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ABSTRACT

An ocean flow that has all its scales resolved on a model grid can be more 
efficiently calculated to within a required accuracy by using high-order 
numerics than by grid refinement with low-order numerics. The differencing 
order must be at least as great as the space–time dimensionality D of the 
model to ensure that grid refinement reduces truncation error at least as 
quickly as computational cost increases. Ocean flows often have variability on 
a wide range of scales that cannot all be resolved on any practical grid. In 
such circumstances the distribution of variability among the scales determines 
whether grid refinement or increased order results in the greatest accuracy per 
unit computational cost. A model that simulates the −5/3 power law of the 
inertial subrange of three-dimensional turbulence would most efficiently 
exploit low-order numerics for all terms. The spectra of different terms in the 
equations of motion can be different and can therefore require different orders 
of accuracy for efficient computation. Modeling geophysical turbulence with a 
power law of −3 would require high-order numerics for the advective terms 
but low-order numerics would be sufficient for other terms. Output from 
several ocean models are observed to have spectra that are sufficiently red to 
justify using high-order numerics for all terms. In the case of one relatively 
simple ocean modeling problem the author demonstrates that leading-order 
terms dominate the truncation error.

1. Introduction  

Most ocean models use either first- or second-order numerics (Haidvogel and Beckmann 1997). Recently, there has been 
some interest in applying high-order numerical schemes to ocean models. Some terms are computed to fourth-order 
accuracy in the DieCAST model (Dietrich et al. 1990)—although time stepping is formally first-order and the elliptic 
pressure equation is second-order. The usual rationale for mixed-order numerics is that different parts of the calculation 
affect the ultimate solution to different extents, so more important dynamical terms should be calculated more accurately 
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than lesser terms. Mahaevan et al. (1996) and Bender (1996) both favor third-order advection schemes over lower-order 
schemes. McCalpin (1994) uses a fourth-order approximation of horizontal gradients to improve the performance of σ-
coordinate models. Iskandarani et al. (1994) and Haidvogel et al. (1997) also explore the use of higher-order methods. 

The order of accuracy of numerical calculations would seem to be a fundamental property of any ocean model that 
critically effects model performance and effective application of the model to obtain solutions to problems in physical 
oceanography. In order to improve accuracy of numerical solutions we can reduce the grid scale or increase the order of 
accuracy of numerical operators. The following work evaluates the relative advantage of these two strategies in the context 
of modeling ocean dynamics.

The advantages of high-order numerics have been demonstrated for numerical weather prediction (Purser and Leslie 
1988; Leslie and Purser 1992). Similarly, Leonard et al. (1996) find that high-order numerics are advantageous for advective 
problems that they tested. This manuscript will demonstrate why the high-order numerical schemes tested above resulted in 
superior efficiency relative to low-order schemes and why high-order numerics are not advantageous in all circumstances. 

Parenthetically, it should be observed that two different numerical schemes of the same order can have different 
magnitude truncation errors and grossly different computational costs. This important point is not addressed by the present 
manuscript. Nevertheless, the results and methodologies of the present manuscript are broadly applicable and can be 
customized for a wide range of numerical schemes. In this sense, the work presented below is a fundamental design criteria 
for ocean models when addressing questions of accuracy and computational efficiency.

Fluid flow is generally four-dimensional: three space dimensions and time. Fluid motion is often highly nonlinear and 
analytically intractable. Sometimes problems of reduced dimensionality occur in the ocean. Tides, for example, might be 
considered essentially two-dimensional in space plus the time dimension. Indeed, many large and mesoscale oceanic 
phenomena have slowly varying and largely horizontal motion even though the models often used to study them are four-
dimensional. In the case of sufficiently smooth flows then, leading terms dominate the error of the numerical truncation. 
Section 2 shows that grid refinement, numerical order of accuracy, and the model’s dimensionality are not independent 
quantities for the efficient computation of accurate solutions to such smooth flows.

The ocean has variability over a range of scales vastly greater than can be resolved using computers that are presently 
available. In section 3 the issue of gradients in ocean properties is addressed and this raises a significant doubt as to the 
applicability of an asymptotic limit at which the flow can be considered sufficiently smooth. There will always be some part 
of the flow that can only be modeled by increasing resolution (whereas increasing the order of differencing can only reduce 
truncation errors on scales already resolved). At a given grid scale flow features with wavenumbers greater than some 
cutoff wavenumber kc might be regarded as being unresolved, whereas those with wavenumbers less than kc could be 

considered as being resolved. We might, therefore, regard the error as consisting of two parts, the first due to unresolved 
flows and the second due to truncation errors from differencing resolved flows. In section 4 we present an analysis that 
demonstrates how the relative importance of these two sources of error is a function of the spectral properties of the flow 
being modeled and how this determines the advantage of grid refinement relative to increasing the differencing order.

The fields from several different models of ocean flows are analyzed in section 5 in order to determine if these models 
might better calculate the flows that they model by increasing the numerical order of differencing or by increasing the grid 
resolution. The relative magnitudes of the first few terms in the truncation series are also computed directly for an idealized 
two-gyre ocean modeled using a numerical scheme that has high-order spatial differencing. 

2. Order, resolution, accuracy, and computational cost  

Consider an ocean flow that is to be calculated using numerical differencing techniques on a grid of scale Δ. Let us, for 
the moment, assume that the flow is sufficiently smooth so that all its scales of variability are resolved at the chosen grid 
scale. The error  of a numerical solution is proportional to grid scale Δ raised to the power of the order of accuracy m of 
some numerical method that might be used to solve PDEs and boundary conditions that describe the ocean. This result is 
expressed as

 = aΔm,(1)

 

where a is a proportionality constant that is a function of the numerical scheme and the differential properties of the 
problem being solved. Equation (1) is only applicable when the error is dominated by the leading term in the error expansion. 
As long as the flow is differentiable, then the leading term will always dominate the error if Δ is made sufficiently small.

