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ABSTRACT

The nonlinear behavior of thermohaline intrusions on a wide front is investigated 
using a one-dimensional numerical model. The model is used to follow the 
evolution of a field of intrusions from infinitesimal amplitude to a large-
amplitude state characterized by inversions in temperature and salinity. It is thus 
possible to extend the analytical studies of Toole and Georgi and others to large 
amplitude, allowing for the effects of amplitude-dependent diffusivities, and for 
the appearance of stably stratified, diffusively stratified, and statically unstable 
regions in the water column as the intrusions grow.

The model runs are initialized with infinitesimal disturbances that grow 
exponentially in time until inversions in temperature and salinity occur. After 
inversions appear, the intrusions evolve toward an equilibrium state in which 
friction balances buoyancy forces, for both finger- and diffusive-sense basic-
state stratifications. These equilibrium states are characterized by statically 
unstable “convecting”  layers between layers of finger- and diffusively stratified 
fluid—the convecting layers appear when intrusions reach large amplitude and 
help to slow their growth. Equilibration seems to be insensitive to the specific 
functional forms chosen for the double-diffusive diffusivities and viscosities. 
The necessary condition for equilibration is that the T–S flux ratio adjusts as the 
intrusions grow, and (within the context of the present model) turbulent mixing 
provides the mechanism for this adjustment.

1. Introduction  

Quasi-lateral thermohaline interleaving is often observed in areas of the ocean where waters with different T–S properties 
meet laterally. First documented by Stommel and Fedorov (1967), interleaving has since been observed in fronts and on 
mesoscale eddies by many other researchers (Joyce et al. 1978; Horne 1978;Toole 1981; Barton and Hughes 1982; Ruddick 
and Hebert 1988; Provost and Gana 1995). Recently, Carmack et al. (1995) have observed interleaving on a grand scale in 
the Arctic Ocean, finding intrusions coherent over horizontal scales of more than 2000 km. Richards and Pollard (1991) 
have documented intrusions in the equatorial Pacific that can be traced for up to 400 km, which they speculate may be an 
important mechanism for mixing salty water from south of the equator with fresher northern water.

Because interleaving is associated with the advection of tongues of water across a front, it could provide an important 
mechanism for cross-frontal exchange of heat, salt, and momentum. The frequency with which interleaving has been 
observed suggests that it could play a role in the dynamics of a wide range of features ranging in size from the mesoscale to 
the basin scale. Based on extrapolations from linear theory, Posmentier and Kirwan (1985) have suggested that double-
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diffusive interleaving may have an important effect on rings and other mesoscale features, possibly acting to enhance their 
density signatures while running down their T–S signatures. Garrett (1982) has suggested that interleaving may provide a 
link between lateral stirring and diapycnal mixing since stirring by mesoscale eddies can alter frontal T–S gradients, which 
can in turn affect diapycnal intrusive fluxes (by modifying intrusion growth rates).

Unfortunately, due to the extremely small velocities associated with interleaving [ 1 mm s−1 according to Ruddick and 
Hebert (1988)], it has proved extremely difficult to quantify intrusive fluxes in the ocean. In addition, because frontal 
existence timescales in the ocean are typically much longer than intrusive growth timescales, intrusions spend most of their 
lives in a large amplitude, nonlinear state; so the usefulness of extrapolating from linear theory is questionable. Hence, as a 
result of the difficulty of making direct measurements of intrusive velocities and because of the lack of adequate theoretical 
models, the dynamical importance of interleaving is largely unknown. Bormans (1992) has carried out laboratory 
experiments simulating intrusions on a “sharp”  T–S front and found an empirical relation that predicts intrusive fluxes well in 
doubly stable conditions. The implications of these results for oceanic intrusions are, however, unclear. The only direct 
inference of intrusive fluxes in the ocean is that due to Ruddick and Hebert (1988), who demonstrated that the dominant 
mechanism responsible for the decay and eventual demise of Meddy Sharon was thermohaline interleaving, presumably 
driven by double-diffusive buoyancy fluxes. Over the 2-yr period of observation, intrusions at the edge of the meddy core 
eroded the warm and salty central region from an initial diameter of 60 km to less than 5 km, suggesting an effective 

lateral diffusivity of 2–4 m2 s−1. These observational results demonstrate that intrusions can have an important effect on the 
evolution of oceanic fronts and eddies.

Joyce (1977) proposed a model for interleaving at statistical equilibrium, which permits intrusive fluxes to be inferred 
from T–S profiles. Joyce assumed that the production of salinity variance by lateral advection is balanced, on average, by 
dissipation of salinity variance through small-scale vertical mixing. This allows the lateral intrusive fluxes to be expressed in 

terms of horizontal and vertical salinity gradients and a vertical diffusivity, KV. Assuming a diffusivity of 10−4 m2 s−1, Joyce 

et al. (1978) estimated that intrusions in the Antarctic Circumpolar Front were responsible for an effective lateral diffusivity 

of 20 m2 s−1, roughly equivalent to the eddy-driven fluxes across the front (Bryden 1979). Joyce’s model has been 
applied frequently since its introduction. Provost and Gana (1995) have used it to estimate an effective salt diffusivity of 100 

m2 s−1 due to interleaving at the Brazil–Malvinas confluence, while Richards and Pollard (1991) estimate a remarkably large 

value of 3000 m2 s−1 based on their equatorial measurements. A limitation of Joyce’s model is that it relies upon prior 
knowledge of KV, which is poorly known at this time, particularly in intrusive regions where both double-diffusive and 

“ordinary”  turbulent mixing are likely to be occurring. 

Stern (1967) suggested that interleaving could arise spontaneously under the action of double-diffusive fluxes in regions 
with strong lateral T–S variations. However, the theory he formulated to explain interleaving predicted unbounded growth 
rates for disturbances of vanishingly small scale (an “ultraviolet catastrophe”) and, hence, could not explain the finite 
intrusion scales seen in the ocean. Stern’s inviscid theory was modified by Toole and Georgi (1981), who found that adding 
friction prevented the UV catastrophe from occurring; their theory predicted a finite wavelength for the fastest-growing 
intrusions, and the predicted length scales were found to be in reasonably good agreement with observations. Since then, 
numerous analytical studies have appeared in the literature, many of which are variations on the linear stability calculation of 
Toole and Georgi. For example, McDougall (1985a) incorporated “slab”  flux laws into Toole and Georgi’s model and 
showed that this could lead to an increase in the vertical scale of the fastest growing intrusion. Niino (1986) investigated the 
effect of a finite width front on growing intrusions, thus reconciling the “wide front”  model of Toole and Georgi with the 
“narrow front”  model proposed by Ruddick and Turner (1979). Walsh and Ruddick (1995a) examined the influence of 
density-ratio-dependent diffusivities and viscosity on the growing intrusions, and found that even a weak density ratio 
dependence can significantly affect growth rates and vertical scales.

Linearized studies such as that of Toole and Georgi (1981) predict intrusion length scales, growth rates, and slopes, but 
say nothing about the finite-amplitude state or about the fluxes of heat and salt produced by interleaving. The reason for this 
is that only the initial (exponential growth) phase of the intrusion life cycle is modeled by the linear stability analyses, while 
the fluxes depend critically on the form of the equilibrium that the growing intrusions eventually reach. McDougall (1985b) 
extended the existing linear stability analyses, investigating the possibility of equilibrium interleaving solutions that might 
occur when exponentially growing small amplitude solutions grow to large amplitude. His results suggest that, if the water 
column is initially stratified in the salt-finger sense, growing intrusions will eventually produce T–S inversions and, hence, 
diffusively stratified regions. Equilibration of growing intrusions is then possible via a three-way balance (in T–S space) 
between finger, diffusive, and advective T–S fluxes. The essential factor is that these processes have different T–S flux 
ratios, making it possible to achieve an equilibrium T–S flux balance. While McDougall established a necessary condition for 
equilibrium, he did not demonstrate that small amplitude solutions can ever actually evolve to the large amplitude equilibrium 
states he discusses. McDougall performed a heuristic stability analysis that suggested that, if such solutions could be 
achieved, they should be stable. However, Kerr (1992) has shown analytically that large amplitude, marginally stable (i.e., 
nongrowing) intrusions may be unstable to smaller-scale double-diffusive instabilities, suggesting that equilibrium interleaving 
solutions may be unstable.

In an analysis of the evolution of a horizontal thermohaline intrusion bounded by diffusive and finger interfaces above and 
below, Ruddick (1984) found that the diffusivity formulations had to be of a special form to allow equilibrium solutions. He 
chose diffusivities that were functions of the interfacial density ratio (=αΔT/βΔS) and found that to achieve an equilibrium it 
was necessary that the diffusive-sense diffusivity vary more rapidly (as a function of density ratio) than the finger-sense 
diffusivity. This allowed finger buoyancy fluxes to dominate at moderate or large density ratios, with diffusive buoyancy 
fluxes dominating at small values of R

ρ
. It should be noted that Ruddick’s study focused on the evolution of horizontal 

intrusions with no lateral advection, whereas lateral advection is likely to be important to the dynamics of oceanic intrusions. 



Apart from the aforementioned studies by McDougall (1985b), Ruddick (1984), and Kerr (1992), the question of whether 
equilibrium interleaving solutions exist and are achievable is largely unaddressed. The studies of Ruddick and McDougall 
suggest that both the appearance of diffusive interfaces and the specific functional forms of the diffusivities may be 
important in the equilibration of growing intrusions.

Our primary goal in the present work is to show that the incorporation of amplitude-dependent mixing coefficients and 
“background”  turbulence in Toole and Georgi’s model allows growing intrusions to equilibrate at large amplitude (after T–S 
inversions appear). To this end, we have developed a simple one-dimensional numerical model of thermohaline interleaving, 
and will present a series of model runs to demonstrate that evolving intrusions can approach a steady-state configuration 
under meddylike conditions. These equilibria are reached through the evolution of small amplitude intrusions to large 
amplitude, and they are found to be in reasonably good agreement with the intrusion data from Meddy Sharon. We then 
attempt to identify and understand the mechanisms necessary for equilibration. A detailed consideration of the dependence of 
intrusive fluxes on model parameters and of the stability of the solutions will be the topic of a future manuscript.

