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ABSTRACT

Internal waves propagating with an upward component of group velocity 
toward the ocean surface are reflected at the base of the mixed layer. A simple 
model is constructed to examine nonlinear aspects of the reflection. It consists 
of a uniform layer of depth h, representing the mixed layer, bounded above by a 
rigid surface and below by an interface, across which there is a density 
discontinuity Δρ and beneath which fluid is stably stratified with buoyancy 
frequency, N = const. Attention is given to the case in which an internal wave in 
the stratified layer, incident from below on the density interface, has frequency 
σ < N/2. In addition to a first-order wave of frequency σ that is reflected 
downward from the density discontinuity, a second-order wave is then 
generated with frequency 2σ and with horizontal wavenumber twice that of the 
incident wave, which also propagates downward away from the interface. The 
shape of the waves generated at the interface is investigated and a measure of 
their nonlinearity is defined. Highly nonlinear waves, with steeper slopes ahead 
of the wave crest than following it, are expected when the frequency of free 
interfacial waves with the same horizontal wavenumber as the incident wave is 
close or equal to σ and when the vertical wavelength of the incident waves is 
much greater than h. 

The results are used to describe the nature of forced waves in the thermocline 
as supercritical internal waves propagate up a sloping boundary. The large 
soliton waves observed in the Bay of Biscay, where internal tidal waves 
propagating from their source at the shelf break encounter the thermocline, may be a consequence of the effects of 
nonlinear reflection.

1. Introduction  

The problem to be addressed is that of the nonlinear reflection of a train of internal waves from a narrow thermocline 
separating a uniformly stratified region of constant buoyancy frequency N from a uniform upper ocean (or lake) mixed layer 
of depth h. This came to our attention when considering interactions that occur in the region where a stratified ocean or lake 
meets sloping boundaries and, in particular, when examining thermistor chain and CTD records made in summer in the 
stratified waters close to the shore of Lake Geneva over a sloping bottom boundary (e.g., see Thorpe and Jiang 1998). After 
a period of calm weather lasting for a week, oscillations persist in the almost uniform stratification of the deeper water with 
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amplitudes of 1–2 m. The strongly stratified seasonal thermocline is relatively unperturbed. It is known from the theoretical 
work of Phillips (1966) and Eriksen (1985) and from laboratory experiments of waves incident on slopes (Cacchione and 
Wunsch 1974; Thorpe 1987; Taylor 1993) that internal waves impinging on a sloping boundary may, on reflection, be 
amplified and propagate upward through the stratified thermocline toward the mixed layer. Waves having the form of a wave 
mode in deeper water are decomposed on reflection so that, after reflection, those traveling toward the mixed layer are more 
appropriately described as rays. A condition for internal wave propagation is that the wave frequency σ is less than N; the 
inclination of an internal wave ray path to the horizontal (or the angle between the group velocity vector and the horizontal) 

is sin−1(σ/N) (Phillips 1966). But what happens to the ray when it reaches the high density gradient boundary of the stratified 
region and cannot propagate upward farther into the overlying mixed layer where N is less than the wave frequency? It may 
reflect if N gradually decreases below σ as depth decreases, as demonstrated by theory and laboratory experiments by 
Nicolaou et al. (1993). Moreover, a linear theory and experiments of Delisi and Orlanski (1975), described below, show 
reflection occurs at a density interface bounding a stratified region in which internal waves propagate. But how do nonlinear 
terms affect reflection? Can waves over a shallowing bottom, perhaps after successive reflections at a density interface and 
at the sloping lower boundary (where their wavenumbers and amplitudes are changed), reach a critical condition in which 
their interaction with the high density gradient in the thermocline becomes very large?

