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The possibility to describe the eddy variability in the interior of the North
Atlantic as being in large part remotely induced by the Gulf Stream represents
an intriguing problem. Several preceding studies have addressed this issue and Search Google Scholar for:
modeled the process of energy radiation from the Gulf Stream as the radiation - lgor V. Kamenkovich
of Rossby waves from a time-dependent solid boundary that is zonally oriented ~ + Joseph Pedlosky
(Blierl and Kamenkovich 1975; Pedlosky 1977; Hogg 1988; Malanotte-Rizzoli et
al. 1995, etc.). In asecond group of studies, the unstable modes of a thin
oceanic jet are tested for their ability to radiate energy (Talley 1983;




Kamenkovich and Pedlosky 1996).

In Kamenkovich and Pedlosky (1996), we present a simple model of anonzonal oceanic current. The results show that
the horizontal tilt of the jet axis alows slowly growing linear solutions to be radiating. These waves correspond to the
parameters near along-wave stability cutoff of the dispersion curve for each unstable mode. Other solutions are strongly
trapped to the mean current. Their fast exponential growth is believed to be the main reason for their spatia trapping; for
details see Kamenkovich and Pedlosky (1996).

In Part | of the present study (Kamenkovich and Pedlosky 1998, hereafter Part I), we have considered the nonlinear
development of a single linear mode of a honzonal jet. Those solutions that are trapped during the linear stage of devel opment
now become radiating when their fast growth slows due to the nonlinear effects. Although the results provide us with
important information about the nonlinear evolution of the radiating linear solutions, the single wave development cannot
completely describe the dynamics in the model. More redlistic initial conditions should generally contain the whole spectrum
of Fourier modes and the nonlinear results can be expected to depend on the particular form of the spectrum.

It isimpossible to consider all combinations of initial conditions, but we can greatly simplify the task and study the effects
that two initially excited linear modes have on each other. The interactions between those waves will dter the dynamical
properties of each of them. Considering those changes, we can deduce important information about the effects of nonlinear
interactions between waves in an arbitrary set of linear modes. By doing that, we do not pretend to obtain the complete
dynamical picture. Rather, we hope to illustrate with these simple examples the processes going on in the finite-amplitude
development of more complicated initial conditions.

In Fig. 1 ©=, the linear results for two modes are summarized by presenting the growth rates as functions of x-
wavenumber k, where x is the coordinate along the tilted jet’ s axis. For the experiments, we choose a strongly radiating
wave and awave that isinitially faster growing and less radiating; the choices of parameters for this study are shown in the
plot. Both waves initially develop independently in agreement with linear theory, but start to influence each other as soon as
they reach finite amplitudes. The effects of the development of each primary wave on the radiating behavior of the other one
is our main focus here.

Weinitialize the problem with a sum of two primary linear waves with x-wavenumbers k, and k,. Asin the case of single
wave, a set of secondary harmonics is generated: components“0,” Kk, +k,,” k, —k;,” 2k;,” 2k,,” and so forth. Both
primary modes can directly influence each other through these harmonicsiif 2k, = k,, in which case the interactions are the
strongest. Two waves can also interact indirectly if 2k; # k,;then neither of the secondary harmonics can directly affect

primary modes.

The individual evolutions of the waves whose interactions are studied here have been considered in Part | of this study.
The comparison of the results between Part | and Part Il should help to understand the effects of the joint evolution of linear
waves on their individua radiating properties.

The numerical model and the method of analysis remains the same as in Part I. For al computations, the jet axis makes an
angle of 30° with respect to the latitude circles. The nondimensional planetary vorticity gradient ﬁ*sz Y s 1 (where Lj e IS
the jet half-width and U is its maximum speed).

We will aso keep the same notations for 1) the Fourier coefficients ‘}"k (y, t) of the Fourier component“k "; 2) energy
n

K, corresponding to this component; and 3) the external part of energy E, , integrated from —oo to =2 and from 2 to +oo.
n n

The reader is referred to Part | for the complete description. Three cases, case 1, case 2, and case 3 are considered in
sections 2, 3, and 4 correspondingly. The comparison of results with observations from the North Atlantic is presented in
section 5.

2. Case 1: Direct interactions

In this numerical experiment we consider the sum of mode 1 with k = 1 and mode 2 with k = 2 asinitial conditions. We
make the initial amplitude of a latter wave 2.4 times smaller than that of mode 1. If both waves were growing exactly

proportionally to ekcit, mode 2 would be 3 times as large as mode 1 by the timet = 12. The nonlinear effects, however, slow
the growth of both modes and make them similar in size during the whole development.

Both modes are going to strongly fedl the presence of each other. Indeed, the secondary harmonic produced by self-
interactions of mode 1 has an x wavenumber that equals 2; at the same time mode 1 interacts with mode 2 and creates a



harmonic with k = 1. Both the harmonics add to the primary modes and can significantly change the energy partition
between different wavelengths.