The outline of the paper is as follows: we begin by describing and validating the numerical model (section 2) and then use 
it to look at the evolution of small amplitude intrusions to large amplitude (section 3). In section 4 we demonstrate that 
growing intrusions approach an equilibrium state under conditions similar to those found in Meddy Sharon and discuss the 
factors that allow equilibration. In section 4 we also explore the sensitivity of the model solutions to background mixing, the 
sense of the overall stratification, and to the functional forms chosen for the diffusivities and viscosity. We end with a 
discussion section (section 5) and conclusions (section 6). 

2. The model  

Walsh and Ruddick (1995a) demonstrated that the slope and wavelength of the intrusions in Meddy Sharon were in good 
agreement with the predictions of linear theory in both the lower (finger stratified) and upper (diffusively stratified) halves of 
the meddy. They inferred that the slope and wavenumber set by the linear instability mechanism remain fixed as intrusions 
grow to a large amplitude state characterized by inversions in the temperature and salinity fields. Based on this observational 
result, we have constructed a one-dimensional numerical model to investigate the large amplitude behavior of intrusions. The 
resulting model contains much of the relevant physics, executes rapidly, and allows an investigation of the nature of the 
equilibria reached by growing intrusions. Our fundamental assumption is that intrusions are planar disturbances on a“wide”  
front and, hence, are not seriously affected by end effects. It is also implicitly assumed that the linear growth timescale for 
the intrusions is much less than the “frontal existence”  timescale, so the basic state can be considered to be invariant on 
intrusive timescales.

In addition to fixing the slope and wavelength of the intrusions, a number of assumptions are made concerning the various 
small-scale mixing processes driving the intrusions. Both double-diffusive fluxes and turbulent fluxes are parameterized using 
conventional eddy diffusivities and viscosities. When conditions are double-diffusively unstable, diffusivities are taken to be 
functions of the density ratio (R

ρ
), defined as

 

which measures the relative contributions of T and S to the density stratification. Walsh and Ruddick (1995a) have shown 
that an R

ρ
-dependent diffusivity introduces important modifications to the linearized intrusion model of Toole and Georgi 

(1981), so it seems plausible that nonconstant diffusivities may play an important role in modifying the behavior of large 
amplitude intrusions as well. In order that exponentially growing small amplitude solutions equilibrate at finite amplitude, 
fluxes of T, S, and momentum must adjust to slow growth rates when intrusions become large. This was a major motivation 
for allowing the diffusivities to vary continuously with R

ρ
. However, we shall see that the key factor that makes equilibration 

possible is that the T–S “flux ratio”—not the diffusivities per se—adjusts as the intrusions grow. 

a. The model equations  

Our purpose is to investigate the stability of a “front”  characterized by large-scale horizontal and vertical T–S variations. 
The basic-state temperature, salinity, and alongfront velocity are described by the functions T (x , z ), S (x , z ), and 

(x , z ), which are assumed for simplicity to be linear functions (so the basic-state fields are uniform in the alongfront 
direction, with uniform gradients in the vertical and cross-front directions). The effects of rotation and alongfront shear are 
included for generality and to set the stage for future work, although we will not consider these effects in detail here. The 
equations governing the evolution of the velocity, temperature, and salinity fields are

 



 

where starred ( ) quantities are dimensional, ρ0  is the average density, f  the Coriolis parameter, g  the gravitational 

acceleration, z a unit vector in the vertical direction, α  and β  are thermal expansion and haline contraction coefficients, 
and A , KS , and KT  are diffusivities for momentum, salt, and heat. Our aim is to examine the evolution of planar 

disturbances that can be considered one-dimensional in a suitably rotated frame of reference, like those discussed by Toole 
and Georgi (1981). Thus, we rewrite the set (2) in a coordinate frame in which the x  (cross-front) axis is rotated through 
an angle θ, and the y (alongfront) axis through an angle  (see Fig. 1 ). To represent the model in terms of a single spatial 
variable, we will require that the intrusion fields ( , , , and ) be laterally uniform in the rotated reference frame. The 
coordinate rotation is accomplished by projecting the above equations onto rotated coordinate vectors (see, for example, 
Morse and Feshback 1953). The rotated equations are

 
(Click the equation graphic to enlarge/reduce size)

where (x , y , and z ) are now the rotated coordinate axes, primed coordinates (x′, y′, z′) represent the unrotated 
coordinate axes, and the model fields have been decomposed into a basic state (denoted by an overbar) plus an intrusive 
component (denoted by a tilde):

 

Except for primed (′) velocities (which represent components along the original, unrotated axes), all velocities are now 

measured relative to the rotated coordinate axes. The y -dependence of the basic-state fields is a consequence of the 
alongfront rotation that was done since

 

Notice that the pressure does not appear in (3) because the intrusion pressure field is laterally uniform in the rotated 
reference frame—this also explains the absence of the lateral diffusive terms. The underscored terms in (3) represent 
advection by the basic-state flow across the rotated x , y  coordinate planes (implying a mean vertical velocity in the 
rotated reference frame). Because  is a function of x  and y , these terms introduce variations in u , , S , and T  
with respect to x  and y  and will lead to alongfront tilting, in conflict with our assumption that intrusions are planar 
disturbances with a fixed orientation. Therefore, they are assumed for “pragmatic”  reasons to be negligible and will be 
dropped. For our present purposes the underscored terms are irrelevant, since the basic-state flow vanishes by assumption. 
However, they may not be negligible in frontal environments with significant shear, and so the relevance of the model 



solutions should be carefully considered when the background flow  and the along-front slope (tan ) are nonzero. For 
Meddy Sharon, / z —a measure of the rate at which intrusive layers will be tilted in the alongfront direction—is of O

(10−3 s−1), an order of magnitude greater than the growth rate of 10−4 s−1 estimated by Walsh and Ruddick (1995a) 
[taken from their Eq. (38), assuming Pr = 1 and a constant KS]. It is possible that only intrusions with no alongfront tilt (  

= 0) can grow in such strongly sheared fronts. See May and Kelley (1997) for a detailed discussion of this topic.

After differentiating with respect to z and nondimensionalizing, the rotated equations become

 

where S, T, and  are the total (basic state + disturbance) fields; z′ is the true (unrotated) vertical axis; and the 
underscored terms in (3) have been dropped. The equations are written in terms of vertical gradients, as this allows gradient 
quantities such as R

ρ
 (and hence diffusivities) to be more easily computed. Notice that diffusive T–S fluxes are proportional 

to gradients along the unrotated (z′) axis—this is because the small-scale processes fluxing T and S vertically are assumed to 
be sensitive to the “true”  vertical gradients. In practice this will make little difference, however, because the angle between 
the z and z′ axes is typically very small ( 0.2° for our standard model run). The set (6) was made dimensionless using the 
basic-state buoyancy frequency, defined as

 

and the maximum double-diffusive diffusivity, Kmax . The following dimensionless quantities have been introduced:



 

The quantities Sx, Sy, etc., represent basic-state gradients, as seen from the rotated coordinate frame, and primed 

coordinates (x′, y′, z′) represent the unrotated coordinate axes. 

In summary, the assumptions that allow us to get from (2) to (6) are (i) the intrusions are planar disturbances, (ii) the 
front is sufficiently wide that the intrusions do not “feel”  its edges, and (iii) alongfront tilting of the intrusions by background 
shear is negligible. We will look for solutions to (6) that are periodic on the interval (0, H), with H being the vertical scale of 
the model domain. Notice that the only nonlinear terms in (6) are on the right-hand side and result from the amplitude 
dependence of the diffusivities and the viscosity (the functional forms of which will be specified shortly). The angles θ and 

 must be specified prior to integrating these equations, and may be specified by appealing to linear instability calculations 
(e.g., Toole and Georgi 1981; McDougall 1985a,b; Walsh and Ruddick 1995a), or they may be chosen arbitrarily. 

For the moment, we will not consider the influence of large-scale shear on the growing intrusions, so the alongfront 
momentum equation (6b) can be simplified by setting  = 0. A consequence of this is that, by thermal wind, the basic-state 
density field must satisfy ρx′ = 0, and it follows that Tx′ = Sx′ (note, however, that this is not true in the rotated frame, so Tx 

 Sx). Next, because McDougall (1985a,b) has shown that in this case the fastest-growing intrusions have no alongfront 

velocity component, (6b) can be further simplified by setting  = 0, since we intend to focus on the fastest-growing 
intrusions. This gives the simplified alongfront momentum balance

tan (1 + Sz − Tz) + f  cos  cosθuz = 0,(9)
 

which is the thermal wind equation expressed in terms of the rotated axes, demonstrating that the cross-front velocity is 
in thermal wind balance when  = 0. Given that alongfront tilting of intrusive layers is likely to be important in fronts with 
strong vertical shear, a steady balance of this sort seems unlikely in many oceanic fronts—the actual alongfront momentum 
balance may involve Ekman dynamics. Regardless of the form of the alongfront momentum balance, the assumption  = 0 
results in the simplified salinity, temperature, and cross-front momentum equations:

 

which form a closed set for uz, Sz, and Tz [we have made the additional assumption that the alongfront slope is small, so 

cos   1 in (6a)]. The model was coded for the set of equations (6), but since we have initialized with  = 0, the simplified 
set of equations (10) was in effect solved for all the runs shown here. The key assumption is that all disturbances are one-
dimensional, with a cross-front slope θ that does not evolve with time. 

For notational convenience, we will rewrite the parameters Sx and Tx in terms of the angle θ, the basic-state density ratio 

R
ρ
, and the dimensionless horizontal salinity gradient, Sx′:



 

where

 

The fundamental parameters governing the model behavior will henceforth be taken to be Sx′, Rρ, and the parameters 

related to mixing (which are discussed in the next section).

b. Specification of the viscosity and diffusivities  

The fluxes of heat, salt, and momentum are parameterized using eddy coefficients, which are taken to be functions of the 
local T–S stratification. Because growing intrusions can eventually cause inversions in temperature and salinity, diffusivities 
must be specified for finger and diffusive-sense stratifications, as well as for non-double-diffusive conditions (see Fig. 2a 

). This sort of stratification-dependent parameterization is similar to that used by Zhurbas et al. (1987) in an investigation 
of the evolution of T–S disturbances under the action of double-diffusive and convective mixing. Our assumption is that in 
double-diffusively unstable conditions mixing is brought about by a linear combination of turbulence and double diffusion. 
We assume that there is a uniform level of “background”  turbulence that is always active, with double diffusion adding to 
the turbulent fluxes when conditions are right. When the water column is stably stratified in both heat and salt, a small 
turbulent diffusivity (Kturb) is used, while a large diffusivity (Kconv) is used to “convect”  away density inversions quickly. 

