 [case A]; it is positive for m between the bounds given by (14), negative outside those bounds as long as |r| > r0 (case B). 

It is negative for |r| = r0, except at the value given by (15) where it is zero (case C). These cases are shown schematically in 

Fig. 1 . 

Consider case A. It seems that C′2’ must decrease forever at a finite rate, which is absurd. But r may evolve during this 

process. First, the fluxes F1, F2, linked to the dissipations χ1, χ2 approximately through Eq. (16), may adjust to bring

 

close to m, which gives the minimum decay rate for C′2’. Second, as C′2’ decays, the correlation between C′1 and C′2 

becomes stronger (with regression coefficient m). While this correlation is probably dominated by low wavenumbers and 

frequencies, it is plausible that it extends to the higher wavenumbers and frequencies that dominate the spectra of C′1 and 

C′2. Hence, the gradient-correlation coefficient |r| may be expected to increase, bringing the minimum absolute value of the 

right side of (10a) closer to zero. These simultaneous adjustments of F1, F2, and r while C′2’ decreases may be expected to 

continue until the value (15) or (18) at |r| = r0 is achieved, upon which C′2’ is stationary. 

On a much longer timescale, the property–property slope m may also adjust. If the fluxes F1, F2, adjusted to local 

equilibrium as just described, become very dissimilar to nearby F1, F2, values or to externally imposed boundary conditions 

(e.g., surface heat and freshwater fluxes in the case where C1, C2 are temperature and salinity), then local convergences or 

divergences of tracer transports must result, slowly changing the mean gradients of C1, C2, and hence m. In any case, the 

adjustments must tend toward stationary C′2’.
 

Case B presents two situations.

(i) Decay of watermass variance.Suppose that m is initially outside the bounds of the two metastable limits given by (14). 

Then C′2’ decreases at a fixed rate, and to avert an absurdity (C′2’ may not become negative) |r| must increase, for fixed flux 

ratio F1/F2, until it reaches a value at which the local m coincides with one of the metastable limits (14) and C′2’ becomes 

stationary.

(ii) Double diffusion.If m is initially between the metastable limits given by (14), C′2’ tends to grow. This condition 

encompasses double-diffusive processes, both“fingering”  and “diffusion”  (Turner 1973). Double-diffusion is most effective 
when large disparities in diffusion coefficients D1, D2 give a low threshold correlation coefficient r0. Then the degree of 

organization in the structures involved in these processes is evidently sufficient to lead to growth of C′2’. The conventional 

schematic explanation for salt fingering is instructive for understanding Eq. (10a). Suppose two water types, A (cold, fresh) 
and B (warm, salty), are brought close together (Fig. 2 ) with the former lying below the latter. In any disturbance 



deforming the interface between the two types the faster diffusing “substance”  (usually temperature) will tend to equalize 
across the interface much more than the slower (salinity). This means local evolution of the two waters to A′, B′ as shown 

in Fig. 2 . Because A′ may be lighter than B′, since fresher, it may experience a buoyant upward acceleration causing the 

initial disturbance to grow. The dynamics and energetics of salt fingering are beyond the scope of this discussion. What is 
relevant in this context is that watermass variation tends to grow. The line joining A, B in the property–property diagram in 

Fig. 2b  represents waters for which C′’ = 0; lines parallel to this but displaced from it represent nonzero isopleths of C′’. 

So the generation of the waters A′, B′ implies creation of C′2’. This can only come from the term mχ12 on the right side of 

(10a), which is positive because

 

in the vicinity of the disturbance in Fig. 2  and is evidently large enough to overcome −χ1 − m2χ2 for growing salt 

fingers. This illustrates graphically, and in a familiar context, that the generation term for C′2’ is the codissipation. Again we 

stress that this must be so because Eq. (10a) lacks terms of the usual production form, such as −u′C′j· Ck in (5a) or (6a). 

In Eq. (6a), however, the codissipation still acts to reduce the covariance of T and S. 

To prevent unlimited growth of C′2’, r should adjust so that m assumes one of the metastable limits (14). For reasons 

opposite to those enunciated for case (a), the gradient-correlation coefficient |r| should decrease, bringing the limits (14) 

closer to the given m. It is conceivable that this process may be arrested by attaining a stationary value of C′2’ at some m 

given by (14) for |r| > r0 strictly, as in (i). However, it is also possible that |r|  r0 from above so as to match the stable 

limit of m given by (15) or (18). 