Aswe recall from Part |, the secondary harmonic of nearly antisymmetric mode 1 is antisymmetric as well. In contrast,
mode 2 with k = 2 is aimost symmetric and this difference in structure makes it possible to determine how strongly mode 2
is modified by the secondary harmonic of mode 1.

We first present the 2D contour plots of the total streamfunction ¥ (y) + "|‘(x, y, t) (Fig. 2 ©=). The solution remains
trapped until t = 24 when radiation in the x-independent form starts for negativey. Individual eddies are formed later in both
the external regions. The dominant x wavenumber of these eddiesisk = 1 since two identical eddies are observed in the x
direction, and 2 x 27/L, = 1, where L, is the width of the numerical domain in the x direction. The eddies are elongated in

the east—west direction to the north of the jet axis and are nearly parallel to the jet axis to the south from the jet.

To study the structure of the solution in greater detail, we now consider the plots of Fourier coefficients ‘I-‘(y lI-*l, and lI-*Z

shown in Fig. 3 @=. Component “0” follows a familiar path of development seen in Part | and radiates first for negativey
and then for the rest of the domain. The amplitudes of the radiating response are large because the self-interactions of a
primary component “1” produce a significant portion of the x-independent component of the streamfunction, which radiates
efficiently.

The evolution of x-dependent components “1” and“2” deserves further attention. Initially, components*1” and “2" are
easily recognized as almost antisymmetric mode 1 and symmetric mode 2. Both the components are significantly modified
later by nonlinear interactions with each other (see, e.g., t = 44).

As we remarked before, it is useful to compare the results of this section with the individual evolution of either of modes.
We begin with component “1” and see that the radiation now starts much earlier than in the case with single mode 1, in
which case it startsat t = 48 as we saw in Part |. That is attributed to the fact that now mode 1 is given 5 times larger initial
amplitude. The radiation in the model typically starts at the beginning of nonlinear equilibration following the stage of the
rapid exponential growth; the equilibration begins earlier if initial amplitude is larger.

During the late stage of development, the amplitude of component “1” is small. In addition, we see in the energy plots
(Fig. 42'CG=) that energy of component “2” K, becomes larger than that of component “1” K, after t = 32 and K, further

decreases at later times. It is also interesting to note that component “2” remains nearly symmetric in the immediate vicinity
of the jet, which points to the weak contribution of nearly antisymmetric secondary harmonic of mode 1. We can conclude
that the jet region is dominated by mode 2 during the advanced stage of nonlinear development.

In contrast, component “1” clearly dominates over component “2" in the exterior starting fromt = 32 (see also Fig. 2
©=). As aresult, component “1” radiates as much as almost 15% of Ko by the end of the numerical experiment. The ratio

E, /K between external energy of component “1” and total perturbation energy is therefore very close to that for the case
with asingle mode 1; see Fig. 4 C=.

The radiation by component “2" starts much later than in the case with a single mode 2 with k = 1.8 (t = 52 compared to
t = 24 for a single mode; see Part 1). The beginning of radiation is delayed by development of the radiating response by
component “1.” The radiation is also weaker than that by component “1.” Component “2” slowly extends into both the
external regions, which are dominated by the longer and more radiating component “1.”

Nevertheless, as much as 11% of K, is transferred by component “2” into the external regions (Fig. 4b ©=). The number
istwice as large as E; o/K, reported in section Se. The difference can be explained by the contribution of the secondary
harmonic “2" produced by self-interactions of the radiating component “1” in case 1. The value of E2/Ke is also twice as big

as the same quantity in the case with a single mode 1 in which mode 2 with k = 2 is excited only on the late stage of
development.

The joint radiation by all componentsis very effective: (E; + E; + E,)/K is more than 35%. The value of the ratio is
close to the same quantity in the case of a single mode 1 (section 6 of Part I).

3. Case 2: Indirect interactions

We have observed in the previous section that the weakly radiating mode 2 eventually dominates the nonlinear
development in the jet region but does not prevent mode 1 from radiation. Rather, component “1” prevails in the exterior



regions; it produces a second harmonic with k = 2 that increases the radiation by component“2.” What changes if direct
mutual feedback between two primary modes is not possible?

To answer this question, we carry out a numerical experiment in which we initialize the model with mode 1 withk =1
and mode 2 with k = 1.5. The self-interactions of mode 1 produce component “2" as before but now it does not directly
affect mode 2. The nonlinear interactions produce secondary harmonics*0.5,” 2,” 2.5,” and “3"; neither of them can
influence component “1” directly. It is therefore interesting to compare the results in case 2 with the results in case 1. That
will help us to understand the role of interactions between modes in the dynamics of the problem.

Asin case 1, mode 1 is given larger initial amplitude than mode 2. If both waves were growing exactly proportionally to
ekcit, mode 2 would be larger than mode 1 by 3 times by the timet = 14.

