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ABSTRACT

A survey of the theoretical aspects of tidal rectification over a continental slope 
in the inviscid fluid approximation is proposed. In particular, the geostrophic 
degeneracy problem, evoked by A. W. Visser to justify the need for friction in 
the momentum equations, is examined. It appears that geostrophic degeneracy 
is only due to excessive approximations. In this process friction has only its 
classic effect, which leads to a slight modification of the current obtained in the 
inviscid theory.

The residual current due to nonlinear interactions between barotropic tidal 
currents, sloping topography, and earth rotation can be obtained by linearizing 
the equations describing the dynamics above the continental slope. The long 
period dynamics as thus defined are compared with oceanic data acquired by 
the Centre Militaire d’Oceanographie Service Hydrographique et 
Océanographique de la Marine in the continental slope area of the Bay of Biscay. 
Subject to the assumptions adopted for describing the spatial evolution of the 
semidiurnal current, these comparisons are quite satisfactory.

1. Intoduction  

Above a continental slope, the tidal current is altered by both sloping topography 
and earth rotation. This process is named “tidal rectification.”  It partly explains the 
long timescale alongslope current.

Evidence of such currents is generally observed in field data acquired over continental slope areas (Pingree and Le Cann 
1989; Garreau and Mazé 1992, hereafter GM92). The tidal rectification current is generally recognizable by its periodic 
component close to 14 days. This timescale results from the interaction of the M2–S2 tidal components. As this current is 

rather large (typically 5–10 cm s−1 in the Bay of Biscay), understanding the generation process is an interesting challenge. 

Qualitative theoretical explanations based on the conservation of potential vorticity or quantitative ones resulting from 
rotation of the major axis of the ellipse without tidal stress have been proposed. A summary of these works is given in an 
earlier paper (Mazé et al. 1998). A different approach to the quantitative aspect of this process has been suggested (GM92). 
The proposed solution has been critically examined (Visser 1994, hereafter V94). V94’s arguments are based on a 
Lagrangian point of view and refer to geostrophic degeneracy to justify the use of friction.
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The object of the present study is to prove that on one hand geostrophic degeneracy only results from excessive 
approximations and on the other hand that the friction parameterization used in the “tidal stress”  theory is irrelevant and 
appears as an unnecessary complication of the problem. Field data acquired by the French Centre Militaire d’Océanographie 
Service Hydrographique et Océanographique de la Marine (CMO-SHOM) (MINT-94 experiment) in the continental slope 
area of the Bay of Biscay allow specification, at least partially, of the influence on tidal rectification of the development of the 
observed long-period current. 

2. Eulerian and Lagrangian motions study  

Consider the case of a shelf break parallel to the y axis with a constant slope a in the x axis: h(x) = h0 − ax. In an inviscid, 

unstratisfied fluid, the momemtum equations may be written as

 

and the continuity equation is

 

where u and  are the velocity components perpendicular and parallel to the isobaths, respectively; η  is the free surface 
elevation.

a. Integration of Laplace equations  

As Eqs. (1), (2), and (3) are nonlinear, it is impossible to compute the exact analytical solution for the description of a 
particular mechanism. The tidal oscillation description thus requires a linearization. For the study of a monochromatic 
oscillation of frequency ω, which does not require a high degree of precision, the Laplace equations corresponding to Eqs. 
(1), (2), and (3) are used:

 

By introducing η  = η0[F(x) − jG(x)] expjωt, where j = (−1 )½, it is found that

 

with

 

This well-known solution is clearly determined by imposing harmonic motion, which eliminates the following spurious 
solution:

 

In other words, the L expression is obtained by integrating Eq. (5) from t0 to t:



 

thus, L(x, t0) is defined by

 

and L(x, t) by

 

In this integration, t0 is simply chosen so that L(x, t0) = 0 in order to eliminate the spurious solution (10).
 