By “small,”  we have in mind a (dimensional) diffusivity of the order of 1–2 (×10−5 m2 s−1), similar to the value found by 
Ledwell et al. (1993), and Ledwell et al. (1994) in the North Atlantic Central Water, while “large”  might correspond to the 

value of roughly 10−2 m2 s−1 found by Chereskin (1995) for the mean viscosity in the mixed layer (although we will find 
that time step considerations prevent us from using such a large value in practice). In the appendix we examine the evolution 
of an overturn in a non-double-diffusive fluid and conclude that our crude parameterization of the mixing produced by 
density inversions does a good job of reproducing expected entrainment behavior.

We will consider two different cases for the diffusivity in double-diffusively unstable conditions, starting with the simplest 
case in which the diffusivities of heat and salt are constant within each stratification regime (i.e., finger, diffusive, stable, 
and convecting). Next we investigate the effect of allowing the diffusivities to vary continuously with R

ρ
 in double-

diffusively unstable conditions. In this case diffusivities are specified to be largest for R
ρ
 near unity and decrease 

monotonically away from R
ρ
 = 1. This behavior is in qualitative agreement with the inferences of Schmitt (1981) and Kelley 

(1984) from analyses of thermohaline staircase data. It is also reminiscent of the turbulence-modified salt finger flux laws 
proposed by Kunze (1994), who suggested that faster-growing fingers near R

ρ
 = 1 are able to grow larger before being 

disrupted by intermittent turbulence, so their fluxes (and the corresponding diffusivities) should be larger as well. While the 
above studies lend qualitative support to our flux formulations, the formulations are fundamentally ad hoc, since they have 
not been well constrained by observations. The fluxes of T and S due to double diffusion are linked via the flux ratios γd and 

γf (assumed constant), defined as

 

where FT  and FS  are double-diffusive fluxes of T and S. Both flux ratios must be less than one so that double-diffusive 

convection can lower the potential energy of the water column, and it follows that double-diffusive density fluxes are 
upgradient.

Following Ruddick (1985), momentum fluxes produced by double-diffusive convection are assumed to be proportional to 
buoyancy fluxes, allowing the eddy viscosity [A(R

ρ
)] to be expressed in terms of the density diffusivity and a Prandtl 

number (Pr). However, Ruddick’s arguments have not been confirmed, and the rate at which momentum is transferred by 
double-diffusive convection is still uncertain, so we will also discuss a run in which double-diffusive momentum fluxes are 
proportional to salt fluxes (for salt fingers) and to heat fluxes (for diffusive convection). As for the case of T and S, a 
constant eddy viscosity (equal for heat and salt) is used when conditions are double-diffusively stable. The same Prandtl 
number is used for double-diffusive and non-double-diffusive conditions. While this is probably not strictly correct, 
uncertainties surrounding momentum flux parameterizations make using a more complex parameterization seem 
questionable.



The model diffusivities are given by

(A) Salt fingers ( ρ/ z′ < 0, 1 < R
ρ
 < ∞):

 

(B) Diffusive stratification ( ρ/ z′ < 0, 0 < R
ρ
 < 1):

 

(C) Stable in T and S ( ρ/ z′ < 0, R
ρ
 < 0):

 

(D) Statically unstable ( ρ/ z′   0):

 

where Kturb is the diffusivity associated with “background”  turbulence, and Kconv is the large diffusivity used to mix 

away density inversions in statically unstable (“convecting”) regions. The Prandtl number Pr is equal to A/K
ρ
 for Ruddick’s 

(1985) formulation, or A/KS for the alternate viscosity formulation in (14). The salt finger flux ratio γf ( 0.6: Schmitt 1979) 

and the diffusive flux ratio γd ( 0.2: Turner 1965) are assumed to be constant. More general R
ρ
-dependent formulations are 

possible (see, e.g., Turner 1965; Stern 1975; Kelley 1984), but we will show that the background turbulence causes the 
effective (turbulence-modified) T–S flux ratio to increase with R

ρ
 even when γf and γd are constant. Using the above 

diffusivity formulations, the set (10) allows intrusion growth if the water column is finger stratified (warm and salty over 
cool and fresh) or diffusively stratified (cool and fresh over warm and salty) but not if the stratification is stable in both 
properties [since in this case the diffusivities of heat and salt are equal, according to (14c)].

The exponents nf and nd determine how rapidly the diffusivities decrease away from R
ρ
 = 1. The default values for nf and 

nd are taken to be zero (i.e., constant KS and KT for each different type of stratification), but we will also consider the case 

in which they are set equal to 2 and 3, respectively. We do not claim that these values are correct—our intent is only to 
investigate the qualitative effect of R

ρ
-dependent diffusivities. However, the exponents we use do give diffusivities 

qualitatively like those reported by Schmitt (1981) and Kelley (1984) for thermohaline staircases. The diffusivities KT and KS 

given by (14) are plotted in Fig. 2b  as functions of R
ρ
 and the Turner angle [for the cases nf = nd = 0 (solid curve) and 

nf = 2, nd = 3 (dashed)], defined as

 



(Ruddick 1983) for the parameter values Kturb = 0.3 and Kconv = 5. The total (turbulence-modified) T–S flux ratio [given 

by (22)] for the same parameter values is shown in Fig. 2c . Notice that when nf and nd are nonzero (dashed curves in 

Fig. 2b ), diffusivities decrease away from R
ρ
 = 1 for both diffusive and finger-sense stratifications. Choosing this form 

for the diffusivity should lead to an enhanced T–S flux divergence for growing intrusions similar to that discussed by 
Schmitt (1981) and Walsh and Ruddick (1995a,b), which should cause the fastest-growing intrusions to have larger growth 
rates and vertical scales than in the constant diffusivity case.

The flux formulations in (14) are based on the assumption that turbulence does not disrupt double-diffusion significantly, 
which is in contradiction with laboratory experiments by Linden (1971) and with the model proposed by Kunze (1994) for 
salt finger fluxes in the presence of turbulence. However, the linear superposition of double-diffusive and turbulent fluxes is 
probably justified if the turbulence is highly intermittent, so that there are long periods with no turbulence during which salt 
fingers can grow unobstructed. In addition, our assumption that turbulent and double-diffusive fluxes are additive appears to 
be consistent with experiments done by Crapper (1976), who hypothesized that fluxes across a diffusive interface could be 
represented by a linear combination of turbulent entrainment and diffusive convection and found that the predicted T–S flux 
ratios that follow from this assumption were in good agreement with experimental data. Crapper found that the effective T–S 
flux ratio increased from being less than one for small values of the interfacial density ratio to larger than one for large 
density ratio values, similar to the behavior in Fig. 2c . 

Table 1  summarizes typical values for the model parameters, chosen to be roughly appropriate for Meddy Sharon 
(e.g., see Hebert 1988; Ruddick and Hebert 1992). The value of Kturb  is a typical diffusivity for the deep ocean (Ledwell et 

al. 1993, 1994), and γd and γf are derived from laboratory experiments (Turner 1965;Schmitt 1979). Certain quantities that 

are difficult or impossible to deduce from observations (e.g., nf, nd, and Pr) are not listed in Table 1 ; our approach has 

been to try several different values for these parameters. The value of the maximum double-diffusive diffusivity (Kmax ) 

was inferred in such a way as to give an average value for KS  equal to that listed in Table 1 . 

c. Discretization  

The model equations were discretized using a Crank–Nicholson (semi-implicit) scheme for the diffusion terms. Crank–
Nicholson is unconditionally stable for diffusion problems, although it requires that a matrix inversion be performed at each 
time step. Nevertheless, the model executes quickly because the domain is one-dimensional, and there are only 200 grid 
points for most model runs. Discretization of the system (10) under the Crank–Nicholson scheme combined with periodic 
boundary conditions results in a tridiagonal matrix with nonzero elements in the upper-right and lower-left corners. This was 
written as the sum of a tridiagonal matrix plus the outer product of two sparse vectors, and the Sherman–Morrison formula 
(Press et al. 1986, section 2.10) was used to invert the system efficiently. Because the diffusivities and the viscosity evolve 
with time, they must be recalculated at each time step. Rather than treating the diffusivities as explicit terms (i.e., using the 
current diffusivities to compute the S, T, and velocity fields at the next time step), we perform an initial time step to see how 
the diffusivities evolve, then use the average diffusivity at each grid point to time step the fields.

There are a number of factors to consider in selecting an appropriate time step for the model runs. First, it is necessary to 
accurately reproduce the growth rates predicted by linear theory. The model runs suggest that growth rates can be 
reproduced to about 10% accuracy using only 10 time steps per linear growth period. We typically perform several hundred 
time steps per growth period, so this is not a serious constraint. However, to ensure reasonable accuracy throughout the 
calculation we require that neither salt, heat, nor momentum diffuse“too far”  (farther than the grid spacing) during a single 
time step. Thus, we choose the model time step to be less than the diffusive timescale based on the maximum diffusivity, 
which gives the constraint

 

We see that the value of Kconv is important in determining the maximum allowable Δt. Physically, we would like to choose 

Kconv as large as possible so that density inversions are mixed away rapidly. However, the above constraint on Δt leads us to 

choose an intermediate value of 5 for a 200-point model grid. Runs not satisfying the inequality (16) typically exhibit some 
form of numerical instability, although usually not until after convecting layers appear. As a measure of the numerical 
accuracy of the runs, we use the conservation statements

 

where the notation ‹·›  denotes a vertical average over the model domain. These expressions follow directly from (10) and 
the requirement that the solutions be periodic in the vertical. In the model runs shown, ‹Sz›  and ‹Tz›  were conserved to 

within 0.5% over the course of a run.

d. Model initialization and validation: Linear theory  

Because the intrusion slope and the vertical scale of the domain must be specified, a systematic way of choosing these 
parameters is needed. The slope and wavelength can be chosen at random, but the resulting model solution might then bear 



little resemblance to what would be seen in the ocean. Therefore, we will assume that the disturbances that grow most 
rapidly at small amplitude also dominate at large amplitude and hence determine the structure of oceanic interleaving. With 
this assumption, the model runs can be initialized with plausible values of slope and wavelength for any combination of 
model parameters. In this section, we solve the linear instability problem for the set (10) and use the results of the analysis to 
validate the model output and, in later sections, as a tool for initializing the model runs.