Two-dimensional contour plots of the total streamfunction ¥ (y) + "|‘(x, y) (Fia. 5 ©@=) provide us with general information
about the structure of the solution. Asin case 1 (Fig. 2 ©=), the solution is asymmetric in they direction. Eddies to the north
from the jet are oriented east—west, whereas eddies to the south (y < 0) are elongated in the direction of the jet axis. The
differences between case 1 and case 2 are also obvious to a viewer. The dominant scale in the x direction is now twice as
large as in case 1, which indicates the dominance of the component with k = 0.5 wavenumber (since 2z/L, = 0.5). The

trapped meanders seem to be a mixture of two components with wavenumbersk = 1 and k = 0.5.

The Fourier coefficients are shown in Fig. 6 @=. Asin case 1, component “0” starts its radiation for negativey after t =
20. The amplitude of its radiating part reaches large amplitudes at later times. We now focus on the differences in the
development between components‘1” and “1.5” in case 2 and components “1” and “2” in case 1.

Component “1” in case 2 has larger amplitudes than in case 1, especially during the late stage of development (t > 32) as
can be seen in Fig. 6 ©=. The difference is striking at t = 52. In contrast, component “1.5” remains small until t = 36. Asin
case 1, it then slowly overcomes component “1" in terms of the amplitude in the jet region (t = 36). Component “1.5” then
starts to slowly expand into both the external regions. The switch in the relative importance between two components is
clearly seen in Fig. 7a ©= where the corresponding kinetic energies are presented. Shortly after t = 40, K, 5 becomes larger

than K1'

It is also interesting to observe the rapid growth of component “0.5” (Fig. 6 ©= and Fig. 8 ©=, upper panel; see also the
discussion of Fig. 5 '@= above). The component is produced by the interactions between two primary components “1” and
“1.5." Its energy K, 5 becomes larger than the energy of any other secondary components in the plot at the same time as

component “1.5” begins to dominate in the development (t > 40; upper panels of Figs. 7 ©@= and 8 ©=). Simultaneously, the
energy of component “2,” which is the result of self-interactions of component “1,” decreases together with K, (Eig. 8 O=,

upper panel). Here K, ¢ is an order of magnitude larger than K, -, which is another secondary harmonic produced by the
interactions between two primary modes. The longest of two secondary harmonics is clearly more energetic.

One interesting and somewhat puzzling fact is the high values of a perturbation energy corresponding to each of the
components. Both K, and K, - are much larger than K, and K, in case 1. In an experiment not presented here, the problem

was initialized with a single mode 1 with the same amplitude as in case 1 and case 2. The resulting K, was as large asin the
case 2; small K, in case 1 can be explained by the direct suppression by the mode 2. Secondary components further
contribute to the total value of the perturbation kinetic energy;see Fig. 8a ©=. As aresult, the value of K is much larger than
incase 1.

The absence of direct interactions with component “1” has a dual effect on the radiating properties of component”1.5.”
The latter is no longer directly suppressed by the vigorously radiating component “1” in the external regions. In fact, E; o

becomes larger than E, at the same time as the total energy of this component K, - becomes the largest as well (Eig. 7b

©=). On the other hand, secondary harmonic of component “1” cannot put the external energy into component “1.5” as in
case 1.

Asaresult, E; /K is amost the same as E,/K, in case 1 by the end of development. Presumably, the absence of both the

suppression and the feedback by the component “1” compensate each other and result in little overall effect on the
effectiveness of radiation by component “1.5.”

In contrast, the effectiveness of the radiation by component “1” islessin case 2 than in case 1; compare 8% in Fig. 7b
©=to amost 16% in Fig. 4b @= In case 1, the presence of direct mutual feedback between two primary modes enables the



long and more radiating component“1” to account for the magjor part of the radiated energy.

In case 2, the energy instead escapes into radiating secondary harmonics that do not project back onto any of primary
modes. In particular, self-interactions of component “1" produce component “2” that develops on its own. One can seein
Fig. 8b ©= component “2" is associated with E, that is aimost 4% of Ke

As was noted above, the interactions between two primary components“1” and “1.5” produce another very energetic
harmonic, component “0.5.” The component is also strongly radiating: E o/K is almost 12%, which is even bigger than

E,/K, (Eig.8b =), Its large amplitudes in both the external regions are evident in Fig. 6 ©= and in Fig. 5 ©=. Once again

we observe that waves that are longer in x are more radiating; in our case, even a secondary component “0.5” can dominate
the radiating response in the exterior.

The radiation in case 1 with no direct mutual feedback between two primary components is more energetic than in case 1
with direct interactions. The ratio of the sum of all external energies to the total energy (E, +. . . + E;)/K, is more than

39% by t = 52, which is dightly bigger than 35% in case 1. We now recall that the value Ke itself is much larger in case 2
(Figs. 4 @=and 7 ©=).

We can conclude that the absence of direct mutual feedback between a strongly radiating wave of mode 1 and a weakly
radiating wave of mode 2 allows the development of strongly radiating secondary harmonics. The radiating properties of
mode 2 appear almost to be not affected.