GM92 have then linearized Eqs. (1), (2), and (3) with the approximation u / x = uL / x. The current components are then 

advected by a known current. We have found that

 

constitute an exact solution for Eqs. (1) and (2), and an approximate solution for Eq. (3) if

 

from which

 

where Σi f i is a convergent series if | uL/ x| < ω, which is generally verified over a continental shelf break. The f i 

functions are easily determined by Eq. (11). To test the precision of this approximation, we have used the potential vorticity 
conservation principle (Q) on the trajectory dQ/dt = 0 with Q = ( / x + f)/h, with η   h. This verification is also a 
continuity accuracy test. It is easily shown that, in the case where / y = 0, if Eq. (2) and Eq. (3) are verified, dQ/dt = 0 is 
obtained. If dQ/dt = 0 and Eq. (2) are verified, then Eq. (3) is verified too. 

b. Eulerian and Lagrangian motions study  

In the dynamical context defined above, near the shelf break where u/ x is not negligible with respect to ω, then uL = 

D/h cosωt with D = h0u0 is a good approximation of uL obtained with Eq. (7), which permits simple and locally correct 

analytical expressions for uL. This formulation, used by both GM92 and V94, is equivalent considering the rigid-lid 

hypothesis (huL)/ x = 0. In addition, for η   h in the mass conservation equation (V94), Eqs. (1), (2), and (3) become



 

In Lagrangian coordinates, this system becomes

 

The relations between the coordinates and solutions of Eqs. (13), (14), and (15) and (16), (17), and (18) are the 
following:

1. the Eulerian coordinates and solutions of Eqs. (13), (14), (15): x, h, u(x, t), (x, t), η(x, t), correspond to the 

coordinates and solutions of Eqs. (16), (17), (18): x•, h•, u•, •, η• so that

 

where x• (u•, •) defines at instant t the position (the velocity components) of the particle that was at x at instant t0 

with the velocity components u(x, t0) and (x, t0). Here h• and η• are the depth and the free surface elevation at 

instant t at x•; 

2. the Lagrangian coordinates and solutions of Eqs. (16), (17), (18): x•, h•, u•, •, η• correspond to the coordinates and 
solutions of Eqs. (13), (14), (15): x, h, u(x, t), (x, t), η(x, t) so that

 

where x* [u(x*, t′0), (x*, t′0)] defines at instant t′0 the position (the velocity components of the particle that was at 

x at instant t with the velocity components u(x, t) and (x, t). We have

 

As for the solutions of Eqs. (4), (5), (6), the instants t0 and t′0 must be chosen so as to eliminate spurious solutions. As for 

the L determination by the integration of Eq. (5), • is obtained by integrating (17) from t0 to t:

 

with u• = dx•/dt, we have

• = (x•, t) = (x, t0) − f(x• − x).(22)

 

The Eulerian component solution of Eq. (14) is, then,

(x, t) = (x*, t′0) − f(x − x*).(23)

 

Equations (22) and (23) are verified for any motion studied with Eqs. (16), (17), (18) or Eqs. (13), (14), (15). For 



example,

 

Obviously, the motion described by these expressions has no interest in the case of tidally induced motion. This solution 
corresponds to ω  u/ x; t. These spurious solutions appear because the phenomenon is expressed by partial derivative 
equations. When integrating these equations, the constants that appear are defined by the boundary conditions and/or the 
initial conditions. The spurious solutions are eliminated due to these complementary conditions.

As far as we are concerned, the mechanism is characterized by the fact that | u/ x| < ω. If | u/ x|  ω, the solution must 
converge toward the solution of the Laplace equations. In the integration of Eq. (14), which leads to expression (24), the 

initial instant must be chosen as in the integration of Eq. (5) where (x,* t′0) = 0. The solution is, therefore,

(x, t) = −f(x − x*).(25) 

The introduction of this expression in Eq.(14) shows that this equation is verified, whatever the u(x, t) and (x, t) 
expressions, under the following condition:

 

The following solution suggested by GM92,

 

is therefore totally defined and complete. This approximate solution of Eqs. (1), (2), (3) converges to the linear solution if 

|u / x|  ω (or aD/h2  ω). V94 criticizes this solution based on on the solution of the Lagrangian equations (4), (5), (6) 

with the approximation (h•u•)/ x = 0. Let h•u• = D cosωt; thus,

 

and integrating (17), we obtain

 

V94 affirms that • is determined only within the constant 0. As seen above, this constant is perfectly determined by the 

fact that • must be harmonic [ 0 = fh/a corresponds to the unacceptable solution (24)], and must converge toward the 

value − fD sinωt/ωH if | u/ x|  ω. 

Considering the approximation h•u• = hu = D cosωt used by V94, the Lagrangian component is, therefore,



 

to which corresponds the Eulerian component:

 

with

 

The reasoning of V94 (i.e., the approximation: h•u• = hu = D cosωt) leads to a Lagrangian circulation defined by

 

and an Eulerian circulation

 

whereas with GM92’s solution, the Eulerian velocities are

 

and

 

and the Lagrangian velocities are

 

and



 

Hence, GM92’s residual circulation balances the linear approximation of the Lagrangian drift, and when completing the 
V94 solutions, the residual circulations compensate only half of this drift.