The goal of numerically modeling the ocean is to closely approach the solution for the corresponding continuum 
equations. It follows that issues of model design should focus on the behavior of numerical models at grid resolutions where 
the above goal might be achieved. All of the following work will consider grid scales sufficiently small so that it can be taken 



as a given that

 

since otherwise one could have little faith that the numerical calculation would give results consistent with the solution to 
the corresponding continuum equations.

The computational cost C of a numerical calculation often increases approximately proportional to the order of accuracy 
m of the numerical operator and also proportional to the number of points (in space and time) that are operated on. For a 
given model domain, the number of model grid points is proportional to the inverse of grid scale Δ raised to the power of the 
model dimension D, so

C = bmΔ−D,(2)

 

where b is a proportionality constant that can be estimated from the number and type of computational operations in a 
numerical scheme. Thus, different families of numerical schemes will have different values for b. Computational cost is 
obviously proportional to m for differencing operators based on Lagrange polynomials (Berezin and Zhidkov 1965, pp. 212–
214), and implementation of this family of differencing operators at different orders would result in a cost conforming to (2) 
with b independent of order m. Similarly compact differencing, interpolation, and integration schemes have a cost 
proportional to m (Leslie and Purser 1992) but with a value for b slightly different from the differencing operators above. 
Explicit advection schemes that involve cross terms such as that of Leonard et al. (1996) also have a cost approximately 
proportional to m (as can be seen from Fig. 13 of their manuscript). 

Not all numerical schemes have computational cost proportional to m. For example, interpolation in a two-dimensional 

space using a Cartesian product of Lagrange interpolations would have a cost proportional to m2. But even in this instance 
alternative schemes exist (Purser and Leslie 1991) that have cost proportional to m. A high-order scheme that had a cost of 
m raised to a power greater than 1 can hardly be considered optimal and often more efficient alternatives can be found. The 
N-cycle time stepping proposed by Lorenz (1971) has a computational cost approximately independent of m but in this 
instance the high-order accuracy is only achieved every Nth time step. Finally, it might be noted that although the number of 
operations might be proportional to m, the computational cost on vector computers can become more weakly dependent on 
m for straightforward differencing stencils. Thus, (2) is not universally applicable but it should be appropriate for many well-
designed numerical schemes, and the following methodology can be easily adapted to cases where the computational cost is 

proportional to mn where n  1. 

Many models have mixed-order numerics. Our analysis does not address mixed schemes. In the limit Δ   0 it is clear 
that the lowest-order term must dominate the truncation error (providing the solution exercises all terms in the dynamics). 
Also, it might be argued that the time step need not be reduced at the same rate that the grid scale is reduced, which would 
lower the power D in (2). Certainly semi-Lagrangian methods (and some explicit advection schemes) are not limited by the 
CFL condition for stability. Nevertheless, for the truncation error to converge in a consistent manner it is necessary that the 
time step reduce proportional to the grid-scale refinement. 

Consider an ocean model that has three spatial dimensions plus a temporal dimension and uses numerical methods with 
accuracy of order 2. If we reduce the grid scale by a factor of 2 and improve the order of accuracy of the numerical 
operators to order 4, then (1) shows that the error of such a model will be reduced by a factor of 16. On the other hand, (2) 
indicates that the computational cost will increase by a factor of 32. Now let us see how the same accuracy can be achieved 
without increasing the order of accuracy of the numerical operators. To reduce the error by a factor of 16 requires the grid 
scale be reduced by a factor of 4 in the case of second-order numerics. But such a reduction of grid scale requires the 
computational cost increase by a factor of 256, eight times the computational cost of the fourth-order scheme above! 

Numerical computations are not only limited by computational speed but also by memory (RAM). It is noteworthy that the 
strategy above of increasing both the resolution and order by factors of 2 will result in the memory requirements being 
increased by a factor of 16 for inefficient temporal differencing schemes and 8 for optimal temporal differencing schemes 
(Lorenz 1971). On the other hand, obtaining the same accuracy by increasing the resolution by a factor of 4 (with order 
kept at 2) will result in memory requirements being increased by a factor of 32. Clearly, high-order numerics have the 
potential to substantially reduce memory requirements as well as computational cost.

A reviewer pointed out that the above computational cost advantage of increasing order relative to increasing grid 
resolution can be expressed more formally by considering two models, one at order m1 and the other at order m2, that have 

the same truncation error . The two grid resolutions [Δ1 = ( /a)1/m1, Δ2 = ( /a)1/m2] that give the same truncation error  

for two orders of accuracy (m1, m2) can be obtained from (1). The costs of the two models can be obtained by substituting 



into (2) and the ratio of costs is

 

Thus, as   0, the higher-order model will always be more efficient. Even nonoptimal schemes, where computational 

cost is proportional to m raised to some power n, have a cost ratio (m1/m2)n( /a)D(1/m2−1/m1), and again high-order 

numerics have the advantage for small . 

In formulating (3) the proportionality constants a and b are assumed to be the same for both models. This means that, 
although the models are at different order, both models use the same numerical method (or methods belonging to families 
with the same values for a and b). This is consistent with our central purpose, which is to explore which order of numerical 
scheme is most effectively employed—not to argue the merits of one family of numerical schemes relative to another. 