Watermass stability.Case C is like case A or case B(i): the right side of (10a) is negative. This again leads to the absurd 

situation of C′2’ decaying at a finite rate forever unless |r| = r0 is achieved, along with χ12/χ2 = m. At this point C′2’ becomes 

stationary, and

 

(The signs should be chosen so as to give χ12 and m the same sign as C′1C′2.)

 

5. Composite tracers  

Tracers whose molecular transport is governed by the usual downgradient molecular diffusion law we call simple. Any 
linear combination of simple tracers we may call a composite tracer: Its molecular diffusion is not given by the usual 
downgradient law if the molecular diffusivities of the individual tracers differ. The watermass variation that we considered 
above is an example of a composite tracer. Another example, which occurs in practical oceanographic applications, is 
conductivity, which may be approximately linear over a suitably restricted range of temperature and salinity. A third example 
of great dynamical importance is furnished by buoyancy, also to be considered an approximately linear function of 
temperature and salinity. We may obtain an evolution equation for composite tracer variance in which the combination of 
terms that seem analogous to dissipation cannot be guaranteed to be positive. If we assume that the codissipation of the 
component simple tracers has adjusted to a metastable value, given by (14), in order to ensure at least the stationarity of 
watermass variance, this is still not sufficient to guarantee the stationarity of all conceivable composite tracers. However, 
adopting the principle that all composite tracers possess positive dissipation rates leads to the conclusion that the 
codissipation must assume the stable value given by (21). 

An equation for the variance of the composite tracer s′ = a1C′1 + a2C′2 can be formed by taking the appropriate 

combination of (5a) (for j = 1, 2) and (6a). This gives

 

where

 

and s = a1C1 + a2C2. (Divergences of molecular diffusive fluxes of variance, and of triple correlation fluxes, have been 

neglected.) Equation (10a) may be obtained as a special case of (22) by setting a1 = 1, a2 = −m = −C1z/C2z. In that case s 

= sz = 0. Equations (22b, c) define χs and Ps, the composite dissipation of s′2 and its production. For the stationarity of C′

2
’, we concluded above that one of the metastable limits (14), which relate the property–property slope m to r/r0 [or scaled 



codissipation χ12/(χ1χ2)1/2; see Eq. (12)] and χ1/χ2, must pertain. By substituting (14) and (12) into the definition of χs, Eq. 

(22), the latter may be written

 

where

 

We may call Rs the mean tracer gradient ratio. There are two sign possibilities in the definition of ; these give values that 

are the inverses of each other: + −
 = 1. The correlation coefficient r and +, 

−
 all have the same sign. Hence r /r0 is 

positive. Without loss of generality we can take r > 0. An alternative form of (23a) is

 

where the positive branch of (23c) has been taken; a similar form can be obtained by taking the negative root. From 
(23a), χs > 0 for Rs < 0. However, for Rs > 0, χs vanishes for

 

For r/r0 greater than this value, one of the branches of (23c) gives negative values of χs, as Fig. 3 , which shows 

χs/a
2
1χ1 for two positive values of Rs, demonstrates. This implies a tendency for the growth of s′2. On Fig. 4 , where the 

principal C1 versus C2 watermass relation is shown by the line with slope C2/ C1 = 1/m, C1 versus C2 variability parallel to 

the horizon with slope

C2/ C1 = −a1/a2 = Rs/m
 

will tend to grow if it contains structures with gradient correlation coefficients exceeding the threshold given by (25). Put 
the other way round, given structures with r/r0 > 1, fluctuations about horizons with slope C2/ C1 = Rs/m will tend to 

grow, if

1 < Rs < RM,(26a)
 

or

R−1
M < Rs < 1,(26b)

 

where

 

Because χs/a
2
1χ1 = 0 for Rs = 1, this case is explicitly excluded from these ranges. To ensure that no composite tracer 

variance grows as a consequence of χs being negative for some Rs, it is necessary to require that

r = r0.(27)
 

We may call the idea that leads to this requirement the principle of nonnegative dissipation of composite tracers because, 

as well as ensuring equilibrium of watermass variance C′2’ (i.e., zero dissipation), it guarantees that all other composite 

tracers have positive dissipation χs. This dissipation can presumably be supplied at equilibrium by the production term Ps in 

(22a). It is conceivable that this principle is violated in the ocean by structures whose gradient-correlation coefficient 
exceeds r0. But then either any member of the ranges of composite tracers given by (26) grows, or the turbulent flux of that 

tracer is against its mean gradient, that is,

Ps < 0.
 