To test the numerical model, growth rates predicted by linear theory are compared with measured growth rates of small-
amplitude model solutions. We make use of the growth rate polynomial for the set (10) (assuming a finger-favorable basic-
state stratification), obtained by substituting solutions of the form

Vei(kx+mz)+λt(18)

 

into the linearized form of (10) [and making use of (14a)]. Equation (10) is thus reduced to a matrix equation for the 

amplitudes û, , and :

 

The eigenvalues of A represent intrusion growth rates, and the relative sizes of û, , and  are determined by the 
corresponding eigenvectors. The growth rate polynomial is

 

where primes denote differentiation with respect to R
ρ
, and the following dimensionless quantities have been introduced:

 

All quantities in (20) are evaluated at R
ρ
 = R

ρ
. The notation γeff denotes the turbulence-modified “effective”  T–S flux ratio. 

Because turbulence is characterized by a flux ratio that increases with R
ρ
 (α Fturb

T /β Fturb
S  = R

ρ
), the flux ratio of a 

linear superposition of turbulence and double diffusion is also an increasing function of R
ρ

:

 

Notice that γeff reduces to the salt finger flux ratio γf when Kturb = 0.
 

The growth rate expression (20) generalizes Eq. (13) from Walsh and Ruddick (1995a) to include a nonconstant flux 
ratio. This expression is similar to that derived by Hebert (1998, submitted to J. Phys. Oceanogr.) for the case of differential 
mixing of heat and salt due to“incomplete”  turbulent mixing, as well as to the polynomial derived by Holyer (1983) using 
molecular diffusivities for T and S. The expression (20) is somewhat more general, though, as it is not limited to the 

constant diffusivity case, nor to a specific form for γeff. The differential mixing case can be obtained from (20) by setting K′



S = 0 and γeff = R
ρ
KT/KS. 

The growth rate polynomial (20) provides a systematic way of initializing the model with the fastest-growing disturbance 
for cases in which the stratification is finger favorable. When the water column is diffusively stratified, a T–S symmetry in 
(10) exists [as discussed by Walsh and Ruddick (1995a)], which allows the linear results for the finger case to be 
transformed to give the corresponding slope, wavenumber, and growth rate for a diffusive-sense basic-state stratification. 
Although their analysis did not consider the case in which turbulence and double diffusion are both present, the 
transformation is also valid in this case.

In Fig. 3a  the growth rates are contoured for the case R
ρ
 = 1.6, Pr = 10, x = 0.032 (or equivalently Sx′ = 0.08), nf = 

2, and Kturb = 0.3, as functions of the slope s and the vertical wavenumber m. For each value of s and m, the root of (20) 

with the largest real part is shown. In Fig. 3c  the rms salinity amplitude of the fastest-growing intrusion is plotted as a 

function of time. The initial amplitude of the salinity perturbation ( ) was m/Sz  0.002. Until t = 4000 the growth appears 

to be purely exponential, and the best-fit slope between t = 300 and t = 3300 (0.00164, corresponding to an e-folding period 
of about 600) agrees with the growth rate predicted by linear theory to three significant digits. In Table 2  we compare 
the model growth rate with linear theory for the labeled points in Fig. 3 . The agreement is excellent, indicating that the 
model accurately reproduces the behavior of the linear system for small-amplitude disturbances. The dimensional wavelength 
of the fastest-growing intrusion is

 

in reasonably good agreement with Ruddick and Hebert’s (1988) measured wavelength of 25 m for the lower-half of 

Meddy Sharon. The e-folding timescale for growth is (λN0 )−1  2.8 days. 

The extremely close agreement with linear theory until t  4000 is somewhat surprising, since inversions occurred in the 
salinity field at t  3600 and convecting layers appeared at t  4600. Before inversions appear the dominant nonlinear effect 
has been to “skew”  the velocity profile, increasing the shear in the diffusive region and decreasing that in the finger region. 
This demonstrates that even when the intrusion amplitude is quite large, the growth rate does not change appreciably until 
density overturns occur. Thus, linear theory seems to hold well beyond the point where it can be considered formally valid. 
Walsh and Ruddick (1995a) showed that a nonconstant viscosity A(R

ρ
) does not affect linear growth rates. However, one 

might expect that after intrusions grow beyond the point where linear theory is formally valid, R
ρ
 variations could modify A

(R
ρ
) significantly, changing the momentum flux convergences predicted by linear theory and hence altering the growth rate. 

The reason why this does not happen appears to be that the modified momentum fluxes at the nonlinear stage produce 
almost no net momentum flux out of an intrusion, they only redistribute momentum in the vertical, hence skewing the 
velocity profile without affecting the overall growth rate.

To verify that focusing on the fastest-growing small amplitude disturbance is reasonable, a run was done in which z, z, 

z, and z were initialized with infinitesimal, random disturbances. This allows an investigation of interactions between 

intrusions with various wavelengths as they grow to large amplitude. The randomly generated fields had white wavenumber 
spectra, and the slopes of all spectral components were set equal to that of the fastest-growing mode (FGM). Two different 
initializations were used: first, the domain was chosen to be an integral number times the wavelength of the FGM, then a run 
was done for which the vertical domain and the wavelength of the FGM were incommensurate. In the first case, the FGM 
soon dominated over the entire domain, and solutions looked like those initialized with the FGM. For the case in which the 
vertical domain and the FGM are incommensurate (the domain was chosen to be 3.35 times the wavelength of the FGM) 
the FGM“tries”  to grow, but the periodicity requirement forces the wavelength to vary over the model domain, so the 
growth rate is reduced by roughly 5%. Hence, we conclude that if the vertical scale of the model domain is commensurate 
with the wavelength of the FGM, then initializing model runs with the FGM is not significantly different than initializing with 
broadband noise. However, the results are somewhat more sensitive to the height chosen for the model domain.

3. Intrusion evolution  

In this section we investigate the character of the model solutions. Our approach is to show a “standard”  run, using what 
we believe are plausible parameter values, and examine the mechanics behind the evolution of the model fields and their 
approach to equilibrium. We then look at the influence of nonconstant finger- and diffusive-sense diffusivities on the steady 
solutions, using a run in which the R

ρ
 dependence is “turned on”  [i.e., the exponents nf and nd in (14) are nonzero]. All the 

runs in this section use Ruddick’s (1985) viscosity formulation; in section 4d we will discuss the effect of using the 
alternative viscosity formulation discussed in section 2b. 

The mesh plots in Fig. 4  show the evolution of the model fields for a run with parameter values R
ρ
 = 1.6, Kturb = 0.5, 

Kconv = 5, Pr = 10, Sx′ = 0.05, nf = nd = 0, γf = 0.6, and γd = 0.2; 200 grid points were used in the vertical. A value of 0.5 

for Kturb corresponds to the case in which turbulent salt fluxes are half as large as double-diffusive fluxes, roughly in 

agreement with the values quoted in Table 1 . The perturbation used to initialize the run corresponds to the fastest 
growing instability predicted by linear theory. Figure 4a  shows the cross-front velocity u; Figs. 4b and 4c  show the 



evolution of the salinity and density fields, respectively. Initially the growth of all three fields is exponential, but growth 
slows dramatically when convecting layers (shown by the plateaulike regions in Fig. 4c ) form. This effect is most 
evident in the velocity field (Fig. 4a ), where growth essentially halts when convecting layers appear, indicating that 
convection exerts a strong“drag”  on the intrusions. 

Figure 5  shows the time evolution of the layer thicknesses for the run shown in Fig. 4 . Initially the fluid is finger 
stratified at all depths. At t = 5900 a stable (i.e., non-double-diffusive) layer appears, which grows until t  6400, when a 
diffusively stratified layer forms. This erodes fluid away from the stably stratified region until t  7100, when the stable 
layer disappears and is replaced by a statically unstable layer, which thickens rapidly by “entraining”  fluid from the finger 
region. Notice that the thickness of the diffusive layer is very nearly constant after a brief initial growth period. After a 
temperature inversion appears within the stably stratified region, the resulting diffusive layer thickens rapidly until it occupies 
the entire region of the water column that had been stably stratified. At this point, convection begins and the diffusive layer 
stops growing, and its thickness remains essentially constant thereafter. The convecting layers continue entraining from 
finger-stratified regions until t  12 000, when entrainment stops. 

Figure 6a  shows the evolution of the run shown in Fig. 4  in the T–S plane. Initially the T–S curve is straight (since 
R
ρ
 is constant), but the growing intrusions soon produce small wiggles. At t = 6600, after diffusive layers form, the T–S 

curve has the “sawtooth”  character typically taken to be the signature of thermohaline intrusions. The “loops”  in the T–S 
curve at t = 18 600 are the signatures of convecting layers. These loops are reminiscent of those reported by Posmentier 
and Houghton (1978), who found evidence of localized overturns associated with double-diffusive convection (however, 
their precise observation is difficult to verify because of sensor time-response effects). Washburn and Gibson (1984) have 
also observed T–S loops like those in Fig. 6a  in horizontal sections taken at the base of the mixed layer, which they 
attribute to horizontal stirring processes. In the latter stages of the run shown in Fig. 6a  (when the T–S curve has a 
sawtooth appearance), both the diffusive and finger regions tend toward R

ρ
 = 1, as a result of the quasi-isopycnal advection 

across the front. The T–S curve appears straight within the finger and diffusive layers, suggesting a nearly constant R
ρ
 

within each of these regions. However, significant R
ρ
 variations occur in the vicinity of the loops, and we will show in 

section 4b that depth variations in R
ρ
 within the finger and diffusive layers are essential to equilibration, as they allow a 

depth-varying T–S flux ratio. 