The above work is useful for comparing two similar models with different order numerics but gives little practical 
guidance to determine m in any absolute sense. Here we ask how high need the order of accuracy be to obtain the 
advantages of high-order differencing? For a given domain it is clear that as the grid spacing tends toward zero, then the 
error tends to zero, while the computational cost tends to infinity. This applies regardless of the order of differencing. Our 
question might be addressed by determining the relative rates of increase in computational cost and decrease in error as the 
grid is refined. (Note that m cannot be increased indefinitely without increasing the number of grid points.) An appropriate 
measure of the above relative rates of change can be obtained by considering the product of error and cost. In particular, we 
are interested in the behavior of this product as Δ   0:

 

Clearly, if m < D, then grid refinement leads to computational cost growing faster than the truncation error is reduced. We 
might say that, if m < D, then error reduction by grid refinement is computationally inefficient. If, possibly for good reason, 
we are forced to adopt this strategy, then there is no substitute for computational effort and such models are 
computationally inefficient in the sense that grid refinement produces improved accuracy with a disproportionate increase in 
computational cost. When m > D, the truncation error can be reduced more quickly by grid refinement than the 
computational cost increases, and grid refinement is a computationally efficient strategy for error reduction. Note, in the 
limit Δ   0, any value of m larger than D achieves the same limit, which indicates that the relative advantages diminish the 
more m is made larger than D. It would seem, therefore, appropriate to require m > D with little advantage in making m 
much greater than D. A choice of m = D + 1 would seem practical for flows that exercise all terms in the equations of 
motion. In the instance that the numerical scheme being used has small values for a and b, then choosing m = D might be 
argued to be adequate.

The asymptotic limit Δ   0 is interesting but the behavior of C as a function of m and Δ is also pertinent to considering 
model performance in instances when computational resources are limiting. Figure 1  plots ln( C) as a function of Δ and 
m. At Δ = 1 the error is not reduced by increasing the differencing order. It is easy to show that for centered differencing on 
an unstaggered grid Δ = 1 corresponds to a grid spacing of half the smallest wavelength. On a staggered grid Δ = 1 
corresponds to a grid spacing equal to the smallest wavelength. Clearly, for Δ > 0.8 the error diminishes too slowly with 
increasing m for high-order differencing to substantially reduce error compared to the increased computational cost. This 
behavior is obvious in the limit Δ   1. But no numerical calculation can be accurate when Δ is near 1. As mentioned earlier, 
values of Δ  1 are pathological. Figure 1  shows that for Δ  0.6 the function C indicates that high-order differencing 
becomes advantageous. The crossover resolution for high-order differencing appears to be Δ in the interval (0.6, 0.8). 
Figure 1  also confirms that our choice of m  D + 1 = 4 is appropriate not just for the asymptotic limit Δ   0 but 
indeed for any Δ < 0.6. Reasonable accuracy constraints require even more restrictive values of Δ so the asymptotic 
constraints in (4) are generally applicable. 

In Fig. 1  the tight bunching of contours for small Δ and low order illustrates that high-resolution model calculations at 
second order are not cost effective. First-order calculations are well known not to be cost effective and are not shown in the 
figure.

Increasing an ocean model’s order of accuracy is not an alternative to making Δ sufficiently small to resolve the physical 
processes being studied. Inasmuch as ocean flows have a wide range of scales, it follows that grid refinement will always be 
an important strategy. Certainly grid refinement is advantageous if energetic subgrid-scale processes cannot be 



parameterized with confidence. In intermediate circumstances where high-order differencing and grid refinement are both 
useful strategies, then (4) suggests that m should be either D or D + 1 in order to reduce error in a computationally efficient 
manner.

3. Field singularities and the asymptotic assumption  

The above arguments are of an asymptotic form and assume the error is dominated by the leading term in the error 
expansion. Counterarguments are concerned with the case when there is sufficient variability at the small scales (e.g., 
discontinuities like fronts) so that relatively little can be gained by increasing the order of accuracy compared to the 
immediate gains obtained (expensively) by increasing the resolution. Let us examine the extent to which singularities are 
likely to confound the advantages of high-order differencing for ocean models. 

A scaling argument on the Navier–Stokes equations shows that the difference between velocity at a point x and a velocity 

at a second point a distance l away from x scales proportional to l1/3 (Schertzer and Lovejoy 1989). The relative motion of 
pairs of particles has been the subject of considerable observational and theoretical interest in the context of eddy diffusion 
and the fractal properties of the ocean and atmosphere (Richardson 1926; Stommel 1949; Okubo 1971; Sanderson and 
Booth 1991). Generally the two-particle and patch eddy diffusivities are observed to vary as length scale raised to a power of 
about 4/3. On this basis the relative velocities would scale as separation distance raised to a power of 1/3 and differential 
kinematic properties (vorticity and divergence) would scale as separation distance to the power of −2/3. Kawaii (1985) 
observed that vorticity and divergence had magnitudes consistent with the above scaling.

The above scaling of relative motion as a function of separation distance shows that we should expect the ocean to have 
flow-field singularities such that ever more intense flow gradients are observed as grid scale is reduced. Indeed, there is 
evidence that particle trajectories are fractal (Sanderson and Booth 1991) in which case differentiation only makes sense if 
we first apply some smoothing operator. The implication is that for a wide range of grid scales there will always be small-
scale structure that has the potential to cause the flow to be insufficiently smooth for (1), (3), and (4) to apply. 

4. Truncation error and unresolved fluctuations  

Ocean flows have variability on a wide range of scales. This variability could be expressed by representing the flow as an 
infinite Fourier series. Figure 2  shows a conceptual diagram of the spectrum of some flow variable that has its variance 
distributed according to a power law. At a grid resolution Δ we will be able to resolve that portion of the spectrum with 
wavenumbers less than a cutoff wavenumber kc. Variance at all wavenumbers higher than kc must be omitted from the 

numerical model. A numerical differencing scheme can only approximate derivatives of the resolved portion of the flow field 
and will result in a truncation error m that will be a function of the order of differencing m. 

Let us increase the grid scale to δ; then the model would only resolve that portion of the spectrum that is shaded in Fig. 2 
. Now there would be a new truncation error but there would be an additional error due to the unresolved fluctuations 

with wavenumbers less than kc but not in the shaded region. Consider the case where the order of differencing on the 

coarse δ grid is twice that on the fine grid Δ. If δ = 21/4Δ, then this would correspond to an equivalent computational cost in 
the instance D = 4 (a numerical model with three spatial dimensions plus time). If the total error on the coarse grid is less 
than the truncation error on the fine grid, then high-order differencing is advantageous. The following analysis will formalize 
and apply the above discussion to determine the circumstances under which high-order differencing is advantageous. 