Our interest in the subject comes also from the intriguing observations of Holligan et al. (1985) and New and Pingree 
(1990, 1992). Some 140–150 km away from the shelf break in the deep water of the Bay of Biscay they find large amplitude 
internal waves, usually two or three, with deep troughs and relatively broad crests resembling those found in soliton packets. 
The waves travel in directions away from the shelf break. It is curious that, in general contrast to observations elsewhere of 
internal wave soliton packets, there are so few waves observed and that the waves are confined to a local region. New and 
Pingree argue convincingly that these thermocline waves owe their presence to internal tidal waves. Generated at the shelf 
break by the interaction of the barotropic tide with the topography, these internal waves propagate downward as a ray, 
which is well documented by observations and a numerical model by New (1988). The ray meets and reflects from the sea 
bed at depths of some 3.8 km (where the interaction with the benthic boundary layer may raise questions related to those 
considered here; see also d’Asaro 1982). The waves then propagate upward toward the seasonal thermocline. They are 
predicted to encounter the upper layers of the ocean in the vicinity of the location at which the large internal waves are 
observed in the center of the Bay of Biscay. New and Pingree remark that numerical experiments with New’s linear model 
show that the amplitudes of these waves are approximately double those found near of the shelf break. In view of the recent 
increased interest in the properties and long range propagation of internal tides (Dushaw et al. 1995; Morozov 1995; Munk 
1998), it is of importance to understand those processes that may affect their propagation and detection, one of which is the 
interaction with the thermocline.

The elegant laboratory experiments and linear theory of Delisi and Orlanski (1975) provide very useful insights into the 
dynamics of wave reflection from an interface between two layers of stratified and nonstratified water across which there is 
a density discontinuity Δρ. If dissipation is negligible, the energy flux of the waves must be conserved. A reflected internal 
wave ray is therefore generated of amplitude equal to the incident wave and, since it has the same frequency as the incident 
wave, the reflected wave travels downward from the interface at the same angle below the horizontal as the incident wave 
has above it. The reflected wave does not, in general, have the same phase as the incident wave. The interface between the 
layers is perturbed as a consequence of reflection, and an interfacial wave is locally forced in the region of the reflecting ray. 
Photographs of the experiments show the interfacial wave to be largely confined to the region where the ray is incident on 
the interface. The phase of the interfacial wave advances in the same direction as the horizontal phase velocity component of 
the incident internal wave. The interfacial wave has an amplitude (in the linear theory) that depends on a ratio σ/σ0. Here σ is 

the frequency of the incident wave frequency and σ0 is a frequency that depends on the density difference across the 

interface. (Delisi and Orlanski use the ratio of the horizontal phase speeds instead of σ/σ0, but the two ratios are equal since 

the phase speed is σ/k. However σ0 is not, as suggested by Delisi and Orlanski, the frequency of interfacial waves that may 

travel along the interface with the same horizontal wavenumber as the incident waves—see section 2a.) When σ = σ0, the 

interfacial waves have their maximum amplitude, twice that of the incident wave, and the incident and reflected waves in the 
stratified layer have the same phase.

Delisi and Orlanski do not provide any evaluation of nonlinear effects on, for example, the amplitude of the interfacial 
waves. When N is constant below the interface, as supposed here for simplicity, both the incident and the reflected waves 
may be described by linear solutions of the equation of motion, which are exact; no terms in the equations of motion are 
discarded other than those of dissipation, which we shall neglect here, and the solutions are valid even when the waves are 
of such large amplitude that they develop regions of static instability. Such solutions are not, however, available for the 
interfacial waves, and an objective is therefore to investigate, using a conventional approximation scheme, the nonlinear 
terms that affect the form of the interfacial waves during reflection.

2. Theory  

a. First-order solution  

The model is that shown in Fig. 1 . The upper “mixed layer”  is homogeneous of uniform density ρ1 and of mean depth 

h, topped by a rigid boundary at z = h. There is a density increase, Δρ, across the interface at z = 0, below which the density 
increases steadily downward and the buoyancy frequency N is constant. For simplicity, the effects of rotation are ignored. 
The phase and group velocities of internal gravity waves have opposite directions of propagation in the vertical. A plane 
internal wave with phase vector (k, −m) with k and m > 0, traveling with a positive upward component of group velocity in 



the x–z plane, is incident on the interface and is represented by a streamfunction I = a cos(kx − mz − σt). This form of the 

streamfunction is an exact progressive wave solution of the inviscid equations of motion when the Boussinesq approximation 
is valid (Thorpe 1994a). The perturbed density is equal to