Some additional insight can be gained by observing the model evolution in the (Sz, Tz) plane (Fig. 6b ). The dotted lines 

through the origin have constant R
ρ
, and the shaded region has N2 < 0 (the legend is identical to that for panel a). The initial 

condition (shown by the shaded dot) has nearly constant gradients. Initially the fields evolve in a nearly isopycnal fashion 

(lines of constant N2 have slope = 1) within the salt finger sector, so increased salinity gradients are associated with smaller 
values of R

ρ
, and decreased gradients with larger R

ρ
 values (this will also be evident in Fig. 7 , where vertical profiles 

from the run are shown). After convecting layers form, T–S gradients become discontinuous, as shown by the thin black 
line segments corresponding to equilibrium state. These discontinuities result from the“jumps”  in diffusivity between 
stratification regimes inherent in our diffusivity formulation (14)—a jump in diffusivity requires a corresponding gradient 
jump for flux continuity. It is of interest to note that the discontinuities apparent in panel b are not evident in the 
corresponding T–S profiles in panel a (which appears to be both continuous and smooth)—the T–S representation obscures 
this feature of the profiles. At equilibrium there is a marked variation in R

ρ
 within all three layers, and within the finger and 

diffusive layers R
ρ
  1 adjacent to the convecting layers and reaches a maximum at the center of the layers. The fact that 

the segments making up the equilibrium (Sz, Tz) profile appear to be linear is a direct consequence of the form of the flux 

laws, as will be discussed in section 4b. 

Detailed vertical profiles for the standard model run can be seen in Fig. 7 . Buoyancy flux convergences produced by 
salt fingering cause the perturbation to grow rapidly, and elevated values of R

ρ
 soon appear near the center of the model 

domain and at the edges. This results in decreased viscosities and increased vertical shears in these high-R
ρ
 regions as the 

fluid is more “slippery.”  Eventually the intrusions become large enough in amplitude that salinity inversions appear; the fluid 
within these inversions is stably stratified in both heat and salt. As the evolution continues, advection of cooler water over 
warmer water causes temperature inversions to occur; the fluid within these inversions is diffusively stratified (cool and 
fresh above warm and salty). The diffusive layers grow in thickness by entraining fluid away from stable regions. Table 3 

 gives a detailed overview of the stages in the evolution of intrusions toward a steady state. 

The appearance of stably and diffusively stratified layers can be understood by considering the evolution of the model 
fields in the (S, T) plane. Figure 8  illustrates the evolution of a warm and salty intrusion (labeled A), and a cool, fresh 
intrusion (labeled B). The heavy line represents the basic-state T–S curve, and vectors show the direction of evolution in T–S 
space, which is determined by a combination of advective and double-diffusive fluxes. Notice that the evolution is very 
nearly isopycnal, with warm/salty intrusions rising slightly relative to isopycnals. When intrusions grow sufficiently large 
that a salinity inversion occurs, the intervening fluid becomes stably stratified in both heat and salt (location 1). Eventually 
they grow to the point that a temperature inversion occurs between A and B (location 2), at which point the fluid between A 
and B is diffusively stratified. 

In Fig. 9  vertical profiles of the terms in the density and momentum equations are plotted. Figure 9a  illustrates the 
imbalance between advective and diffusive fluxes that drives intrusion growth (panel 1), and the eventual equilibration of the 
fluxes (panel 6). While the intrusion amplitude is relatively small, double-diffusive flux divergences (−F

ρ,z, shown as solid 



lines) dominate over advective flux divergences (uρx, dashed lines) and accelerate the interleaving motions, but as t increases 

double-diffusive fluxes adjust relative to advective fluxes to allow equilibration. By t = 9000 the density field within the 
diffusive layer (at the center of the model domain) is close to a steady balance. The convecting layers are also nearly at 
equilibrium, as the destabilizing buoyancy fluxes into the layers are nearly balanced by the restratifying along-layer flows. 
The finger-stratified regions are still far from equilibrium, however, and are responsible for the continued evolution of the 
model fields. Figure 9b  shows vertical profiles of the terms in the cross-front momentum equation. Note that the balance 
is close to a steady equilibrium (compared to the ρ equation) for the entire period (this is likely a result of the relatively large 
Prandtl number used in the run). There is, however, a slight imbalance between friction [(Auz)z] and buoyancy (  tanθ) that 

accelerates the flow. Once convection begins (t = 7100) the balance is almost perfect, as the drag exerted by the convecting 
layers on the flow within the finger-stratified layers decelerates the finger-layer flow dramatically. By t = 18 600 the 
intrusions are very close to a steady equilibrium.

a. Convecting layers and entrainment  

After diffusive layers have formed, quasi-isopycnal alonglayer advection drives R
ρ
 toward one in both the finger and 

diffusive regions (see Fig. 6 ). This is accompanied by increased vertical T–S fluxes, as T–S gradients become larger. 
There is also a persistent mismatch between the T–S flux ratio above and below the finger/diffusive interface, which—along 
with the heightened T–S fluxes—eventually produces a density inversion. Once a density overturn occurs, the resulting 
convecting layer grows rapidly by entraining fluid from adjacent layers. These convecting layers help to couple the diffusive- 
and finger-stratified layers, by fluxing excess buoyancy from finger- to diffusively stratified regions. In this way, they 
appear to play an important part in slowing the growth of intrusions, and in their eventual equilibration.

It can be shown (see the appendix) that the rate at which fluid is entrained into the convecting layers depends upon 
“internal”  parameters (e.g., the height and amplitude of an overturn and the diffusivity Kconv), as well as on conditions 

outside the convecting layers (e.g., the ambient stratification). An interesting feature apparent in Fig. 5  is that convecting 
layers entrain fluid preferentially from finger-stratified layers, rather than diffusive layers. The reason for the preferential 
entrainment is not obvious, but it appears to be related to the different stratifications in the finger and diffusive regions. 
These different stratifications result from the fact that both advective and double-diffusive fluxes act to increase the 
stratification within diffusive layers, while at the edges of finger regions the combination of advective and double-diffusive 
fluxes acts to decrease the local stratification, so water from finger regions is more easily entrained. The equation governing 
the evolution of the density stratification is

ρzt = −uzρx − Fρ,zz,(23)
 

which shows that the local density stratification can change due to either vertically sheared flow in a lateral density 
gradient or a divergent small-scale density flux. 

In Fig. 10  the advective–diffusive balances in the finger and diffusive layers are shown schematically. The plot shows 
vertical profiles of u within the finger and diffusive regions for a growing intrusion. To investigate the effect of advective 
and double-diffusive fluxes on the stratification, consider the evolution of an intrusion in the (Sz, Tz) plane, starting with the 

point a, near the center of the finger region. The tendency of advection is to increase both Sz and Tz at a, destabilizing the 

water column, as shown by the vector labeled adv. However, double-diffusive fluxes decrease both Sz and Tz in such a way 

that the local stratification increases. Finger fluxes dominate in density terms, leading to an increase in the stratification at a. 
At point b, near the edge of the finger region, the roles of double-diffusion and advection are reversed. In this case advection 
tends to increase the stratification at b, as shown in Fig. 10b . However, finger fluxes dominate again, leading to a 
decrease in the stratification at b. Figure 10c  shows the corresponding situation in the diffusive layer. In this case both 
advection and double diffusion lead to an increased stratification (suggesting a steady balance within the diffusive layer is not 
possible without additional vertical mixing processes). Therefore, small values of ρz at the edges of finger layers (relative to 

values at the edges of the diffusive layers) are a natural feature of intrusion evolution, and the likely explanation of the 
differential entrainment seen in Fig. 5 . 

4. Intrusion equilibration  

As time increases the model solutions approach a steady state in which friction balances buoyancy forces and lateral 
advection of heat and salt is balanced by vertical flux divergences. At equilibrium the equations satisfied by u, S, and T are

 

which is the steady version of the set (10). The approach to equilibrium can be shown graphically by plotting T–S 
tendency vectors, which are plotted in Fig. 11  for a warm, salty intrusion in the standard model run (the flux balances 
shown are averages over the depths between the centers of finger and diffusive layers). The top panel shows the situation 
before T–S inversions occur (so the water column is finger-stratified at all depths): the tendency of advection is to make the 
fluid within this depth range heavier, but the net double-diffusive flux into the layer overwhelms this tendency, so the 



intrusion becomes warmer, saltier, and lighter (as shown by the filled circle labeled res.). The bottom panel shows the 
situation at equilibrium: a diffusive layer has formed, and there is a three-way vector balance between diffusive fluxes in the 
top of the intrusion, finger fluxes through the bottom, and advective fluxes. In the remainder of this section we will discuss 
the factors that allow the interleaving solutions to approach the equilibrium apparent in panel b. We will first argue for the 
necessity of T–S overturns, which allow for a different flux ratio above and below an intrusion, and then for the necessity of 
flux ratio variations within each layer, which for our model solutions are brought about by turbulent mixing.

a. Are T–S inversions necessary for equilibration?  

McDougall (1985b) has shown that T–S inversions are a necessary condition for the existence of equilibria for his “slab”  
intrusion model. He did not consider the effect of turbulent mixing on intrusions, and it seems possible that strong turbulent 
mixing could prevent inversions from occurring by allowing for an inversion-free steady state. We will show that this is not 
so, using a straightforward extension of McDougall’s argument. McDougall’s argument is based on the idea that T–S 
equilibrium requires a balance between advective flux divergences and vertical double-diffusive T–S flux divergences. In the 
case he considered mixing processes were characterized by fixed, distinct T–S flux ratios, making it impossible to get a T–S 
flux balance without a diffusive interface (his argument was thus not for the necessity of overturns per se, but rather for the 
necessity of depth variations of the T–S flux ratio). 

Now consider the situation in which both turbulence and double diffusion are active, shown schematically in Fig. 12 . 
The depth-averaged balance between advective, double-diffusive, and turbulent T–S flux divergences is shown by vectors 
representing rates of change in T and S. The balances shown are for a warm and salty intrusion occupying the depth interval 
A, and the slopes of the vectors represent the ratio of T–S flux divergences for the various processes. To achieve an 
equilibrium the advective, double-diffusive, and turbulent flux-divergence vectors must sum to zero. Figure 12a  shows 
the situation before inversions occur. The resultant of turbulent, double-diffusive, and advective flux divergences causes the 
warm and salty anomaly A to become less dense, and the resulting buoyancy forces produce an acceleration upward and 
across the front. The salt finger vector has a slope equal to the finger flux ratio γf ( 0.6), while the slope of the advective 

vector is larger ( 0.95 for the standard model run)—equal to that of the turbulent flux-divergence vector. The turbulent and 
advective flux-divergence vectors are collinear, since turbulence “tries”  to remove the advective T–S disturbance and to 
restore the T and S profiles to their initial states. Because these vectors are not parallel with the salt finger flux-divergence 
vector, a three-way balance is not possible. However, after overturns occur (Fig. 12b ), diffusive fluxes modify the net 
double-diffusive flux into an intrusion (shown as the resultant of the dashed finger and diffusive flux vectors), allowing a 
three-way balance between advection, double diffusion, and turbulence. Thus, McDougall’s argument is changed little by the 
inclusion of turbulent mixing: with or without turbulence, it is impossible to achieve a balance between small-scale vertical 
fluxes and advection before T–S inversions occur. 

b. What is the role of turbulent mixing?  