Consider some quantity q that is differenced in the equations of motion. We might consider q to be u2/2 or pressure p if 
we were considering terms such as field acceleration u( u)/( x) or pressure gradient p/ x respectively. The quantity q might 
be represented as a Fourier series

 

where Ai is an amplitude, i is a random phase uniformly distributed in [0, 2π], and x varies over the domain [0, 2π] 

thereby normalizing the smallest wavenumber. Here we will consider the case where Ai is proportional to some power of 

wavenumber:

Ai = βi−α.(6)

 

The power is negative, indicating that there is more variability in large-scale flows than small-scale flows. 



The spectrum of energy density might be −5/3 in the inertial subrange of three-dimensional turbulence. At larger scales 
associated with internal waves a spectral energy density with power law −2 might apply and at still larger scales associated 
with geophysical turbulence a power law of −3 might apply. Thus, if we were considering a finite-difference approximation 
to u/ x, then q would be the u field and appropriate values of α would be 5/6, 1, and 1.5 respectively for three-dimensional 
turbulence, internal waves, and geophysical turbulence. (Larger values of α would result if the random phase assumption 
was relaxed). On the other hand, considering a finite-difference form to the field acceleration would mean setting q to scale 

like u2 and appropriate values of α would be 5/3, 2, and 3 respectively for three-dimensional turbulence, internal waves, and 
geophysical turbulence.

Consider a numerical model that divides the domain [0, 2π] into N equal intervals of length Δ. The model therefore 
resolves the following portion of the Fourier series for q:

 

and all higher wavenumbers must be omitted to avoid aliasing. The derivative of q can be obtained analytically as

 

Numerically differencing q as given by (7) (on a grid with spacing Δ) will result in a discrepancy from the analytic value 
due to truncation errors of the differencing method. For example, a second-order difference gives the following estimate for 
the derivative:

 

where q is specified by (7). The difference between q′ and q′2,Δ is the truncation error and is, therefore, directly 

calculated in sum and for individual wavenumbers in the truncated Fourier expansion. The truncation error at order m on the 

fine Δ grid is denoted by m,Δ = q′m,Δ − q′. 

Let us consider a second grid that is a factor of 21/4  1.2 more coarse than the first grid. The grid scale of this more 

coarse grid is denoted δ and δ = 21/4Δ. In a 4D model, increasing the grid scale by this factor will change the computational 
cost by a factor of 2 (if order of differencing stays the same). On this coarsened grid the Fourier series for q becomes

 

which has fewer terms than (7)—that is, we have omitted those terms between kc and the shaded portion in Fig. 2 . 

Numerically differencing at fourth-order on this coarse grid results in the same computational cost as differencing at second 
order on the fine grid. (More generally, differencing at order 2m on the coarse grid involves the same computational cost as 
order m on the fine grid.) A fourth-order differencing formula is

 

where q is now given by (10). The error of the fourth-order differencing on the coarse grid can be obtained by 

subtracting q′4,δ from q′  in (8). More generally, we denote the error at order 2m on the coarse δ grid by 2m,δ = q′2m,δ − q′.
 

We expect 2m,δ will differ from m,Δ in several ways. The numerical differencing error increases with increasing grid 

scale. Also, more high wavenumber terms must be omitted from the Fourier series as the grid is made more coarse, and this 
also causes error to increase with increasing grid scale. On the other hand, the higher the order of the differencing operator, 
the lower the truncation error. The critical question is whether increasing order of accuracy (thereby reducing truncation 
error) can compensate for increased truncation error and wavenumber omission errors as we coarsen the grid.



In Table 1  we present the root-mean-square value of errors obtained by subtracting numerically determined 
differences from the analytic derivatives given by (8). An ensemble of 4000 independent Fourier series was used to 
determine each root-mean-square value. The numerical differencing operator acted on (7) for the fine grid Δ and (10) for the 
coarse grid 1.2Δ. The numerical differencing is done at these two resolutions and using differencing formulas with orders 1, 
2, 3, 4, and 6. Values of the error were calculated for α set to values of 5/6, 2, 3, and 4. 

Accuracy is achieved with less computational cost by increasing differencing order than by increasing grid resolution 
whenever α is greater than 2. When α = 2, the advantages of increased order over increased resolution are neutral—except 
that there is still an advantage increasing order from 1 to 2. If α is less than 2 then the argument for high-order differencing 
generally fails, although an advantage can still be obtained by increasing the order from 1 to 2.

Above we have addressed errors associated with some commonly used differencing operators. It is not clear that α = 2 
will prove a critical number under all other numerical differencing schemes (e.g., compact schemes). Whatever numerical 
schemes a model is using, the methodology presented above could be applied to determine the relative advantages of high- 
and low-order versions of the scheme. Midpoint Lagrangian interpolation exhibits a critical value of α = 1.5 for a choice 
between second-order and fourth-order calculations, for example.

Clearly, for pressure signals with sufficiently red spectra, the minimization of truncation error by increasing differencing 
order can compensate the increased errors due to truncation and additional unresolved fluctuations on a grid that is 
coarsened so computational cost is invariant. But the advantages become reduced as the order of differencing increases. To 
see this, consider the case α = 3 in Table 1  and consider the errors linked by lines of equal computational cost. 
Increasing order from first to second results in error reduction of 47.6 − 8.2 = 39.4. First-order differencing is generally not 
favored—for good reason. Going from second- to fourth-order reduces error by 6.08 − 4.37 = 1.71, which is a 28% error 
reduction. Clearly, substantial gains might be expected by improving a second-order accurate model to be fourth-order 
accurate. Fourth-order numerical calculations do not result in significant coding difficulties, especially if a defect correction 
can be applied to an existing second-order calculation. Increasing order from third to sixth reduces error by 4.03 − 3.67 = 
0.36, which is only a 9% error reduction. This is consistent with (4) and indicates achieving orders substantially larger than 
D may not be worth the additional coding effort. 