 

or ρ0[1 − (N2z/g)] + ρI, where ρ0 is a mean reference density and ρI is the density perturbation at (x, z) and time t, caused 

by the incident wave. The angle that the group velocity makes with the horizontal is β = sin−1(σ/N), and the dispersion 

relation is σ2 = N2k2/(k2 + m2). Although the density perturbation is sinusoidal, the isopycnal surfaces are not, except at very 
small amplitude. The waves on the isopycnal surfaces have steeper forward faces than rear faces, where “forward”  means 
ahead of the wave crest, which advances in the x direction and is therefore the horizontal direction of phase advance. The 
appropriate measure of wave steepness is Am (Thorpe 1994a), where A = ak/σ is the amplitude of the vertical fluctuations in 
the density field caused by the waves. If Am = 1, isopycnal surfaces become vertical somewhere in the wave field. They 
overturn if Am > 1. 

Following Delisi and Orlanski (1975) we can find a solution that represents motion and density perturbations in the three 
parts of the system and satisfies the condition of zero vertical velocity at z = h and also the linearized kinematic and pressure 
boundary conditions at the interface, that particles follow the interface and that pressure is continuous, respectively. The 
solution consists of a reflected wave with streamfunction R1 and density perturbation ρR1 below the interface, an 

interfacial wave z = η1(x, t), and a forced motion with velocity potential 1 in the homogeneous layer above the interface. 

The velocity potential satisfies Laplace’s equation and the boundary condition w = 1/ z = 0 at z = h. The solution for the 

reflected streamfunction is

 

where tan(γ) = 2t
β
tkhp/(t2kh − p2t2

β
) with t

β
 = tan(β), tkh = tanh(kh), and p = [1 − σ2

0/σ2] where σ2
0 = gkΔρtkh/ρ0. The 

latter is not the dispersion relation of interfacial waves traveling along the interface between uniform density layers, which is 

σ2 = gkΔρtkh/(ρ0tkh + ρ1), where ρ1, ρ2 are the densities of the upper and lower layers, respectively; see LeBlond and 

Mysak (1978). Nor is it the dispersion relation of interfacial waves on an interface between a uniform and a stratified layer, 
as is the physical situation here. (The dispersion relation for σ > N is then found to be

 

There is no unique dispersion relation if σ < N.) The amplitudes of the incident and reflected waves (i.e., the amplitudes of 
the vertical displacements of isopycnal surfaces) are both equal to A = ak/σ. When p = 0 (i.e., when σ = σ0), the angle γ = 0, 

and the incident and reflected waves are in phase. The reflected streamfunction (1) is, like the incident wave, an exact 
solution of the equations of motion but the slope of forward faces of its isopycnal surface displacements (ahead of the wave 
crests) is less than the rear. The displacement of the interface at the foot of the mixed layer is sinusoidal at this first order 
and is given by

 

where α1 = tan−1(pt
β
/tkh) (taking the principal value) is the phase of the interfacial wave relative to that of the incident 

wave. When p = 0, the amplitude of the interfacial wave is equal to 2A, twice that of the incident wave, and the phase 
difference, α1, is zero. Equation (2) is a first-order, and not an exact, solution for the interface displacement. 

In the experiments conducted by Delisi and Orlanski, internal waves generated by a horizontal paddle arrangement 
propagate in rays through a uniformly stratified layer to reflect from an interface beyond which the density is uniform. This 
reproduces completely the geometry of the analytical model, except that it proved more convenient for the incident waves to 
propagate downward through a uniform stratification beneath which was an interface and mixed layer; the laboratory model 
is the inverse of that shown in Fig. 1  but the dynamics are the same. Experiments are run with h = 0.45(±0.005) m and 

2π/k = 0.24 m, so that tkh is always close to unity. The buoyancy frequency ranges from 0.72 to 0.84 s−1, and the wave 

frequencies from 0.42 to 0.72 s−1, and β ranges from 33° to 62°. The parameter p is varied from about −60 to unity, mainly 
by varying the density differences across the interface. The interfacial wave slopes, k|η1|, are less than 0.5. Interfacial phase 

and amplitude are examined as functions of Δρ/ρ0. The agreement between the linear theory and observations is fairly good, 

demonstrating the trends predicted by the theory, with phase agreeing to within about 30° and amplitude to typically about 
±50%. Delisi and Orlanski observe the development of regions of static instability within the region of overlap of the incident 



and reflected rays that, from their orientation, appear to be a manifestation of the small-scale parametric instability often 
observed in laboratory experiments on internal waves and explained by McEwan and Robinson (1975) to be associated with 
subharmonic frequencies, σ/2 (see also Mied 1975; Thorpe 1994b). They do not appear to affect the density interface, our 
focus of attention, and are not considered further here.