Beyond the fact that it is not necessary to use the friction “approach,”  this study shows that the approximations used have 
an important effect on the result. For this reason, it is necessary to verify them with an accurate numerical simulation of the 
complete system of Eqs. (1), (2), (3) as in a related study (Mazé et al. 1998). 

3. The friction effect  

The most important friction effect is the creation of a boundary layer above the bottom. This mechanism is expressed by 
the linearized Navier–Stokes equations:

 

where h represents the depth and μ, the eddy viscosity coefficient, is assumed to be independent of h. (As a matter of 
fact, the momentum conservation equations over the continental shelf break must be written in the x, z axis system, where 

the x and z axes are perpendicular to the slope. The vertical diffusion term is actually μ 2u/ z2. The form used here is 
however sufficient because it respects the main friction characteristic, that is to say the creation of a boundary layer above 
the bottom.)

With the boundary conditions u(u, ) = 0 for h = H and u/ h = 0 for h = 0 (no surface friction), a classic calculation 
(Prandle 1982) leads to

 

and

 

where u0(x, t) and 0(x, t) are defined by the relations:

 

Here b is a constant, b = ω(ω − f)/(ω2 + f2); K1 and K2 are complex numbers: K1 = k1(1 + j), K2 = k2(1 + j) with k1 = 

[(ω + f)/2μ]1/2 and k2 = [(ω − f)/2μ]1/2. The expressions in square brackets are complex numbers:

Ch(K1h) = coshk1h cosk1h + j sinhk1h sink1h,
 

and, as jω 0(x, t) = −fu0(x, t) and jfu0(x, t) = ω 0(x, t), u and  can be written as a linear combination of u0(x, t) and 0
(x, t). 

If | u/ x| is not negligible with respect to ω, the motion is defined by the equations:



 

which are the Navier–Stokes equations written with the hydrostatic approximation and linearized with the approximation 
(GM92):

 

We observe that for x = x*

 

With (26) and for x = x*, the expressions

 

constitute an exact solution of the momentum conservation equations and an approximate solution of the continuity 
equation.

Thus, the residual circulation is defined by

 

The expression of x* as a function of x, t, h is the following:

 

which is a convergent series if | u/ x| < ω. The functions f i(x, t, h) are defined by (26). Let t0 = t0(x, h) be such as (t0, 

x, h) = 0. For example,

 

The exact analytical calculation of u(x, h) and (x, h) is very long except when h = H, where u = 0; u* = u = 0 and 
therefore u(x, H) = 0. 

If h = 0, when limiting x* to x −  t
t0

u dt, we can obtain the “approximate”  residual circulation, which remains a good 

approximation for fairly large depth.

For cos2k1H  sinh2k1H, cos2k2H  sinh2k2H, tanh2k1H  1, and tanh2k2H  1, which is the case for commonly 

used μ values, the residual current thus obtained close to the surface is, with u0(x, t)  (D/H) cosωt:



 
(Click the equation graphic to enlarge/reduce size)

(Click the equation graphic to enlarge/reduce size)

If we suppress the friction by putting μ close to 0, k1 and k2 converge toward infinity, but k1H/sinhk1H converges toward 

zero. We then find

 

which is the first term of the  development obtained in GM92. Consequently, friction modifies the current existing in an 
inviscid flow and creates of a bottom boundary layer for both the residual current and the harmonic current.

4. Comparison with the tidal stress method  

The tidal stress method “requires”  friction, which is parameterized by

 

where τ(H) is the stress and ρ is the mass density. 

With the current components u* and * (independent of h), the problem is defined by the following system:

 

The free surface elevation η  and the current components u* and * are developed in a series:

 

These series are limited to the first two terms: * =  + 1 expjωt.
 

The harmonic motion is defined by

 

and the residual motion by



 

With the approximations η1  η0 and ku  ku0, where η0 and u0 remain the solutions of Laplace equations, the 

following is obtained:

 

In addition, with

 

the residual components are

 

Here  is then the residual component parallel to the continental shelf break in an inviscid fluid, but it depends upon the 
friction parameterization:

 

Using the eddy viscosity defined above, the same reasoning and corresponding approximations lead to a determination of 
 by

 

where u and  are the current components at the depth h. With the boundary conditions,

 

the integration of Eq. (62) leads to

 



It appears clear that such a variety of results obtained depending upon the chosen friction form raises a problem that 
needs to be resolved.