It is notable that on a vector processor a fourth-order operator such as (11) has a computational cost similar to a second-
order operator (9). Comparing columns in Table 1  it is clear that in such a circumstance high-order differencing will 
always yield an advantage and that advantage becomes more substantial as α increases. In terms of (1) we might infer that Δ 
(or similarly /a) becomes ever smaller than unity as α is increased. 

As mentioned earlier, different terms in the equations of motion might have different values of α for a given flow. If a 
geophysical flow has a spectrum of kinetic energy with a −3 power law then α would be 3 for the field accelerations but 
only 3/2 for terms in the continuity equation ·u. In such a circumstance the field accelerations should be computed using 
high-order differencing, but low-order differencing would suffice for other terms. In the case of a three-dimensional energy 
cascade in the inertial subrange the spectrum has a slope of −5/3 and high-order differencing is unlikely to be helpful for any 
terms in the equations of motion (except for circumstances where computational cost increases more slowly than m or 
when the calculation is memory limited).

It is notable that high-order schemes can lead to undershoots and overshoots (i.e., nonphysical loss of monotonicity) 
when differencing fields that have discontinuities. A fourth-order compact differencing scheme, for example, is very 
sensitive to 2Δ signals even though it is much more accurate than (9) or (11) when differentiating a more smoothly varying 
function. The ocean is full of inconvenient boundaries and abrupt bathymetric features that have the potential to cause such 
discontinuities. The inertial subrange of a three-dimensional turbulent flow generates such discontinuities. Flow 
discontinuities are not expected to be space filling because of the fractal properties of turbulence discussed earlier. Thus, 
flows might be differenced at high order where they are smooth and limiters applied to avoid spurious oscillations at 
discontinuities (Leonard et al. 1995). In this manner, high-order operators might yet yield an advantage even when α < 2. 
Leonard et al. (1996) demonstrates the practical implementation of high-order advection schemes (with limiters) that have 
advantages even for highly deformational flows and discontinuous fields.

In reality, ocean models are used to study all sorts of flows for many purposes. A forecasting model, for example, might 
be initialized using a dataset that has low spatial resolution. Clearly, the solution will not contain much energy at high 
wavenumbers (at least for the period it is likely to be useful for providing a meaningful forecast). In such circumstances we 
expect high-order differencing to yield substantial advantages and this has already been demonstrated for numerical weather 
forecasting (Purser and Leslie 1988). 

In the following work we will analyze solutions obtained by applying several ocean models to a range of oceanic problems 
in order to determine the extent to which these model applications may or may not benefit from high-order differencing. 



5. The applicability of high-order differencing to some ocean simulations  

In section 4 we have always assumed a power-law relationship that applies to all wavenumbers (or equivalently 
frequencies). If the energy in the small wavenumbers is somewhat less than indicated by the power law, then this turns out 
to be of no consequence to the above discussion because the error in numerically differencing these small wavenumbers is 
negligible compared to the higher wavenumbers. It is the slope of the power spectral density function near the cutoff 
wavenumber that is most important. At this stage it is helpful to visualize signals q that can be represented as a Fourier series 
(7) with N = 120 and Ai given by

 

which asymptotes to the same form as (6). Figure 3  shows Ai plotted against i on a log–log scale for values of α = 1, 

2, 3, 4. Equation (12) is perhaps more consistent with natural signals than (6). Signals obtained from (7) and (12) are plotted 
in Fig. 4  with successive signals vertically offset for clarity. A common set of random phases i was used for each 

signal plotted in Fig. 4 . The signal corresponding to α = 1 is probably better treated using low-order numerics. On the 
other hand, the smoother signals corresponding to α greater than 2 are best treated using high-order numerics. 

Providing the power spectral energy density falls off sufficiently quickly with increasing wavenumber (or frequency), 
then high-order differencing will be advantageous. Power spectra of output from several numerical simulations will now be 
considered to determine if high-order differencing would benefit these calculations. 

England and Garcon (1994) ran a 1.6° resolution global ocean circulation model. Output from the Southern Ocean 
(bounded by latitudes 77° to 60°S) exhibits high wavenumber variability. Figure 5  shows that the spectral densities and 
cross-spectral density of the velocity components all approximately conform to −4 power laws at high wavenumbers. Field 
accelerations scale as the derivative of kinetic energy, so α = 4 and the advantages of high-order calculation of the field 
acceleration would be substantial. The power spectrum of temperature T indicates a −4 power law except for grid-scale 
instabilities at these high latitudes that are associated with high Courant numbers. Clearly, this model would also benefit from 
a high-order advection scheme that is not time step limited. Leonard (1994) discusses the relationship between Courant 
number and stability for various numerical schemes.

I have done a 100-yr idealized simulation of the East Australian Current using the DieCAST primitive equation model run 
at 1/4° resolution. The model domain extended over latitudes −46° to −18° and from the east coast of Australia to New 
Zealand. The western boundary was landlocked, and the southern and eastern boundaries were open. A geostrophic 
inflowing jet of warm water was impressed on the northern boundary at the Australian shelf break with a transport of 13 Sv. 
Advective transport conditions were used at the open boundaries with a weak relaxation to climatology. The resulting fields 
at open boundaries were averaged as the model was run and used to update the boundary climatology. After year 6 the 

boundary climatology was fixed. The eddy viscosity was set to 500 m2 s−1 near the open boundaries and reduced by two 
orders of magnitude away from open boundaries.