The latter implies a reversal of the usual intuitive interpretation of the variance growth balance (22a)! From (27) it follows 
that codissipation is



χ12 = sgnm(χ1χ2)1/2,(28)

 

and

χ1/2
1 = |m|χ1/2

2(29)

 

[cf. (15)]. Remarkably, these results coincide with a calculation of χ12 from application of the arguments of Batchelor 

(1959) to the joint straining of the scalar fields C1, C2 by the motion field of a three-dimensional, isotropic, homogeneous, 

inertial subrange of turbulence. (This argument is given in the appendix.) But (28) followed merely from the principle that all 
composite tracers possess nonnegative dissipation rates. This principle says nothing about the spectral constituents of χ12, 

whether they are homogeneous or isotropic, or about the existence of an inertial subrange of turbulent motion. However, the 
Batchelor (1959) argument does suppose turbulent spectra to be at equilibrium, and this appears to be the reason for the 
concurrence of the two lines of argument. From (28) and (29), it follows that

χs = a2
1χ1(1 − R−1

s)
2.(30)

 

The result (28) is like Hill’s (1989a) deduction from consideration of the similarity of scalar dissipation and codissipation 
profiles for temperature and water vapor in an atmospheric boundary layer.

It has been suggested that differential turbulent vertical diffusion of temperature and salinity, perhaps by double-diffusive 
or salt-fingering processes, is an important mechanism for determining and altering the thermohaline circulation (Gargett and 
Ferron 1996). We saw above that the ratio of the turbulent diffusivities K1/K2 of two tracers is related to r/r0 by (20). For 

K1/K2 different from 1, r/r0 must exceed 1. Then it follows from the remarks above, and the inequalities given by (26), that 

the variance of composite tracers corresponding to horizons with slopes between K1/mK2 and K2/mK1 (but excluding the 

watermass horizon of slope 1/m) will grow or experience countergradient fluxes. This situation certainly does not satisfy the 
principle of nonnegative dissipation of composite tracer variances. But the deduction of growth, or countergradient flux, of a 
range of composite tracer variances constructed from T and S poses a test of the Gargett–Ferron suggestion. 

6. Buoyancy dissipation and transport  

For the buoyancy anomaly b′ = gαT′ − gβS′ (where C′1 = T′, C′2 = S′, a1 = gα, a2 = −gβ), Eq. (22) is

 

where

Pb = −2w′b′bz,(31b)
 

and from (30),

 

The parameter Rb is called the stability ratio; χT = 2DT| T′|2 is dissipation of thermal variance. Buoyancy dissipation is 

given by the thermal dissipation, multiplied by a factor depending on the stability ratio. Gargett and Moum (1995) proposed 
the relation (32) from an argument based on the assertion that T′   (Tz/Sz)S′ at variance-dominating scales. This is a far 

stronger assertion than requiring that the variance of all linear combinations of T′ and S′ should be stationary. From 
stationarity and the neglect of transport divergence terms in (31), the component of buoyancy transport down the mean 
gradient bz can be inferred:

−2w′b′bz = χb(33)
 

(Osborn and Cox 1972), where of course χb is given by (32). This hypothesis has been questioned by Davis (1994), 

essentially on the grounds of the redness of the spectra of temperature and salinity variability. It may be argued, on the other 
hand, that Davis’  objection can be met by large-scale averaging on isopycnals, themselves defined by prefiltering over 
microstructure scales (de Szoeke and Bennett 1993). This procedure serves to truncate the low-frequency contributions to 
variance and the effect of their secular variation in (31).

7. Summary  

The main result of this paper is the deduction that the correlation coefficient of tracer gradients should be at the value r0 = 

2(D1D2)1/2/(D1 + D2). This follows from the principle that the dissipation of all composite tracers should be nonnegative. 

An alternative statement of the result is that the codissipation of the tracer covariance is given by the geometric mean of the 
individual tracer variance dissipations. This result coincides with the conclusions based on extensions and modifications of 



Batchelor’s (1959) arguments for scalar spectra in the dissipation range to give the form of the cospectrum of two passive 
tracers being deformed by an equilibrium field of isotropic, homogeneous, turbulent motion. A further consequence of the 
result is that the mean slope of the tracer–tracer watermass relation should coincide with the square root of the ratio of 
dissipations of the tracers and with the ratio of turbulent tracer fluxes down their respective gradients. The latter concurs 
with an exactly similar relation obtained by Stommel and Csanady (1980) from consideration of how large-scale heat and 
freshwater transports, imposed at the ocean surface, determine watermass relations through the necessity of closing heat 
and salt budgets.