To investigate the role that turbulent mixing plays in the equilibration process, we ran the model with extremely weak 
turbulent mixing (Kturb = 0.001). The model output (Fig. 13 ) shows that when Kturb is this small, convecting layers 

separated by extremely thin finger interfaces and “steppy”  diffusive regions form as time proceeds. This run was stopped 
when the individual diffusive interfaces within the diffusive “staircase”  became unresolved (i.e., thinner than the gridpoint 
spacing). A number of runs were done to check that the observed “steppiness”  was not due to a numerical instability by 
varying Δz and Δt. The tests suggest that the staircase structure is a robust feature, which apparently results from the 
negative density diffusivity intrinsic to double diffusion. However, that staircaselike profiles are not observed to form as a 
result of the evolution of purely one-dimensional T–S disturbances using these flux laws (Walsh and Ruddick 1995b) 
suggests that the staircaselike features within the diffusive layers result from an interaction between advection and double-
diffusive fluxes within intrusions.

Notice that if Kturb = 0, then (24b,c) and (14) imply that Tx/Sx = γf in salt fingering regions. This condition cannot be 

satisfied, as it is inconsistent with exponential growth at small amplitude. The reason for this is that, if Kturb = 0, then γf 

must be less than Tx/Sx during the linear growth stage so that warm, salty intrusions are made buoyant by finger fluxes 

[assuming a finger-favorable basic state; e.g., see Walsh and Ruddick (1995a)]. However, neither γf nor Tx/Sx can evolve in 

time, which suggests a mechanism exists to allow one or both of these quantities to evolve as the intrusions grow. We 
assume that neither background gradients nor slopes change with time, which rules out changes in Tx/Sx. We will show that 

a nonzero Kturb permits the ratio of T and S flux divergences (or the “flux-divergence ratio,”  denoted by γdiv) to evolve 

toward Tx/Sx, which allows growing intrusions to equilibrate. Interestingly, the superposition of turbulence and double 

diffusion in (14) gives a flux-divergence ratio different from the effective T–S flux ratio, and this has important implications 
for equilibration—this is why the distinction is made between the flux-divergence ratio and the flux ratio. Most previous 
interleaving studies have used a constant salt finger flux ratio, and have not incorporated the effects of turbulent mixing, in 
which case the flux ratio and the flux-divergence ratio are equal, making the distinction unnecessary. 

The equilibrium flux condition can be derived by considering the flux balances through a small area in the finger region, as 
shown in Fig. 14 . At equilibrium, vertical flux divergences must be balanced by lateral flux divergences. Linking the 
fluxes of heat and salt with an effective T–S flux ratio γeff and taking the ratio of the steady-state T and S conservation 

expressions gives



 

where h is the height of the area element, and FS denotes the vertical salt flux due to a combination of turbulence and 

double-diffusion. The superscripts (T), (B), (L), and (R) refer to the top, bottom, left side, and right side of the elemental 
box, respectively. Letting h  0, we find that

 

at equilibrium [which could also have been derived from (24b,c)]. Because the ratio of T and S flux divergences due to 
mixing must equal the ratio of advective T and S flux divergences (Tx/Sx) at equilibrium, it follows that the equilibrium 

condition (26) can be written equivalently as

Tx/Sx = FT,z′/FS,z′  γdiv.(27)
 

We will refer to Tx/Sx as the “layer density ratio,”  as it measures the ratio of T–S gradients along a layer. According to 

(26), depth variations of the flux ratio play an important role in the equilibration process. Within the context of this model, 
turbulent mixing is the only mechanism that can cause γeff to evolve within a layer. This can be seen from the definition of 

γeff [Eq. (22)], which shows that γeff is constant if Kturb = 0 but evolves with R
ρ
 if Kturb  0, so variations in γeff are linked 

to variations in R
ρ
 through turbulence. This suggests that turbulence plays an important role in the equilibration of the model 

solutions.

The condition (26) allows an explanation for the piecewise-linear (Sz, Tz) profile, evident in Fig. 6b  as the run 

approaches equilibrium. Straightforward manipulation of (26) gives

(Tx/Sx − γeff)FS = const(28)
 

at equilibrium. Utilizing the definition of γeff (22) and using FS = −KSSz′ shows that (28) describes a straight in the (Sz, Tz) 

plane if KS is constant (as it is for the standard model run), although a nonconstant diffusivity would presumably introduce 

some curvature to the equilibrium (Sz, Tz) profiles. 

It is informative to examine the terms in (26) as a model run approaches equilibrium. Figure 15  shows the time 
evolution of the flux divergence ratio (γdiv) and the effective flux ratio (γeff) near the center of the salt finger region (z  

184). The effective T–S flux ratio starts out close to 0.93 and decreases to a value of about 0.79 during the course of the 
run. Notice that the effective flux ratio is initially close to one, indicating that double-diffusive fluxes (with a flux ratio of 
0.6) are strongly modified by turbulent T–S fluxes. The flux divergence ratio has a value of about 0.76 initially and remains 
relatively constant until t  7100—at which time it increases rapidly to 0.95 (the value of Tx/Sx)—the sudden increase 

coincides with the formation of the convecting layers seen in Fig. 4 . 

c. A run with diffusive stratification  

In Fig. 16  a model run with diffusive-sense basic-state stratification is shown. We have not used the previously 
mentioned transformation suggested by Walsh and Ruddick (1995a) to find the fastest-growing disturbance for the diffusive 
case but have instead chosen the slope and domain height at random; the model fields ( z, z, z, and z) were initialized 

with a white wavenumber spectrum, and the same slope was used for all wavenumber components. In spite of the different 
basic-state stratification and the fact that the run was not initialized with the fastest-growing disturbance, the model fields 
evolve in much the same way as for the finger-stratified case and eventually achieve an equilibrium. By t = 10 000 the run 
has equilibrated, with relatively thick diffusively stratified layers separated from thin finger-stratified layers by convecting 
layers. This shows that equilibration can be expected even when intrusion growth is driven by diffusive fluxes and suggests 
that equilibration is not specific to the fastest-growing disturbances but is likely to result from arbitrarily chosen initial 
conditions.

d. The role of nonconstant diffusivities  

Ruddick (1984) investigated the evolution of an isolated thermohaline intrusion bounded above and below by diffusive and 
finger-sense interfaces, using a three-layer formulation. Ruddick’s aim was to investigate formulations for the interfacial flux 
laws and to find conditions under which equilibrium solutions can exist without interfacial overturning. He considered the 
evolution of an isopycnal disturbance (advective effects were not considered), and found that the evolution of the system 
was sensitive to the form of the flux laws. In particular, if the overall stratification was finger favorable, steady intrusive 
solutions were possible only if the diffusive fluxes could dominate over the finger fluxes for some values of the interfacial 



density ratio. Ruddick concluded that the diffusive-sense diffusivity must increase more rapidly as R
ρ
  1 than the finger-

sense diffusivity to allow an equilibrium, apparently precluding steady solutions if double-diffusive diffusivities are constant.

To explore the consequences of specifying double-diffusive diffusivities that vary with R
ρ
 within a given stratification 

regime (e.g., finger, diffusive), we ran the standard model run again, this time with nonzero diffusivity exponents [nf = 2, nd 

= 3 in (14)], giving diffusivities similar to those used by Ruddick (1984). Notice from (14) that this parameter choice will 

change the average balance between turbulence and double diffusion since the basic-state diffusivity KF
S(R

ρ
) decreases by a 

factor of R−2
ρ
. The initialization for the run was not changed from the standard run, so in this case the model was not 

initialized with the most unstable disturbance for the chosen parameters. We find that the intrusions reach an equilibrium 
state whether or not the finger and diffusive diffusivities vary with R

ρ
. Vertical profiles of u, S, T, and Turner angle are 

shown in Fig. 17 , with the system being close to equilibrium by t = 24 000. As discussed in section 4b, depth-variation 
of the flux ratio is a necessary condition for equilibration, and Eq. (22) shows that this requires only that Kturb be nonzero—

not that KS be a function of R
ρ
. This appears to be in conflict with Ruddick’s (1984) results but it is, in fact, a consequence 

of an additional degree of freedom inherent in our model. For the stratified model used here, fluxes through a layer can 
adjust, even if the T–S jump across a layer remains fixed, because the layer thickness can change. Thus, equilibrium is 
possible even when double-diffusive diffusivities are constant. 

In our discussion of nonconstant diffusivities, we have considered only the case in which double-diffusive diffusivities 
decrease away from R

ρ
 = 1. This is at odds with fluxes predicted using a critical Stern number criterion (Stern 1969), 

which have finger diffusivities increasing with R
ρ
 (Kunze 1987). However, we find that specifying a finger diffusivity with 

this R
ρ
 dependence leads to unbounded growth rates at the smallest scales (an “ultraviolet catastrophe”) similar to the 

behavior discussed by Walsh and Ruddick (1995b). 

To check that using Ruddick’s (1985) viscosity parameterization (in which double-diffusive momentum fluxes are 
proportional to buoyancy fluxes) was not affecting the equilibration process in an unforeseen way, we ran the standard 
model run again using the alternate viscosity formulation in (14) (in which momentum fluxes are assumed to be proportional 
to salt fluxes) and found that the model was still able to achieve an equilibrium. Thus, while the size and functional form 
chosen for the viscosity doubtless affect the details of the final equilibrium that is reached (since at equilibrium there must be 
an average balance between the frictional forces retarding intrusions and buoyancy forces driving them), the qualitative 
picture is unchanged by the viscosity modification.