4. Case 3: Mode 1

The study of interactions between different types of linear solutions would be incomplete without the experiment in which
the development of along and a short wave of mode 1 is considered. For the experiment we choosek = 0.25and k = 1 as
corresponding wavenumbers. The amplitude of the longest wave of the pair is 4 times larger than the amplitude of the wave
with k = 1.

Aswe recall from Part |, both waves are strongly radiating in the nonlinear regime. The wave with k = 1 has a growth
rate almost twice as large as that of a wave with k = 0.25. Therefore, the former has a tendency to dominate in the
development. On the other hand, a wave with k = 0.25 is more radiating. Which of the two waves will dominate the
development in the exterior regions?

The direct mutual feedback between two waves is not possible for our choice of parameters. The situation is similar to
case 2, described above, in which neither of secondary harmonics created in the course of nonlinear development can
directly affect the primary modes. However, some differences should be anticipated. First, the shortest primary wave with k
=1 is capable of significant radiation, unlike mode 2 for k = 1.5 in case 2. Second, both secondary harmonics “0.75"
and“1.25" produced by the interactions between primary modes are shorter than the longest primary wave withk = 0.25. In
contrast, one of the secondary harmonics in case 2, namely component “0.5,” is the longest in a set and dominates the
radiative response in the far field. Which component is the most energetically significant in the far field in case 3?

To answer these questions, we first present the 2D contour plots of the total streamfunction ‘¥ (y) + "|‘(x, y) inFig. 9 @=,
The evolution of the structure of the solution is very different from case 1 and case 2 (Figs. 2 ©= and 5 ©=). The radiation
starts as early ast = 32 and is in the form of isolated eddies of various forms, unlike either of case 1 or case 2 in which the
radiating response is x independent initially.

By the end of numerical experiment at t = 64, the radiated eddies fill the entire numerical domain, which is 50 times as
large as the width of the jet itself. The orientation of these eddies is different from that in either of the previous cases
described in this chapter. In fact, eddies are elongated in a direction nearly perpendicular to the jet axis for y > 0. The eddy
axes to the south from the jet are tilted relative to both the jet axis and latitude circles. The complicated structure of the
solution indicates the importance of severa x wavenumbers.

We now proceed with the detailed analysis of the structure of the solution and show the Fourier coefficientsin Fig. 10
©=. In the way similar to a single mode 1 development in Part |, the radiation of the component“1” starts at t = 40
immediately following the radiation by component “0.” The exterior part of component “1” later reaches amplitudes as large
as in the case with a single mode 1 [section 5d(1)]. The development of component “1” seems to be very little affected by
the presence of the long component “0.25,” which does not directly influence the former.

In contrast, component “0.25" develops differently in case 3 compared to the case with a single mode 1 for k = 0.25 (see
Part 1). Although component “1” does not directly influence component “0.25,” a smaller portion of the total energy is



available for the development of the latter because of the rapid growth of component“1.” As aresult, the amplitude of the
component is smaller in case 3 than in the case with a single mode for t > 40.

Another very interesting property of the development in case 3 is the very energetic component “1.25” that is a harmonic
created by the nonlinear interactions between two primary modes. The amplitude of this component becomes larger than the
amplitudes of both the primary modes by t = 64 in the jet region. The harmonic also has a well-pronounced symmetric
component there, which suggests the possible excitation of mode 2 with k = 1.25. As discussed above and in Part |, the
nonlinear interactions of nearly antisymmetric mode 1 create harmonics that are in turn almost antisymmetric.

We now consider the values of E, /K, plotted in Fig. 11 O=. Component “0.25” is weakly trapped initialy, which is
n

reflected in the high values of E /K, at the beginning of the numerical experiment: 11% at t = 8. It then starts to decrease,

indicating the rapidly growing importance of other components in the externa regions. The decrease is especially sharp after
t = 24;E, ,5/K, is only 3% during the second half of the experiment. The contribution of component “0.25” to the energy in

the exterior regions is rather small, especialy if compared with 18% in the case of asingle mode in Part I.

Simultaneously with the decline of the importance of component “0.25” in the external regions, E1/Ke rapidly increases.

The ratio reaches 11% by t = 64. As we observed in Fig. 10 ©@=, the second primary component “1” is of approximately the
same amplitude as component“0.25.” The latter, however, is not suppressed by component “1”; its amplitude remains large
(Fig. 10 ©=). Nevertheless, since component “1” is shorter in x, it corresponds to larger kinetic energy than alonger primary
component “0.25.”

The values of E, /Ke for secondary harmonics plotted in Fig. 11b ©= are very interesting. In particular,
n

component*1.25,” which is created by the interactions between two primary components “0.25” and “1,” corresponds to
the value of the external kinetic energy that is aslarge as Ey ,5; E; o5 is more than 11% of K. The same component is also

very energetic in the case with a single component “0.25” in Part I.