b. Second-order solution  

Second-order effects are accounted for in the now conventional way of seeking a solution of the equations of motion and 
the boundary conditions as a perturbation about the first-order solution (see e.g., Thorpe 1968, 1987). If R2, 2, and η2 

are the second-order streamfunction below the interface, the second-order velocity potential in the mixed layer and the 
second-order interface perturbation, respectively, then it may be shown that R2 must satisfy the linear equation

[ 2 2/ t2 + N2 2/ x2] R2 = 0,(3)

 

where 2 is the Laplace operator, 2/ x2 + 2/ z2. All first-order product order terms vanish indentically and R1 satisfies 

(3). The velocity potential 2 must, like 1, satisfy Laplace’s equation and the boundary condition 2/ z = 0 at z = h. All 

the nonlinearity derives from the boundary conditions at the interface. The boundary conditions are given in appendix A. The 
solution is straightforward. The second-order terms are forced by products of first-order terms, leading to second-order 
terms with phase proportional to 2(kx − σt). Equation (3) then implies that R2 is proportional to exp[2i(kx + m2z − σt)], 

where m2
2 = k2(N2 − 4σ2)/4σ2. This wavenumber can also be written as m2 = (m/2)(1 − 3t2

β
)1/2. If σ > N/2 (or equivalently 

β > π/6), m2 is imaginary and the forced second-order reflected component is an evanescent mode, decaying exponentially 

with distance below the interface. (Similar evanescent reflected modes are found in internal waves reflecting from a slope; 
Thorpe 1987). If, however, σ < N/2 (i.e., if β < π/6 or 30°), this forced reflected component is a free wave propagating 
downward from the interface when the positive root for m2 is taken. We shall here suppose that σ < N/2, which is the case 

most applicable to the ocean and lakes, although not that which corresponds to the experiments by Delisi and Orlanski where 
larger values of β are used. 

Expressions for the amplitude |η2| and the phase α2 of the second-order interfacial wave displacements, so that η2 = |η2| 

cos[2(kx − σt) + α2], are given in appendix B. The natural expansion for interfacial waves is in terms of the first-order wave 

slope (Hunt 1961; Thorpe 1968). A measure of the nonlinearity of the interfacial waves, χ, is given by the ratio of the 

second-order amplitude to that of the first, divided by the wave slope of the first order wave, k|η1|; χ = |η2|/k|η1|2. This may 

be written in terms of m since k = mt
β
. 

3. Discussion  

a. Nonlinearity and wave shape  

Values of χ and the difference in the phase angles, γ = (α1 − α2/2), of the first- and second-order interfacial displacements 

are plotted in Figs. 2  and 3 , respectively, for various values of p, t
β
, and tkh. The angle γ is a measure of the 

distortion of the first-order sinusoidal wave shape by the superposition of the second-order terms. If γ = 0, the troughs are 
flattened and the peaks narrower. When γ = π/2, the waves have narrow troughs and flattened peaks. If 0 < γ < π/2, the 
forward face of the waves is steeper than the rear face, while the contrary holds true when π/2 < γ < π. The behavior is 
cyclic with period π so that, for example if γ = −π/2, the waves again have narrow troughs and flattened peaks. At p = 0 
[i.e., σ = σ0, and when the first-order interface displacement has its largest value, η1 = 2A cos(kx − σt)], the second-order 

interfacial wave displacement is

 
(Click the equation graphic to enlarge/reduce size)

or, if both t
β
 (= k/m) and tkh  1, (when tkh  kh)

 