A complex and ever changing eddy field is observed where the East Australian Current separates from the coast, and an 
example is shown in Fig. 6 . Monthly snapshots of model fields over the last 60 years of the simulation will be used for 
the analysis below. Power spectra and the cross-spectrum for the two components of velocity (Fig. 7 ) clearly indicate 
the advantage to be obtained using high-order schemes for the field accelerations. The surface pressure signal has a power 
spectral density that falls off faster than −4 except for the highest wavenumbers, which are contaminated by twice-grid-
scale noise. The temperature signal is even more strongly contaminated by twice-grid-scale noise. Except for the twice-grid-
scale contamination the Fourier transform of surface pressure would correspond to α  3. DieCAST uses a fourth-order 
scheme for advection and a second-order scheme for pressure gradients. For the simulation reported here, it would seem 
some advantage could be obtained by going to higher order when calculating pressure gradients (although the gains of high-
order determination of field accelerations are greater).

The above work pertains to hydrostatic dynamics first for large-scale climatological flows and second for eddy fields 
associated with major ocean currents. Nonhydrostatic convection results in much smaller scale structure and provides a 
quite different context in which to test the applicability of high-order differencing. A two-dimensional (x–z) nonhydrostatic, 
rigid-lid, Bousinesq model has been constructed using semi-Lagrangian methods. The model is second-order in time, eighth-
order for advective terms, and fourth-order for other spatial derivatives. Observed temperature profiles in a billabong (small 
lake about 2 m deep by 100 m wide) have been simulated by forcing the model with observed nighttime heat fluxes. The 
model was initialized with the observed temperature profile, which had varied from a surface temperature of 26.5°C to a 
temperature of about 24.5°C at depth. The grid scale is 0.054 m with adaptive time stepping. Figure 8  shows a snapshot 
of temperature contours and the velocity field 3.5 hours after the onset of surface cooling. Let us analyze fields from the 



convecting surface boundary layer where the highest wavenumber features are most evident.

At high wavenumbers the power spectral densities of u and T conform to power laws of about −4.5 as indicated by the 
plots in Fig. 9 . The cross-spectral density between u and w has an even steeper slope (approximately −5.3). It follows 
that field acceleration and advection should be treated using high-order numerical schemes. The lower right plot in Fig. 9  
shows the power spectral density of the pressure field conforms to a power law of about −5.3 if we ignore twice-grid-scale 
energy, which has doubtful physical significance. For pressure α  2.6, and we might conclude that high-order differencing 
is advantageous for determining the pressure gradient.

The error resulting from order m numerical differencing of a function q can generally be written

 

where q(k) denotes the kth derivative and ak is some constant such that ak+1 < ak. For example, in the case of second-

order centered numerical differencing

 

Clearly, the series

 

converges rapidly. It follows that if q(2n+1) does not increase significantly with increasing n, then the error is dominated 
by the first term in the residual series.

Equation (1) applies in the limit that error  is dominated by the first term in the above series. If (1) applies (and given /a 
< 1), then (3) and (4) can guide a decision as to the advantages of high-order differencing versus low-order differencing. 
Directly testing the applicability of (1) is difficult, so the alternative strategy of section 4 was developed. Nevertheless, it 
should be possible to infer some information about the applicability of (1) in a direct way. 

A direct test of (1) requires evaluation of the derivatives of q in order to determine whether or not the asymptotic limit 

applies. An mth order ocean model will give solutions from which all the derivatives q(n) up to n = m might be estimated. 
This suggests the following strategy for examining the applicability of (1). Using high-order numerics (m = 6) a nontrivial 
problem of oceanographic significance will be solved. We can then estimate the relative values of the first few residual terms 
in (13) that might result from a second-order (m = 2) model. Thus, we use a high-order scheme to directly calculate the first 
few terms in the residual series of a low-order scheme. 

McCalpin (1995) used a 1½-layer quasigeostrophic model to study the statistics of a double gyre on a Northern 
Hemisphere beta plane for an ocean basin that spanned 2800 km in the y direction (latitude) and 3600 km in the x direction 
(longitude) and had a 20-km grid. The above model was forced by a wind stress that varied sinusoidally with y (normalized 

to the range [0, 1]), had an amplitude of τ0 = 0.5 m2 s−2:

τx = −τ0 cos(2πy)[1 − 4γ(y − 1/2)](15)
 

in which γ is an asymmetry factor. Below we use the same forcing for our own reduced-gravity model. 

Over the scale of an ocean basin there are substantial differences in the temperature of the surface layer. Including these 
temperature differences leads to the following reduced-gravity equations:



 

where d/dt indicates the total derivative, h is the surface-layer thickness, ri is an interfacial drag coefficient, and f  is the 

Coriolis parameter. The reduced gravity g′ is determined from the local densities ρs and ρl in the surface and lower layers 

respectively:

 

The density is determined from temperature T and salinity S using the UNESCO (1981) equation of state. Temperature 
and salinity satisfy the advection equations (dT/dx = 0, dS/dx = 0), and temperature is restored to a uniform north–south 
gradient such that a column 100 m deep e-folds over a 30-day period. 

The above reduced-gravity equations were solved following the semi-Lagrangian model of Purser and Leslie (1988) 
except that the improved Purser and Leslie (1991) high-order cascade interpolation method was used and a fast algorithm 
(McGregor 1993) was used to calculate back displacements. The numerical scheme is second-order in time, and we ran it at 
sixth order for spatial derivatives except field accelerations and advective terms were calculated at eighth order.

The major difference between our system and that of McCalpin (1995) is the inclusion of baroclinicity effects associated 
with horizontal temperature gradients. Other differences were the exclusion of horizontal eddy viscosity and a modification 
to the interfacial drag. Horizontal eddy viscosity is not included since the physical basis for horizontal eddy viscosity is 

doubtful (Harrison 1978). The interfacial friction was set at 10−7 s−1 consistent with McCalpin in deep water, but was set to 

1.5 × 10−6 s−1 at boundary points and 5 × 10−7 s−1 one grid in from the boundary in order to crudely parameterize the 
increased bottom friction associated with the shelf break.