To explain the “geostrophic degeneracy”  notion invoked by V94 to justify the arbitrary use of friction, the problem is 
addressed by splitting u*, *, η* in series in Eqs. (49), (50), and (51):

 

where u, uk, , k, η , and ηk are complex numbers. Noting that

 

the Eqs. (49), (50), (51) can then be separated as

 

with η   H. The residual motion is defined by

 

For k(x) = 0, we find that u is defined by

 

and



 

with the boundary condition  = 0 both on the abyssal plain and the continental shelf. For k(x)  0,

 

It appears in this last expression that, if k = 0, then u, uk, and k take the values of the previous case, and x takes the 

value defined for k(x) = 0. It is also clear that the external force parameterization −ku has no other effect than to complicate 
the problem. The introduction of these u and  expressions in Eqs. (64), (65), (66) leads to a nonlinear system of 3N 
equations, with N  ∞, which is impossible to solve exactly if k(x) = 0 and even less so if k(x)  0. It is due to the 
nonlinearity of the equations, and definitely has nothing to do with the geostrophic degeneracy. The calculation of the exact 
residual current is impossible; thus, linearization of the equations leads to an approximation that will be stated precisely by a 
rigorous numerical simulation [setting of course k(x) = 0]. 

Two types of linearization can be considered:

1. The first one consists in simplifying equations (64), (65), (66) and (67), (68), (69): first, by truncating the series at 
first order, and, then, by neglecting some terms.

2. The second one consists of linearizing Eqs. (49), (50), and (51). 

Let us first examine the first linearization type: The first-order truncation eliminates all the terms in the sum Σ∞k=1 in Eqs. 

(64), (65), and (66). In Eqs. (67), (68), and (69) the sum is limited to the first term (k = 1). In the low “nonlinearity”  cases 
(Huthnance 1973), the interaction term averaged current-harmonic current in (64) and (65) plus the terms u u/ x and u / x 
in (67) and (68) are also neglected. These approximations lead to systems (53), (54), (55) and (56), (57), (58). The problem 
is “degenerate”  for k(x) = 0—that is, the residual component  cannot be determined without friction because all the terms 
allowing this calculation have been eliminated. Then, neglecting u1 / x in (65) signifies that the relation |u1| / x  k   

f |u1| is admitted. Now  is of the order of af|u1|2/(ω2H). With the observed values for the Bay of Biscay: a  10−1, f   

10−4 s−1, ω  1.4 × 10−4 s−1, |u1|  0.5 m s−1, for H = 300 m, then / x = 1.5 × 10−4 s−1; thus / x > f. This 

approximation is valid only in the case where H is large, that is, up to the continental shelf break. To solve the highest 
nonlinearity cases, Loder (1980) retains the term u1 / x in (65) but supposes u1 = u0 = D expjωt/H. In this case, u 

(complex number) is equal to zero, and Eqs. (65) and (68) become

 

Thus, for k(x) = 0, (73) yields

 

Introducing (75) into (74) leads to

 

This equation, therefore, defines the residual component (0) for k(x) = 0. With the boundary conditions (0) and (0)x 

everywhere on the abyssal plain (H = H0) and, thus up to the continental shelf break in x = 0, it follows that

 

If the external force (−ku) is used with, for example, k(x) = Cste, solution of Eqs. (73) and (74) becomes more complex. 



The imaginary component I of  is necessary and leads to the resolution of two nonlinear equations. The unknown 

quantities are the real and imaginary parts of , R, and I. Obviously, this system of equations can be solved using the 

Runge–Kutta method, but Eqs. (73), (74) show clearly that, if k(x)  0, the solution must absolutely converge to (0). The 

approximations used remain excessive; neither the direction nor the intensity of (0) correspond to the observations. On the 

eastern side of the ocean and with a continental shelf oriented southeast to northwest as in the Bay of Biscay, the 

observations reveal a current orientation toward the northwest of 5–10 cm s−1 at a depth of 200 m on a continental shelf 
break slope of a  0.1. The obtained (0) is oriented southeastward. Its strength is too great, and, in addition, this current 

does not depend on the tidal current.