Other secondary harmonics radiate less than 4% of the total energy K, each. However, the radiation in case 3 is very

efficient. Altogether, all components radiate amost 45% of the total kinetic energy into both the external regions. This
number is higher than the same quantity in the case with a single wave for k = 1 but lower than in the case with a wave for
k=0.25in Part I.

We can conclude that although component “0.25” radiates very efficiently when the problem is initialized with a single
wavenumber k = 0.25[section 5d(2)], it does not dominate the radiating response in case 3. Shorter waves, which
correspond to more redlistic spatial scales, have amplitudes at least as large as those of component*0.25.” Moreover, the
major part of radiated energy corresponds to those shorter scales in case 3.

5. Comparison with observationsin the North Atlantic

We have formulated and solved the problem of stability of a nonzonal ocean current. The focus of the research was on
the ability of unstable perturbations to effectively transfer energy from an energetic mean current into the far field. By doing
that, we attempt to model the Gulf Stream as an energy source for the eddy field in the interior of the North Atlantic gyre.
How relevant are our results to the real phenomena observed in the region?

To answer this question, we need to compare the model predictions to the observations in the North Atlantic. In doing the
comparison, we hope to understand to what degree the complicated dynamical process of the generation of highly energetic
eddy fields can be explained by the radiation of energy from the Gulf Stream described by our model.

We cannot claim that our simple model is an accurate representation of the Gulf Stream system and instead we are more
interested in its ability to capture general dynamic properties in the region.

a. Scaling of results

The comparison of our simple barotropic model to the real Gulf Stream is not easy because of the simplified vertical and
horizontal structure of the mean current in the model. We base our scaling on keeping such physical quantities as the total
transport, the width, and maximum velocity of the current as close as possible to being redistic.

The data for the Gulf Stream are taken from Johns et al. (1995), in which the authors report the structure and transport
of the current near 68°W using SY NOP current meter observations. Velocities are considered in the rotated, downstream




coordinate frame.

Two parameters are needed for scaing: the half-width of the jet Lj o« Which is defined as a distance from the point of

maximum velocity to the point of zero velocity, and the maximum jet velocity U. We choose the first value to be 125 km
based on the vertical profile of the velocity of the current given in Johns et al. (1995).

The next parameter to be estimated from observations is the maximum velocity of the barotropic jet in the model. The
difficulty is that the Gulf Stream velacity changes in the vertical and its maximum vaue at each depth varies from almost 2

ms Lat depth 50 mto 0.12 m s Latthe depth of 2 m. For the value of U, we choose to average these peak values over the
depth of 2 km, which gives us approximately U = 0.5 m st

Before we proceed any further, we need to check if the volume transport in the model is reasonably close to the observed
value. The dimensional transport per unit depth can be computed in the model to yield approximately 56 Sv/km. We now
take the number for the total transport at 68°W from the surface to 2 km from Table 1 in Johns et al. (1995) and divide the
obtained 99 Sv by the water column depth. We get 50 Sv/km, which is very close to the corresponding value in the model.
Our choice of dimensional parameters is consistent with the observed value of the volume transport.

We also should note that for the parameters chosen, the value of nondimensional planetary vorticity gradient g =
# szet/U is approximately 0.6. This value is in between two choices for this parameter, namely 1 and 0.25, in the
experiments used for the comparison below.

b. Perturbation kinetic energy

We choose to analyze the perturbation kinetic energy (PKE) distribution predicted by the model for the brief comparison
with observations. The main purpose is to understand to what degree our simple model of energy radiation from the Gulf
Stream describes the eddy kinetic energy (EKE) distribution observed in the North Atlantic.

As we have seen in the preceding sections, the details of the results depend on the initial conditions in each experiment.
Therefore, a valid comparison should focus on the features that are common in several numerical experiments with very
different initial conditions.

We will analyze the model results for four cases with different initial conditions and values of nondimensional g = f
*szet/U (B= isthe dimensional planetary vorticity gradient): 1) mode 1, =1, k=1 (MR1); 2) mode 1,4 =0.25, k=1
(MR?2); 3) case 2 from this article (MR3); and 4) case 3 from this article (MR4). For all cases, « = 30°. The analysisis
performed on the advanced stage of nonlinear development during the nonlinear equilibration in the model. We will use the

above notations in parentheses for brevity to identify each case. Note that in cases MR1 and MR2 the single wave
development is considered.

In the next four contour plots (Figs. 12—-15 ©=), we present the results from our model for all four cases (MR1-MR4).
First thing to notice in al four plotsis the high values of PKE centered in the jet region. The band of high energy (values

exceeding 500 cm? 5_2) stretches for more than 500 km in the cross-stream direction for MR2 and MR3. The high-energy
band is narrower for MR1 and MR4. The maximum values of PKE reach 1500 cm? s 2 in the model for M R1, MR2, and
MR3. Only in MR4 are areas found in which PKE reaches 3000 cm? s 2.