Here |η2|/2A is approximately equal to 3Am/2 if mh  1; that is, if the inverse wavenumber of the incident internal wave, 

m−1, is much smaller than the thickness of the upper mixed layer, h. The interfacial wave then has steeper slopes ahead of 
the wave crest than following it and so resembles the shape of the incident internal wave, but the perturbation from 
sinusoidal is generally small if the incident wave steepness, Am, is small. If, however, mh  1 (i.e., when the vertical 

wavelength of the incident internal wave, 2πm−1, is much greater than the thickness of the upper mixed layer), |η2|/2A is 

approximately equal to Am/(mh)2, which may be of order unity, even when the slope of the incident wave, Am, is small. The 



wave shape is asymmetrical with steeper slopes following the wave crest than in front of it. In this case χ = 1/(2kmh2). 
Figure 2a  shows the variation of χ with p at t

β
 = 0.1 and at tkh = 0.03, 0.1, and 0.3. When p = 0 and tkh = 0.03, then mh 

= 0.3 and χ has large values as predicted. Figure 2b  shows how γ, and therefore the wave shape, varies for the same set 
of parameter values.

If p  −1 (i.e., when |p|  1 or σ  σ0), η1  −[2Atkh/pt
β
] sin(kx − σt), η2  −[p/4tkhk |η1|2] cos2(kx − σt) and χ  

|p|/2tkh. This tends to infinity, as indicated by the increasing values of χ at large negative p in Fig. 2a . The waves have 

flattened crests and narrow troughs but, since |η1| is small compared to the incident wave amplitude at large negative p, the 

amplitude of the interfacial waves is small even though the nonlinearity is great; the mismatch of natural frequences of the 
incident and interfacial wave makes the interface relatively unresponsive to the forcing by the incident wave. For 
comparison, Fig.3  shows the variation in χ and γ at p = 0.2 as tkh varies from 0 to 1 for t

β
 = 0.1, 0.2, and 0.4. Large 

values of χ occur at sufficiently small t
β
, as expected. 

b. Waves traveling over a slope toward a thermocline  

Supercritical internal waves approaching a slope from deep water, and reflecting and continuing with a positive 
component toward shallow water, will be reflected downward from an overlying thermocline. The second-order component 
with frequency 2σ will be either evanescent and therefore trapped in the vicinity of the thermocline if β > π/6 or free if β < 
π/6. If the latter, it (and higher-order components) will travel at a steeper angle to the horizontal than the incident or first-
order reflected wave but with the same group speed. It will therefore lag behind the linear component in its propagation 
toward shallow water; the thermocline reflection does not lead to a mechanism that reduces the time of travel of the internal 
waves toward shore. On each reflection from the bottom the horizontal wavenumber component will increase. The 

frequency σ0 will therefore increase, and p = [1 − σ2
0/σ2] will decrease since σ remains constant, p eventually becoming 

large and negative. The amplitude of the first-order wave on the thermocline is then proportional to 2A/pt
β
 [see (2)] and, 

since p is proportional to −k, its change as the internal wave proceeds toward shore will depend on A/k, provided the density 
distribution, so t

β
 and thermocline depth remain the same. However, on internal wave reflection from a sloping boundary, 

A/k is conserved (Eriksen 1985) so that little change in the amplitude of the forced thermocline displacement may occur as 
waves approach shore, at least after the position is passed where p = 0, although because the wavenumber k increases, they 
will become progressively steeper. The nonlinear terms examined here do not appear to lead to significant processes 
occurring at the interface except perhaps for waves with p > 0 in deep water for which p may become close to zero after 
reflection at the bottom. For waves with p < 0 in deep water, wave breaking is most likely to occur as a consequence of 
wave steepening on reflection at the sloping bottom.

c. Waves in the Bay of Biscay  

New’s (1988) linear numerical model of the internal tides in the Bay of Biscay shows the internal wave ray propagating at 
an angle of about 1 in 25 to the horizontal, so t

β
 = 0.04. The internal waves observed in the center of the bay by New and 

Pingree are 1–2 km in wavelength, and the mixed layer is about 50 m deep. These values give values of tkh of about 0.156 to 