Following McCalpin (1995) a 140 (y) by 180 (x) grid was used with a time step of 7200 s but the grid scale was 
increased slightly to 22 km. The surface temperature field initially varied linearly from 25°C in the south to 15°C at the 
northern boundary. Subsequently the surface temperature was restored to this initial field. Salinity was set at 34 psu 
throughout, and the lower-layer temperature was set at 2°C. Initially the interfacial depth was set so as to balance the north–
south temperature field without any motion and with a mean surface-layer depth of 600 m (consistent with McCalpin). The 
model was then forced with a steady wind stress (15) with asymmetry factor γ = 0.05. 

The currents showed continuous variability particularly surrounding the separation of the western boundary currents. 
Figure 10  shows the interfacial thickness (relative to its initial equilibrium value) after 20 years and a more detailed plot of 
the velocity field near the separation point. An ever-changing spatially variable flow is evident near the separation point (see 
http://www.maths.unsw.EDU.AU/bxs/Tmovie.gif for a movie of temperature). The lower right panel of Fig. 11  shows 
that contours of temperature also exhibit sharp gradients associated with separation of the western boundary current.

Figure 11  shows the power spectral density of fields obtained from the boxed area in the lower right plot. Clearly, the 
spectra fall off sufficiently sharply for high-order differencing to be advantageous. This model is a gross simplification of a 
full 3D ocean model and the complex geometries of real ocean basins. It is not surprising, therefore, that such idealized 
models seem to have less high wavenumber energy and are therefore most amenable to high-order differencing. 

The absolute value of Δnh(n) summed over all points in the model domain was obtained for n = 1, 2, · · · , 8 and plotted 
in Fig. 12a . Figures 12b–d  shows equivalent plots for temperature and velocity field. As n is increased from 1 to 6, 

we observe Δnh(n) generally become smaller. A small rise is noted as n increases from 6 to 8, which is consistent with the 
model having spatial differencing of mixed sixth and eighth orders. The tendency for slight positive slopes at large n is a 
consequence of the quantities being calculated near the formal limits of the the models order of accuracy. Ultimately, 

machine round off errors will also limit how high m and n can be made. Figure 13  shows the maximum values of Δnh(n), 

ΔnT(n), Δnu(n), and Δn (n) drop off less quickly over the resolved range of n, but still there can be little doubt that the first 
term dominates the residual series in (13). The evidence suggests that the series in (13) converges very rapidly and (1) is 
applicable. This indicates in a direct manner that the results developed in section 2 are applicable for this particular model. 

It is noteworthy that sharp fronts consist of spectral components of all scales. High wavenumber components (e.g., 2 − 
Δx) are not accurately treated regardless of the differencing order. The advantage of the high-order differencing operators is 
that slightly lower wavenumber constituents of the front are more accurately represented. Unfortunately, the simple-minded 
application of high-order operators to regions with rapidly changing gradients can result in unphysical oscillations. Leonard 
et al. (1995) illustrates how limiters can be applied to obviate this problem rather than reverting to dissipative low-order 



schemes.

Many of the premier models used by the oceanographic community are only first- or second-order accurate (Haidvogel 
and Beckmann 1997). Perhaps the reason why the low-order models perform “well enough”  is that the ocean currents they 
model are mostly two-dimensional (varying slowly with respect to time and having little vertical motion). In the limit when 
resolution is increased so that ocean models start to resolve smaller scale physical processes, the time and vertical 
dimensions will no longer play such a minor role and the limitations of these low-order models should become apparent. 

Dietrich et al. (1990) used grid convergence studies to demonstrate that “more accurate treatments of the Coriolis and 
pressure gradient terms, which generally dominate geophysical flows, provide converged solutions with lower resolution 
and, correspondingly less computation than required by the lower-order interpolation treatments of classical approaches, 
including the treatment used by the Bryan–Semtner–Cox model (Semtner and Chervin 1988).”  The DieCAST model 
(Dietrich et al. 1990) uses fourth-order numerics for field accelerations although the pressure calculation is still done at 
second-order accuracy. The Dietrich results are consistent with the present analysis and indicate that the benefits of 
increased resolution are best achieved using high-order numerical schemes. 

6. Conclusions  

In a smooth flow where the grid scale is sufficiently small to resolve all wavenumber components, then it is always 
computationally more efficient to reduce truncation error by increasing differencing order than by reducing grid scale. Even 
when the model cannot resolve all scales of variability, high-order differencing will be beneficial providing the high 
wavenumber variability is not too energetic. To quantify what too energetic means we consider differencing a quantity that 
can be represented by a Fourier series with high wavenumber amplitudes diminishing according to a −α power law. 
Providing α > 2 we find high-order differencing will increase accuracy with less computational cost than grid refinement. To 
resolve smaller-scale flow features it is, of course, still necessary to refine the grid. Increasing the order of the numerical 
differencing cannot compensate for a failure to resolve an important physical scale (such as the internal Rossby radius). 

Successive increments of the order of differencing yield diminishing returns. As the grid is refined, we can consider the 
rate of increase of computational cost and the rate of decrease of error and how this depends upon the order m of 
differencing and the space–time dimension D of the problem being solved. It turns out that, if m < D, the computational cost 
grows more rapidly than the error decreases whereas, if m < D, the computational cost grows slowly compared to the rate 
at which error is reduced. Hence, when the flow has α > 2, then accuracy is best obtained by grid refinement using 
differencing of order D + 1. Differencing of order D would also be satisfactory in that grid refinement would cause 
computational cost to increase at the same rate error is reduced. Differencing of order less than D should definitely not be 
used.