The values of PKE decrease away from the jet region. Vaues of 200 cm?s 2 are produced by the model at the distances
of approximately 500 km both to the north and to the south from the stream axis in all four cases analyzed. The PKE
penetration scale is slightly longer to the south for MR2.

Here, we use the article by Richardson (1983) as a source of data for the comparison. In the article, the author used the
velocities of the near-surface currents in the North Atlantic measured by the satellite-tracked drifting buoys to construct
kinetic energy maps. The resulting values of the eddy kinetic energy in the Gulf Stream region are two times as high as those
obtained from the ship drift measurements (Wyrtki et al. 1976). The results from Richardson (1983) are reproduced in Figs.
16 ©= and 18 C=.

The observed EKE (Fig. 16 ©=) is generally higher than the PKE in the model. The peak values as high as 3000 cm? s 2
are observed in the Gulf Stream region and are twice as high as the corresponding peak values produced by the model.



The band of high observed EKE with values of more than 1000 cm? s 2 is centered in the Gulf Stream axis and has a
width of approximately 500 km after the current leaves the coast and then broadens to almost 1000-km width (Fig. 16 ©=).
If we accept the factor of 2 as the overall difference between the observed values of EKE and the barotropic PKE produced
by the model, we can conclude that the meridional scale of the high energy region is reproduced correctly by the model.

There are a number of reasons that might account for the difference between the observed values of EKE and the model
results apart from the simplicity of the model. First, the data describe near-surface values of EKE, whereas the eddy field in
our barotropic model is depth independent. The observed EKE in the vicinity of the Gulf Stream significantly decreases with
depth; for example, the EKE decreases by more than 15 times from the depth of 400 m to the depth of 2000 m at 68°W in
the vicinity of the Gulf Stream axis (Schmitz and Luyten 1991). The difference is lower in the regions away from the
stream. It is therefore not surprising to find the values of depth-averaged kinetic energy to be smaller than those observed at
the surface.

Another reason is associated with the difficulty of choosing the correct initial conditions for our simple model as it was
noted above. The level of the PKE produced by a numerica run depends on the amount of the initial kinetic energy. We can
compare, for example, MR1 and MR3. In the latter case, mode 2 is added in addition to a single mode 1 of MR1. As aresult,
MR3 corresponds to higher values of PKE than does MR1. We therefore need to reiterate that we are looking for features
common to all four cases (MR1-MR4) that have very different initial conditions, and it is unrealistic to make a detailed
comparison to data in each case.

The downstream dependence of the mean current is neglected in the model. As a result, we cannot expect the model to
reproduce the observed downstream increase of the EKE related to the increased meander activity. We now concentrate on
the cross-stream dependence and look at the distance at which PKE penetrates into the regions away from the Gulf Stream
axis. In doing that, we need to keep in mind that the penetration scale increases with time as the perturbations spread in the
cross-stream direction due to radiation. The penetration distance at the end of each numerical experiment, therefore, tells us
that the significant portion of PKE has gotten at least this far from the jet axis. The quantity serves as an important measure
of the effectiveness of radiation in explaining the observed broad bands of EKE in the North Atlantic.

Our numerica solution is a sum of a number of waves that results in several isolated maxima of PKE. As aresult, the
decay scale of the PKE in the meridional direction is difficult to estimate from the 2D contour plots. Instead, we choose to
anayze the profile of the downstream-averaged energy (Fig. 17 ©=) and estimate the decay scale in the cross-stream
direction.

All four cases (MR1-MR4) are shown in the figure. As one can observe in the plot, MR2 and MR3 correspond to larger
values of the averaged kinetic energy than do MR1 and MR4. Note also that the maximum x-averaged values are smaller than
the absolute maximum values in the 2D plot due to the strong x dependence of the PKE.

The approximate distance in the direction perpendicular to the jet axis over which the x-averaged PKE e-folds is then
computed for each case. The logarithm of the PKE divided by the maximum value of PKE is plotted in the lower panel. One
should keep in mind that the jet axisistilted in the model and the cross-jet direction does not coincide with lines of longitude.
As one can seeg, the e-folding scales are 350 km for MR1 and MR2, 300 km for MR3, and 200 km for MR4 to the south
from the jet; 400 km for MR2, 300 km for MR1 and MR3, and 250 km for MR4 to the north from the jet. The decay scale
to the south from the jet axis (y < 0) islonger than to the north (y > 0) for MR1 and MR2; the distribution of x-averaged
PKE is more symmetric for MR3 and MR4.

The distribution of the observed EKE shows good agreement with the model results in terms of the spatial decay scalesin
the cross-jet direction. For example, at 65°W the energy reaches e-folding at 300 km from the axis (asis claimed in
Richardson 1983) and is larger to the south and less than to the north (see Fig. 18 ©=). The less rapid decay in the EKE to
the south from the stream axis is reproduced by the model results MR1 and MR2.