0.304, and so p, = 1 − gkΔρtkh/σ2 ρ0, is approximately 1 − (2.5 − 9.7) × 105 Δρ/ρ0. This is large and negative for typical 

fractional density differences corresponding to the 2–4°C temperature across the seasonal thermocline. While χ may 
therefore be large (Fig. 2a ), the first-order interface displacement will be small compared to the incident wave amplitude. 
When, however, the horizontal scale of the internal tidal waves is as small as 1–2 km, their vertical scale will be only 40–80 
m; this makes untenable the assumption that the thermocline can be represented by a step change in density. If alternatively 
the incident internal tidal waves have horizontal scales of 10–15 km, their vertical scale will greatly exceed the thermocline 

thickness, gkΔρtkh/σ2ρ0 is of order unity, and consequently p is near zero, γ is near 3π/4, and χ is large (Fig. 2 ). The 

interfacial wave amplitude is about twice that of the incident wave, second-order terms are large, and the backward facing 
slope of the waves will be steeper than the forward slope. The development of soliton packets as found on the continental 
slope (e.g., Small et al. 1998) is to be expected. More information is required about the vertical and horizontal scale of the 
internal tidal ray in the center of the bay before the processes operating in the reflection region of the thermocline can be 
properly assessed.

In this simplistic analysis we have, however, ignored several factors. These include the higher-order terms that may affect 
wave shape, small disturbances and instabilities (e.g., those related to parametric instability that may affect the reflection 
process), and the narrow beam structure of the incident wave. Two other effects that may affect the amplitude or shape of 
the internal waves, the earth’s rotation with its consequent Coriolis effects and dissipation, have not been taken into account. 
All these should be carefully assessed in a more thorough comparison with particular observations.
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APPENDIX A  

4. Second-Order Boundary Conditions  

To second order, the kinematic boundary conditions for the lower and upper layer are

 

and

 

respectively, both evaluated at z + η1 + η2. Here w is the vertical velocity component, and the u and w subscripts follow 

the convention already adopted. Expanding about z = 0 and recalling the equality of first-order terms gives



 

and

 

respectively, each evaluated at z = 0. 

The pressure boundary condition is found by equating the pressure gradients in the upper and lower fluids along the 
interface. The pressure gradient is

 

at z = η . Using the equations of motion in the lower layer and the (exact) Bernoulli equation for the pressure in the upper 
layer, expanding about z = 0, and discarding terms that balance at first order we find, at second order,

 
(Click the equation graphic to enlarge/reduce size)

evaluated at z = 0. The terms on the rhs of (A3)–(A5) are derived from the solutions found at first order.

APPENDIX B  

5. The Second-Order Solution for the Interfacial Waves, η2 
 

When β < π/6,

η2 = A1[B1 cos(2(kx − σt) − B2 sin2(kx − σt)],(B1)
 

where

 
(Click the equation graphic to enlarge/reduce size)

Hence,

η2 = |η2| cos[2(kx − σt) + α2],(B5)
 

where |η2| = A1{B2
1 + B2

2}1/2, and α2 = tan−1(B2/B1), with the principal value to be taken if B1 > 0, and π plus the 

principal value if B1 < 0.

Figures  



 

 

 
Click on thumbnail for full-sized image. 

Fig. 1. The geometry of the analytical model. The upper boundary at z = h is a rigid surface. The incident wave has 
wavenumber (k, −m) and travels in a direction with group velocity vector at angle β to the horizontal so that tanβ = k /m. It 
produces a disturbance z = η(x, t) at the interface across which there is a density discontinuity, Δρ, between the lower layer, 
where N is constant, and the upper layer, where the density is uniform. 
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Fig. 2. (a) The interfacial wave nonlinear parameter χ and (b) the angle γ = α1 − α2, which defines the wave shape (see text), for 

varying p at t 
β
 = tanβ = 0.1 and values of tkh = tanhkh = 0.03, 0.1, and 0.3, as marked on the curves. 
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Fig. 3. (a) The interfacial wave nonlinear parameter χ and (b) the angle γ = α1 − α2, which defines the wave shape (see text), for 

varying tkh = tanhkh at p = 0.2 (σ0/σ = 0.89) and values of t
β
 = tanβ = 0.1, 0.2, and 0.4 (β = 5.7°, 11.3°, and 21.8°, respectively) as 

marked on the curves.
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