It also follows that the ratio of turbulent diffusivities of two tracers is unity. This is at variance with the suggestion that 
this ratio is not 1, made by Gargett and Ferron (1996), who examined the consequences of this proposition for the 
thermohaline circulation.

A further consequence is that the buoyancy variance dissipation is proportional to temperature variance dissipation, with a 

proportionality factor of g2α2(1 − R−1
b)2, Rb being the density ratio. (A similar relation can be obtained for an arbitrary 

composite tracer.) This result accords with Gargett and Moum’s (1995) proposed formula for the buoyancy variance 
dissipation. We must stress that this result goes hand in hand with the other consequences, summarized here, from the 
principle of nonnegative composite-tracer dissipations. 

Relaxing the principle of nonnegative dissipation for all composite tracers, except for the so-called watermass variation 
whose dissipation must be zero, leads to a less restrictive relation among tracer gradient correlation (or codissipation), 
watermass-diagram slope, and the ratio of tracer dissipations. It also leads to a specific relation between the ratio of 
turbulent diffusivities of the tracers and the tracer gradient correlation; this ratio may differ from 1 if the latter is greater than 
r0. A consequence of this, it must be stressed, is that a range of composite tracers contained in horizons surrounding the 

mean watermass relation will experience negative dissipation. Hence the variances of these tracers must grow or their 
turbulent fluxes must be against their mean gradients (negative production).

These conclusions are drawn for circumstances in which large-scale mean gradients of tracers are collinear, although it 

seems sufficient that the mean gradients should be aligned to within order (KD/KH)1/2, where KD, KH are the turbulent 

diapycnal (vertical) and horizontal diffusion coefficients. This criterion covers a wide range of circumstances in the ocean, 
although it may not pertain in regions of strong currents, such as the western boundary currents, or in regions where strong 
intrusive mixing occurs so that T and S are significantly misaligned. 

Temperature variance dissipation χT is frequently directly measured in the ocean (Dillon and Caldwell 1980;Gregg 1987). 

Variance dissipations of other tracers, for example, salinity, have not been directly measured because of stringent 
instrumental resolution requirements. The gradient spectrum of a tracer is peaked at a wavenumber that scales with 

(diffusivity)−1/2. The band around this wavenumber contributes dominantly to the tracer dissipation. For salinity, with DS  

10−2DT, this band occurs around a wavenumber a decade higher than for temperature dissipation, itself peaked in the band 

1–10 cm (Fig. 5 ). Measurements at such small scales have been beyond the limits of practicability. Measurement of 
codissipation χTS entails similar difficulties. However, conductivity sensors with very fine resolution capability are beginning 

to be used to probe into the dissipation range of salinity (Nash and Moum 1998; Nash et al. 1998, manuscript submitted to J. 
Atmos. Oceanic Technol.). The results of this paper pose relationships among tracer variance dissipations that can be used to 
infer one tracer dissipation from another, for example, and that invite experimental validation, for their own sake and for 
their wider implications for ocean mixing and circulation.
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APPENDIX  

8. The Cospectrum of Diffusive Scalars  

An expression is derived for the homogeneous, isotropic cospectrum of two diffusive scalars at wavenumbers higher than 

the Kolmogorov wavenumber ( /ν3)1/4. 

Batchelor (1959) showed that the isotropic autospectrum of a scalar C1 in the convective–diffusive range of wavenumber 

k  ( /ν3)1/4, where  is kinetic energy dissipation and ν is kinematic viscosity, is

 

In this expression

 

is an estimate of the most negative principal strain-rate magnitude [Batchelor (1959) chose q = 2.0 for the parameter in 



this formula; others (Gibson 1968; Grant et al. 1968; Williams and Paulson 1977; Dillon and Caldwell 1980) argued for 

larger values]; D1 is the molecular diffusivity of the scalar; and χ1 = 2D1| C′1|2 is the dissipation rate of the scalar variance 

C′21. It may easily be verified that

 

The purpose of this appendix is to derive the isotropic cospectrum of two scalars C1 and C2. In terms of the lagged 

covariance

S12(s) = C′1(x)C′2(x + r)(A3)

 

which, being homogeneous and isotropic, is held to depend only on the displacement magnitude s = |r|, the cospectrum is 
given by

 

where k = |k | is wavenumber magnitude. The quadrature spectrum is zero because of isotropy. By arguments similar to 
those given by Batchelor (1959), the form of the cospectrum is, in the wavenumber range stated above,