5. Discussion  

McDougall (1985b) suggested that a three-way balance between finger, diffusive, and advective fluxes is necessary for 
growing intrusions to equilibrate—in essence a different flux ratio is required through the “interfaces”  above and below 
slablike convecting layers in his model. McDougall did not, however, establish that such equilibria could, in fact, be 
reached—only that they are plausible. The model runs we have done verify that such equilibrium solutions are possible and 
that they can be attained via the evolution of small amplitude intrusions to large amplitude. The bulk flux balances across a 
convecting layer at equilibrium are similar to those described in McDougall (1985b) in that a three-way balance between 
finger, diffusive, and advective fluxes holds (Fig. 11 ). However, because we use a continuously stratified model rather 
than McDougall’s“slab”  representation, we must also consider the balances within individual finger and diffusive layers. Our 
results show that turbulent mixing is necessary to bring the finger and diffusively stratified layers into internal equilibrium. 

The reason turbulence is essential to the equilibration of the model solutions is that it allows the ratio of T and S flux 
divergences due to mixing (γdiv) to evolve toward the layer density ratio (Tx/Sx) with time. Within our model framework 

turbulent mixing is the only process that can alter the flux ratio (for a particular stratification regime), although in reality 
other processes may also act to change the flux ratio. In particular, there is a fair amount of evidence suggesting that the 
double-diffusive flux ratios (γd, γf) are in fact functions of the density ratio. For example, Turner (1965) performed 

laboratory experiments that indicate that γd is constant for R
ρ
 < 1/2, but increases rather rapidly from 0.15 to 1.0 between 

R
ρ
 = 1/2 and R

ρ
 = 1. Kelley (1984) analyzed data from thermohaline staircases that seem to confirm that the diffusive flux 

ratio increases as R
ρ
 approaches 1. Stern’s (1975) salt finger model predicts that the finger flux ratio should also be larger 

for R
ρ
 near 1. It is therefore conceivable that these variations, which are inherent to double-diffusive convection, could 

allow the flux ratio adjustment necessary for equilibration even in the absence of turbulence. Our decision to use a constant 
double-diffusive flux ratio in this work was motivated by a desire to keep the flux laws “simple.” 

The convecting layers apparent in our model runs are reminiscent of “steps”  found by Zhurbas et al. (1987), who 
investigated the evolution of one-dimensional (isopycnal) T–S disturbances under the action of salt finger mixing. Zhurbas et 
al. found that, depending on the initial T–S stratification and the amplitude of the disturbance, the equilibrium solutions could 
have either a staircaselike character (i.e., relatively thin finger-stratified regions separated by well-mixed “steps”), or they 
could achieve a steady state without steps. Interestingly, he found that for a given disturbance amplitude, solutions with 
steps occurred only for relatively small values of R

ρ
. Equivalently, for a given R

ρ
, only relatively large T–S disturbances 

(typically large enough to produce inversions in T and/or S) developed into solutions with steps. Our model is considerably 
more complex than that of Zhurbas et al., in that cross-frontal advection is an inherent part of the dynamics, and the 
maximum amplitude of the T–S disturbance cannot be prespecified (as in the work of Zhurbas et al.), but must be computed 



as part of the evolving solution. Nevertheless, the parallels between the two models are intriguing. The runs we have done 
suggest that infinitesimal disturbances frequently (if not always) become large enough that convecting layers form.

Our results suggest that intrusions can grow even when background turbulence is very intense compared with double 
diffusion. Model runs show that intrusions grow even in the case where turbulence is strong enough that γeff is initially 

everywhere larger than one (i.e., turbulence is strong enough to change the sign of the vertical buoyancy flux). From the 
available linear stability analyses (Toole and Georgi 1981; McDougall 1985a; Walsh and Ruddick 1995a), one might expect 
such a large T–S flux ratio to have a drastic effect on the character of the intrusions, making warm and salty parcels heavier 
rather than lighter, possibly changing the sign of the cross-front slope. However, our results show that even if γeff is initially 

everywhere greater than one, intrusions can grow as long as the flux-divergence ratio (γdiv) is less than one, and their slopes 

are unchanged by the strong turbulent mixing. Thus, γdiv is more fundamental to the intrusion dynamics than γeff, and (27), 

(26), and (22) show that γdiv and γeff are not equal if Kturb is nonzero. 

Interestingly, the Froude number (uz = N−1 u / z   Fr) is supercritical (>2) across both the finger and the most 

pronounced of the diffusive interfaces for the run shown in Fig. 14  (in the latter stages of the run), suggesting that shear 
instabilities could occur at these locations in reality, leading to strong vertical mixing. The supercritical Froude numbers 
appear to be related to the weakness of turbulent mixing relative to double diffusion since the Froude number remained 
subcritical for the standard model run. Mixing coefficients in our model are insensitive to the value of the Froude number 
though, so fluxes do not change when Fr is supercritical. The high interfacial Froude numbers are reminiscent of 
observations made by Marmorino (1991) in the C-SALT thermohaline staircase. Marmorino found evidence of weak 
diffusive interfaces with high interfacial Froude numbers (between the strong salt-fingering interfaces) in the staircase. 

6. Conclusions  

We have developed a numerical model that simulates the evolution of thermohaline intrusions on a “wide”  front in a 
computationally efficient manner, by assuming that the intrusions are one-dimensional (planar) disturbances with a fixed 
orientation. All model fields are assumed to be continuous in depth, and fluxes are specified using eddy diffusivities. In 
contrast with previous models of interleaving, mixing is assumed to be brought about by a linear superposition of turbulence 
and double-diffusive convection. Diffusivities are assumed to be functions of the density ratio (R

ρ
), and are specified for all 

possible T–S stratifications (finger, diffusive, stable in T and S, and statically unstable). The model allows us to extend the 
linearized analytical studies of Toole and Georgi (1981) and others to the nonlinear regime. 

Infinitesimal disturbances grow in accord with linear theory initially, and the linear growth stage seems qualitatively 
unchanged by the strong turbulent mixing that we use (with warm, salty intrusions still rising as they cross the front for a 
finger-favorable basic state). When the intrusion amplitude becomes large enough that T–S inversions occur, growth slows 
and the intrusions evolve toward an equilibrium state. The equilibria are characterized by layers of fluid with finger and 
diffusive-sense stratification separated by statically unstable“convecting”  layers. Convecting layers facilitate the equilibration 
by allowing a large flux of buoyancy and momentum from finger to diffusively stratified layers.

Equilibration depends upon vertical variations of the turbulence-modified “effective”  T–S flux ratio, γeff, both within a 

layer and from one layer to the next. Within the context of our model, turbulent mixing permits the necessary vertical 
variations in γeff, by allowing the effective flux ratio to evolve with R

ρ
 as intrusions grow. Hence, turbulence is essential to 

the equilibration of growing model solutions. At equilibrium, the layer density ratio Tx/Sx is equal to the “flux divergence 

ratio”  γdiv, which is not in general equal to the effective flux ratio γeff. 

Solutions are found to be sensitive to the intensity of“background”  turbulence, with weak turbulent mixing (small Kturb) 

leading to solutions with extremely thin finger interfaces and staircaselike structures within diffusively stratified regions. A 
larger value for Kturb gives solutions with thicker finger interfaces, and also eliminates the “steppiness”  seen in diffusive 

regions for small values of Kturb. Specifying double-diffusive diffusivities that vary continuously with R
ρ
 has no apparent 

effect on the ability of the model solutions to equilibrate. The main effect of such nonconstant diffusivities appears to be a 
modification of the slope, wavenumber, and growth rate of the fastest-growing intrusion, as discussed by Walsh and 
Ruddick (1995a). 
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APPENDIX  

7. Evolution of a Density Overturn—Entrainment  

Our parameterization scheme uses a large turbulent diffusivity—equal for heat, salt, and density—to rapidly mix those 
portions of the water column that are statically unstable. This differs from the explicit mixing scheme often used in general 
circulation models (Bryan and Cox 1968; Bryan 1969), which check for static instability and sequentially mix downward 
until static stability is achieved. Our scheme is slower than the direct mixing scheme but is symmetric in the vertical and 
diffusive in nature. When presented with a region of static instability bounded by stable regions, does the unstable region 
become homogeneous and entrain appropriately into the stable regions? To test this, we initialized the model with a purely 
thermal stratification consisting of a uniform stable gradient plus a finite-amplitude deviation, resulting in a region of static 
instability. The situation is shown schematically in Fig. A1 , where a density inversion with initial thickness h0 grows with 

time by entraining fluid from the surrounding stably stratified layers. The initial profile for the model runs and subsequent 
evolution of the density field is shown in Fig. A2a  for Kconv = 5 in the unstable region and Kturb = 0.01 in the stable 

regions. It can be seen that the statically unstable region is rapidly homogenized while entraining the adjacent stable fluid until 
the water column reaches a marginally stable state. Note that the entrainment ceases when overall static stability is achieved, 
leaving only a minimal density jump between the mixed and stable region. The potential energy released by the buoyancy flux 



in the unstable region is just sufficient to entrain the stable fluid to the point of marginal stability, the remainder being lost to 
turbulent dissipation. This mirrors the development of a mixed layer in stratified fluid under penetrative convection in which 
the density jump between the mixed and stratified regions is observed to be small [Deardorff et al. (1969)—see Fig. 7.17 in 
Turner (1973)]. As discussed by Turner (1973, sections 7.3 and 9.2), the energy supplied by buoyant forcing is used to 
change the potential energy of the water column by mixing it with the fluid above, and sufficient dissipation occurs to 
prevent much entrainment of fluid beyond the level required to achieve static stability.

The time required for mixing within the unstable region is roughly τmix = h2
0/Kconv = 720, where h0 = 60 is the initial 

height of the unstable region. There is, however, a second relevant timescale, based on the rate at which the unstable patch 
entrains water from the adjacent stable regions. Assuming that the density profile within the overturn remains approximately 
linear and that the surrounding stable layers have uniform stratification ρz, it can be shown that the convecting layer will 

grow in thickness by “entraining”  fluid from adjacent layers with entrainment velocity we, such that

 

and that the eventual scale of the mixed fluid patch will be

 

where the subscript 0 denotes the value of a quantity at time t = 0. These allow the entrainment timescale to be estimated 
as

 

For the runs in Fig. A2  this has a value of about 150, so the entrainment timescale is much shorter than the“internal”  
mixing timescale. This may explain why the mixing seems to be essentially complete well before t = 720. As the mixing 
proceeds, the stable region diffuses at the slower rate Kturb, leaving a profile with relatively sharp “corners.”  Figure A2b  

shows the same experiment with Kturb = 0.3, in which the diffusion within the stable regions results in much smoother 

profiles.