To study the influence of truncation examine now the direct linearization of (73) by the substitution u* / x = u0 / x. Thus 

the motion is defined by

 

As has been demonstrated, the “external force”  −ku is of no interest and is no longer included. This system is linear and 
the component u0 provides the advection of u*, *, η*. It is true that u* = u0(t, x*); * = 0(t, x*), and η*/ x = η0/ x (in 

x = x*) = η0/ x*(t, x*) constitute an exact solution for (78) and (79) and an approximate solution for (80) if dx*/dt = x*/ t 

+ u0 x*/ x = 0. Thus,

 

When u* and * are developed in a series, it follows that

 

which can be used in the previous method to determine  [which is directly defined by  − (½)ju*
0 1/ x/ω]. The 

equations become

 

Thus, Eq. (83) demonstrates that x is defined by the second harmonic component *. In the case where u0 can be 

represented by u0 = D expjωt/H, it follows that

 

Thus, with  = 0 and 2 = 0 on the abyssal plain:

 



The unacceptable result (77) has vanished; it was due only to the approximation u = 0 instead of Re (u = 0). Besides, it 
appears clearly that this second harmonic * component defines . 

5. Field data analysis  

The data used in the present study were acquired during the MINT-94 experiment in the Bay of Biscay (18 May 1994–17 
June 1994) carried out by the French Navy’s CMO-SHOM (Outré and Pichon 1995; Pichon 1997). Doppler current meter 
measurements were acquired at a location on the 300-m isobath above the continental slope (Figs. 1  and 2 ). From an 
acoustic Doppler current profiler (ADCP) fixed on the sea bottom, data were obtained within layers of thickness δh = 4 m 
between 48 m and 280 m. At the beginning of the experiment, the water column was weakly stratified. A thermocline 5 m 

thick and characterized by g′ = 1.2 × 10−3 m s−2 (reduced gravity) was located at 80-m depth. The amplitude and phase of 
the tidal components have been deduced from harmonic analysis of the data. In the study area, diurnal tides are weak. The 
semidiurnal tide includes fundamentally the M2, S2, K2, and N2, components. The tidal current, which is then reconstructed 

from these four components will be called hereafter “linear semidiurnal.”  Therefore, at each depth, the cross-slope and the 
alongslope components of the above linear semidiurnal currents can be compared with the measured current (Figs. 3  and 
4 ) for the two examples, the cross-slope component is in the south–north direction and the alongslope component is in 
the west–east direction. In many cases, the comparison between data and results given by theoretical models is a rather 
difficult challenge. Thus, the examples presented here are chosen to be more explicit and to show limiting cases: a “good”  
example and a “less favorable”  one. 

These observations show different characteristics of the cross-slope and the alongslope components. For the cross-slope 
component, differences between in situ measurements and linear semidiurnal values tend to balance. Thus, the residual 
component, that is, the low-frequency cross-slope component, practically vanishes. For the alongslope component, 
variations are not symmetrical. The maximum amplitude of the measured current in the east direction is weaker than that 
given by linear semidiurnal reconstruction. This feature appears clearly in the data at 184-m depth (Fig. 4 ) but much less 
in the data at 88 m (Fig. 3 ). In the west direction, the maximum measured value is strongly marked, leading to a low-
frequency residual current (Fig. 6 ). This feature can be observed at 184 m, 88 m, and also at other depths. This 
unsymmetrical feature is, of course, related to the presence of a mean semidiurnal current. The magnitude of this current 
increases as the linear semidiurnal current increases. Consequently, the alongslope residual current contains a fortnightly 
component due to the linear semidiurnal current. It is possible that the aforementioned feature can be explained in different 
ways. However, it is clear that reference to frictional influence here is a misinterpretation.

To understand these observations in terms of the theoretical approach proposed in GM92, the standard approximation 
used previously for a monochromatic current can be adopted:

 

with

 

where

 

Comparisons between u* and uL on one hand and between * and L on the other (Fig. 5 ) reveal evolutions quite 

similar to those suggested by observations (Fig. 4 ). 

To understand the importance of tidal rectification in the development of the observed low-frequency current (Fig. 6 ), 
some assumptions must be made:

1. The linear current is the sum of four semidiurnal components; that is, at 88 m:

 

at 184 m:



 

for t0 < t < t0 + 25 days, where t0 = 8 h, ω = 1.4 × 10−4 s−1, Ω = 5 × 10−6 s−1 (T  15 days), and u11 = 0.35 m 

s−1, u12 = 0.15 m s−1, 11 = 0.3 m s−1, 12 = 0.1 m s−1, u21 = 0.3 m s−1, u22 = 0.1 m s−1, 21 = 0.24 m s−1, and 

22 = 0.08 m s−1. The topographic slope is a = 2/3 × 10−1. 