 

where D2 is the diffusivity of scalar C2, and χ12 = (D1 + D2) C′1· C′2 is the codissipation. The gradient covariance, 

dominated by wavenumbers from the diffusive wavenumber range, is

 

Hill (1978) reviewed arguments and evidence for several semiempirical models of the shapes of scalar spectra and 
cospectra in the inertial, viscous–convective, and diffusive wavenumber ranges. For scalars and fluids with large Prandtl 
numbers ν/Dk, such as temperature or salinity in water, the spectral shape used in (A1) is well supported (Dillon and 

Caldwell 1980). The scaled forms of gradient spectra k2Γ1(k), k2Γ2(k), k2Γ12(k) are shown in Fig. 5  for D1/D2 = 100, 

appropriate for temperature and salinity in water.

In the viscous–convective wavenumber band ( /ν3)1/4 < k  ( /νD2
1)1/4 (assuming ν  D1 > D2) both C1 and C2 are 

being strained by the turbulent motion field, and neither is much attenuated by its respective diffusion. Hence it seems 
plausible that the correlation of the contributions of the gradients of C1 and C2 from this band should be high. That is, the 

band-limited correlation coefficient, defined by

 

where k
ν
 = ( /ν3)1/4, k1  ( /νD2

1)1/4, should be nearly 1. Substitution from (A5) shows that

 

with similar forms for Γ1, Γ2. Hence, from (A7),



 

It is interesting to observe that, from (A2), (A6), and (A8), the whole-band correlation coefficient is

 

Equation (A8) shows that the codissipation is

χ12 = ±(χ1χ2)1/2.(A10)

 

Its tendency should be to reduce the magnitude of covariance C′1C′2 in Eq. (6a) in the main text. Hence, we should 

choose the sign of χ12 to be that of C′1C′2. [Where the correlation of C1 and C2 is zero, or statistically insignificant, so too 

will be the correlation of the gradients C′1· C′2, and the argument that follows from setting Eq. (A7) to 1 will fail.] If C1, 

C2 are seawater properties (e.g., temperature, salinity, etc.), then the sign of the correlation C′1C′2 is very likely the same as 

the sign of the slope C1/ C2 of the mean property–property relation that pertains in the vicinity of the point of interest. 

(Note that this is a far weaker assertion than maintaining that C′1  ( C1/ C2)C′2.) The relation (A10) is often asserted for 

scalars in the atmosphere, such as temperature and humidity for which the Prandtl number is not large (Antonia et al. 1978; 
Hill 1989b), so that the principle enunciated in (A7) and (A8) can scarcely apply. Even so, some indirect evidence for (A10), 
for ν/Dk  1, is available (Andreas 1987). 

It may not be necessary to the argument for a three-dimensional, homogeneous, isotropic scalar cospectrum of the form 
(A5) that there be an isotropic, homogeneous spectrum of turbulent velocity with an inertial subrange at scales larger than 

(ν3/ )1/4 to provide the strain rate. 

Figures  

 
Click on thumbnail for full-sized image. 

Fig. 1. Watermass variance tendency tC
′2

’ as a function of mean tracer–tracer slope m = C1/ C2 for (a) small codissipation, 

|r| < r0;(b) large codissipation, |r| > r0; and (c) marginal codissipation, |r| = r0. 

 
Click on thumbnail for full-sized image. 

Fig. 2. Schematic of salt fingering. (a) Mean temperature and salinity profiles. (b) T–S diagram. (c) A disturbance on an 
interface between cold, fresh water (A) and warm, salty water (B) above. Interpenetrating fingers exchange heat readily, but very 

little salinity. Alternating fingers move to configurations A′, B′ on T–S diagram, tending to make watermass variation C′2
’ 

increase.
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Fig. 3. Scaled composite dissipation χs/a
2

1χ1 as a function of scaled codissipation gradient χ12/(χ1χ2)1/2 = r/r0 for mean tracer 

gradient ratio Rs = 4 (a), and Rs = 0.25 (b). 
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Fig. 4. The schematic C1 vs C2 watermass diagram showing the mean watermass relation with slope C2/ C1 = 1/m, and the 

horizon limits given by (26) between which composite tracers, constant along lines of slope C2/ C1 = Rs/m, tend to grow, if 

structures having gradient correlation r > r0 are present. 
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Fig. 5. Schematic showing the scaled scalar gradient spectra k2
Γ1,k2

Γ2 and cospectrum k2
Γ12 for D1/D2 = 100.
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