We stress here that in our simple model, we report the PKE distribution for the nonequilibrated, transient state. A number
of physical processes missing in the model is needed for obtaining equilibrated energy field more suitable for direct
comparison with data. In particular, we can single out missing dissipation and the absence of the mean flow in the far field
in the model. Nevertheless, the above comparison demonstrates the ability of the radiative mechanism to transfer energy
over distances corresponding to those observed. Once radiated, this energy represents a source for the eddy field in the
interior of the ocean. We find this result encouraging.

6. Summary and conclusions

We have considered three types of interactions between different waves that take place in the nonlinear development of a
set of initially linear waves. All types are modeled by the numerical experiments in which the evolution of a pair of linear
waves is studied.



As case 1 shows, the direct mutual feedback between a radiating wave of mode 1 and a twice as short weakly radiating
wave of mode 2 does not affect the strong radiating ability of the former. Mode 1 still dominates the radiating motions in the
far field and the radiation is very effective. However, mode 1 is suppressed by mode 2 in the jet region and its amplitude
becomes smaller than in the case with a single mode 1. The case models the “direct” interactions between those waves for
which wavenumbers are such to alow secondary harmonics to immediately add to the primary waves. This important result
implies that modes of secondary importance within the jet can nevertheless dominate the far-field radiation.

In case 2, direct mutual feedback between two primary waves is not possible because of the values of their
wavenumbers. Instead, very energetic secondary harmonics develop. One of those harmonics is the longest wave in the
created set; it is also the most radiating component in the experiment. The total perturbation energy is much larger thanin
case 1.

Unlike case 1, case 2 models the “indirect” interactions between a strongly radiating wave of mode 1 and a weakly
radiating short wave of mode 2. Such interactions produce secondary harmonics that do not immediately add to any of
primary harmonics. The spectrum broadens as a result. Those harmonics that are long in x are capable of radiation that is
more energetic than the radiation by a primary wave alone. The latter fact illustrates the possibility of a cascade of radiating
energy into the longer x wavelengths.

In both case 1 and case 2, the radiating field is asymmetric in the cross-jet direction. In the northern half-plane, the eddies
are elongated in the east—west direction, whereas the eddies are parallel to the jet axis to the south from the jet.

The mutual development of two strongly radiating waves of mode 1 is considered in case 3. One of the waves is four
times longer than the other and radiates more energetically if considered alone. However, in case 3 both short and long
waves have similar amplitudes in the exterior regions. The short wave together with its secondary harmonics are associated
with the mgjor part of radiated energy. Case 3 models the indirect interactions between strongly radiating wavesin a set.

We can draw the main conclusion that energy radiation is not only a feature of the single wave development, but is also
present in the evolution of a set of initially nonradiating waves. The general dynamical picture of a development of an initially
white spectrum of linear modes is, of course, more complex. However, we have observed the general tendency of a
spectrum of kinetic energy in the far field to develop a maximum at k ~ 1, which, we emphasize, is not the most unstable
mode of the jet. In other words, one should expect the short waves with x-wavenumber k - 1 to be energetically important
in the nonlinear development of any broad spectrum of initial conditions.

An attempt to compare the results of our simple model to the observations in the North Atlantic is then made. In doing the
comparison, we emphasize the limitations of the model and its inability to reproduce the observed dynamical fields in detail.
However, several general dynamic features of the observed eddy kinetic energy distribution in the North Atlantic are
captured by the model moderately well.

The level of PKE in the model appears to be close to the observed one despite the limitations of our simple model. The
spatial decay scale achieved in the model by the end of integration time in all cases compares well with the observed values.
The model prediction of 300 km for the e-folding scale is supported by observations. The fact demonstrates the ability of the
model to reproduce bands of high values of surface EKE that are at least as wide as those observed in the North Atlantic.
These results stress the possibility that eddy variability in the North Atlantic interior is in large part remotely generated by the
Gulf Stream.

Parts| and Il of this work emphasize the importance of the energy radiation from boundary currents as one of the main
mechanisms for the generation of eddies in the oceanic interior. As is demonstrated by the results, taking into account such
dynamical features of the structure of radiating basic states as their nonzonal orientation can enhance the mechanism.

Further elaboration of the models with radiating basic states should include more realistic downstream dependence of the
basic current. The need for the forcing to maintain the mean flow would be eliminated. In addition, periodic boundary
conditions in the along-jet direction in our model exclude convective instabilities that may be important in the complete
dynamical picture. Open boundary conditions would be required in that case.

The presence of the coast can be another important element in the process. The radiated waves can be reflected and
strongly modified as a result. In our model, we had in mind the portion of the Gulf Stream that does not flow along the
coast. Since no downflow dependence in the mean current was assumed, it would be difficult to model coastal reflection in
our case. The consideration of more realistic geometry and topography is indispensable in future studies.