2. The continental slope shape is linear (this is not the actual shape shown in Fig. 2 ). 

3. The spatial evolution of the linear current is given by

 

where

 

and H* = 200 m if the above calculated value is less than = 200 m. This last restriction is connected to the fact that 
H* represents the actual water depth associated with a parcel moving from location x*, where it is at time t = t1 [ L
(t1) = 0 so t1 = 0], to location x, which is reached at time t with a velocity (u*, *). Hence, H* cannot be less than 

H1 = 200 m if a continental shelf of constant depth is assumed beyond the 200-m isobath. 

The current amplitude increases with depth because of the stratification. This feature implies baroclinic components that 
are not described in the expression of u* and *. The “apparent”  water displacement can then be theoretically calculated:

 

To smooth this water parcel trajectory only one value for each tidal period is plotted. Hence, the M2 tidal component is 

eliminated. The same procedure is adopted for the representation of in situ data.

The vertical structure of the “measured”  trajectory is shown on Fig. 6 . As with the semidiurnal current amplitude, the 
mean current increases with depth. This current practically flows in the alongslope direction toward the west. The 
“apparent”  trajectories computed at 88 and 184 m (Fig. 7 ) are quite similar in order of magnitude. The assumptions 
restrict the generality of the above comparisons. Howewer, it appears that the theoretical view of this problem allows 
specification of the effect of tidal rectification on the development of the alongslope current. Nevertheless, the spatial 
characteristics of the linear tide in the continental slope area must be exactly known. The use of a schematic tidal solution of 
the hydrodynamic equations allows numerical simulations of the “mean”  current induced by this process (Mazé et al. 1998). 
Analysis of in situ data suggests that a “linear tide”  very close to the actual tide must be used; hence, this linear tide must be 
expressed from the tide-producing force associated with both the lunar and solar tidal potentials.

6. Conclusions  

This study helps to clarify the problem of residual motion due to tidal rectification on a continental shelf break. It clearly 
leads to three conclusions:

1. The geostrophic degeneracy is only due to excessive approximations and can certainly not be considered as “a 
fundamental feature of the dynamics involved,”  as stated in V94. 

2. The friction strength (−ku) used in the tidal stress theory is in reality an external force applied to an inviscid fluid. It 
is of no interest and can certainly not define the strengths balance of the residual motion in the Lagrangian reference 
frame under the form (V94, p. 2199):

 

3. The development in series, followed by truncation of the series at first order, is a method that leads to unacceptable 
results if the residual component u perpendicular to the continental shelf break (i.e., as a matter of fact, the complete 
solution) is unknown.



4. The true reason of the indeterminacy of u(u, ) lies in the nonlinear character of the equations, which expresses the 
physics of this mechanism. It appears that the approximate residual current can be obtained by linearizing these 
equations, for example, with u* / x = u0 / x. As the result obtained remains an approximation, it is necessary to state 

precisely its validity by using an accurate numerical solution of the nonlinear problem and with, of course, k(x) = 0. 

5. The analysis of field data clearly explains the tidal rectification mechanism: when the alongslope component of the 
current has shallow water on the right (in the Northern Hemisphere), its intensity is highly amplified. In the opposite 
case, the current intensity is reduced. Thus, the forcing of a residual current results. This residual current presents 
the characteristic structure of the tidally rectified current with a periodic component associated with the fortnightly 
period due to the M2–S2 interaction. Qualitative and quantitative comparisons between theory and data seem very 

satisfactory. Nevertheless, this conclusion must be moderated because of uncertainties due to the various 
assumptions used in the expression of the spatial evolution of the tidal current above the continental slope.
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Figures  
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Fig. 1. Location of the ADCP mooring.
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Fig. 2. Slope topography in the vicinity of the ADCP mooring.
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Fig. 3. Comparison between measured currents and calculated currents from M2, S2, N2, and K2 tidal components at depth h = 

88 m (MINT-94 EPSHOM/CMO): (upper curves) cross-slope and (lower curves) alongslope components. 
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Fig. 4. As in Fig 3  but at depth h = 184 m. 
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Fig. 5. Comparison between uL and u* and between L and * for a monochromatic current.
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Fig. 6. Apparent trajectories of a water parcel obtained from data at different depths.
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Fig. 7. Apparent trajectories resulting from time integration of u* and * at depths h = 88 m and h = 184 m. 
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