Flows with energetic high wavenumbers α < 2 might best be modeled using lower-order numerics, in which case grid 
refinement is the only strategy for error reduction. In such circumstance accuracy is only achievable at a disproportionate 
computational cost for multidimensional ocean modeling. High-order differencing still yields more accurate solutions at a 
given grid scale when α < 2. Computational memory can limit the resolution of an ocean model. High-order schemes have 
the advantage of reducing truncation error with the minimal requirement for further random access memory. Thus, even 
when α < 2, high-order methods might be useful. Indeed, natural flows with α < 2 might still have substantial portions of 
their domain that are relatively smooth, and in such circumstances high-order methods employing limiters have potential 
advantages relative to low-order schemes.

The power spectral densities of output from several numerical models were examined. In all cases it seemed that 
differencing associated with advective terms would benefit substantially from the use of high-order schemes since values of 
α were invariably larger than 4. Other terms usually had smaller values of α but not so small that high-order differencing 
could not be justified.

Ocean models with high-order numerics can be used to directly examine whether or not the numerical error is dominated 
by the first term in the truncation series for models using low-order numerics. The two-gyre problem was studied using an 
idealized model of a rectangular ocean domain. Fields obtained from the calculation were smooth α > 4. Calculation of first 
to eighth derivatives indicated that the first terms would indeed dominated the truncation series, indicating that (1) is 
applicable. The resulting scale analysis further suggests that high-order numerics are advantageous for this calculation. 
Third- or fourth-order would suffice, given that this calculation has one temporal dimension and only two spatial 
dimensions.

In view of the results obtained, it would appear that there are many circumstances in which ocean models should use 
fourth- or higher-order numerics for at least some terms in the equations of motion. In particular, for forecasting purposes 
models are often initialized with relatively sparse datasets, and in such circumstances it is the accuracy with which lower 
wavenumber information can be extrapolated forward that determines the forecast usefulness. Clearly, forecasting models 



might usefully employ high-order numerical schemes. There is no unique answer to the issue of order versus resolution that 
is applicable to all flows, but this manuscript has presented a method by which the relative merits can be determined as a 
function of the flow properties being modeled.
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Tables  

Table 1. Root-mean-square error as a function of, α, differencing order, and grid scale. Lines link error values where resolution 
and order would combine to cause equal computational cost in the context of a model with three space dimensions and the time 
dimension.
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Figures  
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Fig. 1. The natural logarithm of C plotted as a function of Δ and order m. The plot shows a three-dimensional mesh with 
contours projected onto the base.
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Fig. 2. Conceptual diagram of the power spectral density of a flow field. A low-order model resolves wavenumbers up to kc. A 

high-order model with the same computational cost resolves wavenumbers in the shaded area. The high-order model does more 
accurate differencing of resolved wavenumbers than the low-order model but omits more wavenumbers. 
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Fig. 3. Fourier amplitude coefficients Ai (12) plotted against wavenumber i on a log–log scale for values of α of 1, 2, 3, and 4.
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Fig. 4. Visualization of fields with the Fourier amplitude coefficients Ai plotted in Fig. 3 . The fields are vertically offset and 

correspond to α of 1, 2, 3, and 4 as we progress from the bottom line to the top line. Fields become smoother as α is increased. 
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Fig. 5. Power spectral densities (PSD) and cross-spectral density (CSD) of u,  velocity components and temperature T in the 
Southern Ocean from a climatological ocean model integration by England and Garcon (1994).
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Fig. 6. Representative snapshot of the surface velocity field in an idealized simulation of the East Australian Current using the 
DieCAST ocean model run at 1/4° resolution with 20 vertical levels.
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Fig. 7. Power spectral densities of surface pressure and velocity components obtained from an idealized simulation of the East 
Australian Current. Dotted lines indicate the 95% confidence interval. The cross spectral density between u and  is also shown 
for its relevance to the field acceleration term u( )/( x). 
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Fig. 8. Velocity and temperature fields for a small segment of a convecting billabong 3.5 hours after the onset of nighttime 
cooling. The segment plotted is a small part of the model domain and is located about three-quarters of the way across the 100-m-
wide billabong. Temperature contours are 24.5°, 25°, and 25.5°C progressing from the thick to thin contour lines. Velocity vectors 
are shown at every second model grid point.
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Fig. 9. Power spectral densities of temperature T, the horizontal velocity component u, and the nonhydrostatic pressure P from 
a convecting layer in a billabong. Also shown is the cross-spectral density between u and w velocity components. The dotted 
lines indicate 95% confidence intervals.
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Fig. 10. This reduced-gravity model is initially at rest with a uniform north–south temperature gradient being balanced by a 
north–south pressure gradient. The model is forced from equilibrium by an asymmetric wind stress. The top plot shows the 
deviation of surface-layer thickness from its rest state value. Dashed contours are at −20 m intervals and solid contours are at 20-
m intervals. The plot omits the 40 most eastern points in the model domain. The lower plot shows a segment of the velocity field 
in the vicinity of the separating western boundary current.
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Fig. 11. The lower right plot shows temperature contours at 1°C intervals for the region plotted in Fig. 10 . The temperature 
ranges from 25°C on the southern boundary to 15°C on the northern boundary. Power spectral densities for u, h, and T fields 
within the boxed area are presented.
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Fig. 12. Absolute value of Δnq(n) summed over all points in the model domain plotted against n: (a) derivatives of the surface-
layer thickness, (b) derivatives of surface-layer temperature, (c) derivatives of u velocity component, and (d) derivatives of  
velocity component. The u, , T, and h fields were calculated using a model with mixed sixth- and eighth-order spatial 
differencing.
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Fig. 13. Maximum absolute value of Δnq(n) plotted against n: (a) derivatives of the surface-layer thickness, (b) derivatives of 
surface-layer temperature, (c) derivatives of u velocity component, and (d) derivatives of  velocity component. 
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