Making the Rosshby deformation radius finite or considering a vertically stratified mean state can also change the results,
guantitatively making them more realistic. However, based on the previous linear results (Kamenkovich and Pedlosky 1996),




we can expect the radiation to remain a robust feature of a nonzonal oceanic current with some vertical structure.

Two main results of the present research provide some guidance for the interpretation of ocean genera circulation
models. First, the correct representation of the nonzonal orientation of the Gulf Stream leaving the coast is apparently crucia
for the reproduction of the large-scale distribution of eddy kinetic energy in the North Atlantic. Second, the importance of
the nonlocal mechanism for the eddy generation calls into question some existing techniques for the eddy parameterization in
terms of the local mean field.
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Figures

Click on thumbnail for full-sized image.

Fig. 1. Growth rates of linear solutions as functions of x wavenumber k for a = 30° and # = 1. Mode numbers are given in the
plot. The choices of parametersfor all experiments are given by stars;the case numbers are given next to corresponding points.




Fig. 2. Two-dimensional contour plots of the total streamfunction "F(y) + '|‘(x, y). Corresponding times are given on the top of
each plot. Heavy dashed lines are parallel to the latitude circles. Case 1: mode 1 (k = 1) and mode 2 (k =2); a =30°and f = 1.

Click on thumbnail for full-sized image.

Fig. 3. The Fourier coefficients fl‘-‘o (solid lines), iIJl (dashed lines), and iIJZ (dotted lines) of the streamfunction as functions of
y. Corresponding times are given on the top of each panel. Case 1: mode 1 (k = 1) and mode 2 (k =2); a =30°and f = 1.

Click on thumbnail for full-sized image.

Fig. 4. Kinetic energy corresponding to each Fourier component vstime: (a) Ky (energy integrated over the whole domain);
n
(b) Ek (energy integrated from —oo to —2 and from 2 to o) divided by the total energy Ke. Component numbers are shown in the
n

plot. Case 1:mode 1 (k = 1) and mode 2 (k = 2); a = 30°and f = 1.

Fig. 5. Two-dimensional contour plots of the total streamfunction ¥ (y) + '|‘(x, y). Asin Fig. 2 ©=but for case 2: mode 1 (k = 1)
andmode2 (k =1.5); a =30°and f = 1.




Click on thumbnail for full-sized image.

Fig. 6. The Fourier coefficients P, (solid lines), ', (dashed lines), I, . (dotted lines), and 1P, . (dashed-dotted lines) of the

streamfunction as functions of y. Corresponding times are given on the top of each panel. Case 2: mode 1 (k = 1) and mode 2 (k =
15);a=30°and f=1.

Click on thumbnail for full-sized image.

Fig. 7. Kinetic energy corresponding to each Fourier component vstime. Asin Fig. 4 ©= but for case 2: mode 1 (k = 1) and
mode 2 (k = 1.5); a =30° and = 1. Components “0,” 1,” and “1.5.” Component numbers are shown in the plot.

Click on thumbnail for full-sized image.

Fig. 8. Asin Fig. 4 @=but for components “0.5,” 2,” and “2.5.” Case 2: mode 1 (k = 1) and mode 2 (k = 1.5); a = 30° and f = 1.

Fig. 9. Two-dimensional contour plots of the total streamfunction ¥ (y) + '|‘(x, y). Asin Fig. 2 @= but for case 3: mode 1 with k
=0.25andk =1.

Click on thumbnail for full-sized image.




Fig. 10. The Fourier coefficients @ (solid lines), P, , (dashed lines), ¥, (dashed—dotted lines), and P, . (dotted lines) of

the streamfunction as functions of y. Corresponding times are given on the top of each panel. Case 3: mode 1 for k =0.25and k =
1,a=30°andp=1.
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Fig. 11. External Kinetic energy corresponding to each Fourier component, Ek , divided by the total energy K . Case 3: mode 1
n
fork=025andk =1; ¢ =30°and § = 1.
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Click on thumbnail fo-r full-sized image.

Fig. 12. PKE for MR1. The dashed contours show low values of the energy (<500 cm? 5_2). The heavy dashed lines show

|atitude circles. Unitsare 100 cm2 s 2.
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Fig. 13. Asin Fig. 12 ©=but for MR2.
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Fig. 14. Asin Fig. 12 ©=but for MR3.




Fig. 15. Asin Fig. 12 ©= but for MRA4.

Click on thumbnail for full-sized image.
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Fig. 16. EKE (cm® s ) in the North Atlantic. After Richardson (1983, Fig. 10 ©=).

Fig. 17. Upper panel: PKE averaged in the downstream direction for al four cases. Types of lines corresponding to the each of
four cases are given in the plot. The negative values of y correspond to the region to the south from the jet axis. Lower panel:

F181

Click on thumbnai I. for full-sized image.

The logarithm of PKE/max(PKE). The thick line shows—1.

Fig. 18. EKE at 65°W. Different curves show the effect of smoothing the data and excluding ring observations. After
Richardson (1983, Fig. 13).

Click on thumbnail for full-szed image.
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