Tables  

Table 1. Estimated values for the parameters that appear in the model equations, chosen to be appropriate for Meddy Sharon. 
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Table 2. Measured growth rates for small-amplitude disturbances from several model runs, along with the growth rates 
predicted by linear theory. The runs correspond to the labeled points in Fig. 3. The model growth rates are in excellent agreement 
with linear theory.
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Table 3. Stages of intrusion growth for the model run shown in Fig. 4. Times are given in nondimensional units, as well as in 
multiples of the linear e-folding period ( 1115), and in terms of the buoyancy period 2π/N. 
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Figures  
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Fig. 1. Schematic of intrusion structure showing the alternating finger, diffusive, and unstably stratified layers that appear at 
large amplitude and the tilted coordinate system used by the numerical model. The x (cross-front) axis is rotated through an angle 

θ; the y axis (oriented into the page) is rotated through an angle . All perturbation fields are assumed independent of x and y in 
this rotated system.
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Fig. 2. (a) Plot showing diffusivity parameterizations in different regions of (Sz, Tz) space. (b) The diffusivities KT (thin line) and 

KS (thick) as functions of the Turner angle. In statically unstable regions a large (constant) eddy diffusivity is chosen; in finger 

and diffusive stratifications the diffusivities of heat and salt are unequal. Solid curves show the constant double-diffusive 
diffusivity case; dashed lines show the case in which double-diffusive diffusivities are continuous functions of R

ρ
 (nf = 2, nd = 

3—see text for details). (c) The turbulence-modified T–S flux ratio for the same parameter values (the horizontal dashed line is at 
γeff = 1). 
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Fig. 3. Contour plot of the real (a) and imaginary (b) parts of the growth rate predicted by linear theory as a function of the 
slope s and the vertical wavenumber m for the parameter values R

ρ
 = 1.6, Pr = 10, Sx′ = 0.08, nf = 2, and Kturb = 0.3. Dashed 

contours indicate negative growth rates; growth rates with nonzero imaginary part are associated with oscillatory solutions. The 
“×”  in (a) shows the location of the most unstable disturbance; the “×”  and the small circles mark the locations of the runs 
summarized in Table 1 . (c) The evolution of the salinity disturbance amplitude, with vertical lines marking the appearance of 
nondouble diffusive (t  3600), diffusively stratified (t  3800), and convecting regions (t  4600). The slope of the curve in 
panel c gives the growth rate, which is in excellent agreement with linear theory until t  4000. 
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Fig. 4. Mesh plots showing the evolution of a model run from small amplitude to a large amplitude equilibrium state. The run 
was initialized with the most unstable disturbance for the parameter values R

ρ
 = 1.6, Pr = 10, Sx′ = 0.05, nf = 0, and Kturb = 0.5. (a) 

The velocity structure; (b) the salinity structure, and (c) the evolution of the density field (the depth axis in panel c has been 
reversed for ease of presentation). At t  5900 a salinity inversion appears, at t  6400 a diffusive layer forms, and at t  7100 a 
statically unstable layer forms.
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Fig. 5. Evolution of layer thicknesses for the model run shown in Fig. 4 . At t  5900 a stably stratified layer appears, which 
grows in thickness until t  6400, when a diffusive layer forms. The diffusive region grows thicker by “entraining”  fluid from the 
stably stratified layer. At t  7100 the stable layer disappears entirely and is replaced by a statically unstable layer that thickens 
with time, primarily at the expense of the finger layer.
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Fig. 6. (a) Evolution of the standard model run in T–S space. Initially the T–S curve is straight, but the growing intrusions soon 
cause “wiggles”  to appear. By t = 6600 the intrusions have become large enough that inversions in T and S appear. The “loops”  
evident at t = 18 600 result from unstably stratified “convecting”  layers. (b) The same three profiles shown in (a) are plotted in 
the (Sz, Tz) plane. At t = 0 (shown by the shaded dot) gradients are nearly constant, and the initial evolution is nearly isopycnal, 

with stable and diffusively stratified layers appearing by t = 6600 (shaded line). At equilibrium (t = 18 600: dark line), the 
gradients of T and S are discontinuous. 
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Fig. 7. Plots of S (solid line), T (dashed line), u, ρ, and R
ρ
 for the run shown in Fig. 4  at three different times: t = 0 (top row), t 

= 6000 (middle row), and t = 16 800 (bottom row). 
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Fig. 8. Schematic illustration of the evolution of a typical model run in the (S, T) plane (adapted from McDougall 1986). The 
vectors show the evolution of a warm salty (rising) intrusion (A), and a cool fresh (descending) intrusion (B). As the intrusion 
grows, the overall stratification between A and B changes from being finger-sense to stable in both properties at point “1,”  and 
eventually becomes diffusively unstable at point “2.” 

 
Click on thumbnail for full-sized image. 

Fig. 9. (a) Vertical profiles of ρ/ t (dash–dotted line), u ρ/ x (dashed), and −F
ρ,z′ (solid) for the growing intrusions shown in 

Fig. 4 . Horizontal dotted lines show the locations of convecting layer boundaries. The intrusion growth is driven by an 
imbalance between advective density flux convergences and vertical flux convergences produced by salt fingers. Initially double-
diffusive flux convergences dominate, but as t becomes large the system attains an equilibrium in which vertical flux divergences 
are balanced by lateral advection. (b) Vertical profiles of the terms in the momentum equation: u/ t (dash–dotted), ρ′ tanθ 
(dashed), and (Auz)z (solid). 
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Fig. 10. Schematic showing the effect of advective and double-diffusive fluxes on the stratification in the finger and diffusive 
regions (at an intermediate stage in the growth of the intrusions). Near the center of the finger region (a) advection (labeled adv) 

tends to decrease the value of N2, but finger fluxes (labeled DD) have a stabilizing tendency, and the combined fluxes (res) lead 

to an increase in the local value of N2. Near the edges of the finger region the combination of advective and double-diffusive 

fluxes has a destabilizing effect on N2 (b). In the diffusively stratified layer (c) both advective and double-diffusive fluxes have a 
stabilizing influence on the density stratification.
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Fig. 11. The T–S flux balance for a warm and salty intrusion. At t = 5400 T–S inversions have not yet occurred, and the 
imbalance between double-diffusive and advective flux divergences makes the intrusion warmer, saltier, and lighter, and 
accelerates the flow. At equilibrium there is a three-way balance between advective, diffusive, and salt finger fluxes. 
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Fig. 12. Plot showing the bulk T–S flux divergences into the depth interval “A”  occupied by a warm, salty (rising) intrusion. (a) 
The contributions of advection, salt fingering, turbulent mixing, and their resultant early in the intrusion life cycle (before 
inversions appear). Because the turbulent flux-divergence vector (labeled turb) is collinear with the advective flux-divergence 
vector (adv), turbulent mixing cannot bring about equilibration. (b) The situation after inversions appear, with the dashed arrows 
representing the fluxes in the top and bottom of the intrusion and the solid arrow the resulting flux-divergence vector. In this 
case a three-way vector balance between turbulence, double-diffusion, and advection is possible.
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Fig. 13. Run showing the effect of using a small turbulent diffusivity Kturb (Kturb = 0.001). Profiles of u, S, T, and Turner angle 

are overplotted, showing the evolution of a small amplitude disturbance to to the point where interfaces are no longer resolved. 
Notice the “steppy”  character of the T–S profiles within the diffusive region. The different curves correspond to successive 
times.
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Fig. 14. Examination of the T–S fluxes (FT, FS) through a small area element within the finger-stratified region. Equating the 

vertical flux divergences through the box with the lateral advective flux divergences shows that the layer density ratio (Tx/Sx) 

must equal the flux-divergence ratio (γdiv) at equilibrium. 
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Fig. 15. Evolution of the effective flux ratio (γeff) and the “flux divergence ratio”  γdiv for the run shown in Fig. 4 , at a point 

within the finger-stratified region (z  184). The layer density ratio Tx/Sx is shown by the horizontal dashed line. 
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Fig. 16. A run with diffusive-sense basic-state stratification. Vertical profiles of u, S, T, and Turner angle are overplotted, 
showing the evolution of an infinitesimal disturbance to a large amplitude equilibrium. Different curves correspond to successive 
times.
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Fig. 17. A run in which the diffusivity exponents nf and nd are nonzero (nf = 2, nd = 3), so that diffusivities vary continuously 

with R
ρ
 in double-diffusively unstable conditions. All other parameters are identical to those for the run shown in Fig. 4 . 

Vertical profiles of u, S, T, and Turner angle from successive times are overplotted, showing the evolution of a small amplitude 
disturbance to a large amplitude equilibrium.
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Fig. A1. Schematic of a localized density inversion in a stratified water column. The density profile at t = 0 is shown by the 
thick solid line; the profile at a later time is indicated by the thick dashed line. The overturn initially has vertical extent h0 but 

grows thicker with time as the fluid adjusts and entrains fluid from the surrounding layers.
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Fig. A2. Plots showing the evolution of an isolated density overturn for the case in which the entire water column is double-
diffusively stable. The unstably stratified fluid adjusts rapidly, entraining into the stable water surrounding it. After the overturn 
disappears, the remaining homogeneous layer is eroded away from above and below by the less energetic mixing in stably 
stratified regions. In both (a) and (b) the diffusivity in the overturning region is Kconv = 5, while the low-level turbulent mixing in 



 

 

stably stratified regions is characterized by a diffusivity Kturb = 0.01 in (a) and by Kturb = 0.3 in (b). 

 

 

Corresponding author address: Dr. David Walsh, Department of Oceanography, Dalhousie University, Halifax, NS B3H 4J1, Canada. 

E-mail: dwalsh@phys.ocean.dal.ca 

 

© 2008 American Meteorological Society Privacy Policy and Disclaimer 
 Headquarters: 45 Beacon Street Boston, MA 02108-3693  
  DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 
 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718 
Allen Press, Inc. assists in the online publication of AMS journals.  

 


