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ABSTRACT

Simple inverted reduced-gravity models of flow over deep ocean sills are 
considered, with emphasis placed on the case for which sills are wide with 
respect to the abyssal Rossby radius. When the length scale of the flow is also 
large compared to the Rossby radius, an f-plane version of the planetary 
geostrophic (PG) equations applies. These equations, however, predict a 
collapse in scale of the flow so that the PG approximation breaks down and 
higher-order dynamics must be evoked. Whether or not the collapsing PG 
dynamics give way to semigeostrophy (SG) or to some other balance regime is 
also discussed.

Next, the steady semigeostrophic equations typically used in rotating hydraulics 
studies are considered. For relatively wide sills, as well as for narrow sills that 
are not elongated, the path taken by the overflow is not well constrained by the 
sill geometry alone. The collapsing PG problem, however, suggests that the 
appropriate axis of flow follows a branch of the seperatrix isobath. Also 
suggested by the PG dynamics is that there may be a mass of quiescent water 
adjacent to the overflow current. Dependence of the maximum flux across the 
sill on assumptions regarding the flow path and the presence or absence of a 
quiescent water mass are therefore considered. These are compared with 
dependencies on sill width and the potential vorticity of the overflow. Finally, 
flow upstream and downstream of the sill is considered. In particular, a case in 
which multiple equilibria exist downstream of the sill is discussed.

1. Introduction  

The effects of sill geometries on the outflows of dense water spilling over deep ocean sills is thought to be of importance 
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to the properties and amounts of water feeding the ocean’s thermohaline circulation. Although entrainment, dissipation, and 
transient effects are clearly important to any complete picture of these flows, the steady inviscid problem has also attracted 
much interest. This problem has traditionally been addressed from the perspective of rotating hydraulics (e.g., Stern 1972; 
Whitehead et al. 1974; Gill 1977). The simplest case considers a single reduced-gravity layer and takes the geometry of the 
channel to have a rectangular cross section, so that the channel depth varies only with the alongchannel coordinate (see Pratt 
and Lundberg 1991 for a review). Sills having nonrectangular cross sections have also been considered (e.g., Borenas and 
Lundberg 1986; Killworth 1992; Dalziel 1992) as have effects relating to the flow having a more complex baroclinic 
structure (e.g., Pratt and Armi 1990). 

It is generally assumed that the main axis of the flow is known and that the component of flow parallel to this axis is 
geostrophic. The across-stream component of flow is taken to be fully nonlinear so that semigeostrophic (SG) dynamics 
apply. These assumptions are clearly valid for narrow elongated sills. Many deep ocean sills, however, cannot be considered 
narrow in the sense that they are wide compared to the abyssal Rossby radius. For example, the Ceara Abyssal Plain, the 
Vema Channel, Iceland–Faeroe Passage, and Samoa Passage are all examples of wide sills. Additionally, some sills, such as 
the Iceland–Faeroe Passage, are not elongated (i.e., longer than they are wide). Thus, it is not immediately obvious that SG 
dynamics are appropriate for describing flow over many deep ocean sills. In particular, unless the flow develops length 
scales comparable to the Rossby radius, the across-stream flow need not be ageostrophic. Furthermore, if the current does 
become narrow, then the main axis of the flow need not correspond to that of the sill.

On the other hand, assuming the flow across a wide sill to be semigeostrophic can lead to solutions having current widths 
on the order of the Rossby radius. That is, assuming SG leads to solutions consistent with the assumptions inherent to the 
semigeostrophic approximation. For example, Killworth (Killworth 1994, hereafter K94) treats the case of flow across wide 
simple sills. His analysis allows for a mass of stagnant water to exist adjacent to the overflow current, this being motivated 
by numerical integrations of the shallow-water equations. The across-sill transport was maximized in the limit of vanishing 
potential vorticity, for which the width of the current was comparable to the Rossby radius.

The present work addresses unidirectional flow for a reduced gravity layer of fluid. Emphasis is placed on wide sills and 
on sills that are not elongated. The paper is organized as follows. Section 2 considers a case in which the length scale of the 
flow is, at least initially, large compared to the Rossby radius. This leads to a well known f-plane analog to the planetary 
geostrophic (PG) equations. The dynamics are similar to those assumed recently by Salmon (1995) to model flow in the 
Samoa Passage. The PG dynamics predicts a flow that collapses into a narrow jet and, as this happens, higher-order effects 
must be invoked. Nevertheless, the PG problem suggests several aspects of the full solution that seem to be robust to how 
the collapse is arrested (e.g., whether by invoking friction or by nonlinearities). For example, the stagnant water mass 
assumption of K94 results naturally from the collapse. Additionally, the PG dynamics appear to determine the across-sill 
transport and to confine the overflow current to lie on a branch of the seperatrix isobath—that is, along an isobath 
containing the deepest point on the sill. It is also pointed out that the PG solution bares at least a qualitative resemblance to 
observations that have led to the suspicion that flow across deep ocean sills may be hydraulically controlled. Finally, because 
SG dynamics are typically used to model flow over sills, the question of whether the collapsing PG dynamics gives way to 
SG is also addressed.

Section 3 considers the steady SG problem for moderately wide and narrow sills. The focus is on how the maximal 
across-sill transport depends on the following:the presence or absence of a stagnant water mass adjacent to the flow, the sill 
width, the potential vorticity of the overflow current, and the angle at which the flow is assumed to cross the sill. It is found 
that for wide sills the transport is generally insensitive to all of these factors, except for the presence of the stagnant water 
mass. For narrow sills that are not elongated, the allowed transport can be sensitive to the angle at which the flow crosses 
the sill.

Section 4 considers conditions upstream and downstream of the sill, still assuming SG dynamics. It is argued that, 
typically, fluid on one side of the overflow current flows uphill as it crosses the sill, whereas fluid on the other side flows 
downhill. An exception to this is the case of sills with rectangular cross sections, for which all columns must flow first 
uphill and then downhill as they cross the sill. Finally, an example is given in which there exist multiple equilibria downstream 
of the sill. Since the two equilibria are physically close to one another, it is speculated that they might correspond to the far-
field solutions of a rotating hydraulic jump. The nature of this hypothesized jump is compared with the rotating hydraulic 
jump found by Pratt (1986).

A brief summary is offered in section 5. 

2. Wide sills and “f-plane planetary geostrophic”  dynamics  

This section considers an f-plane analog to planetary geostrophic dynamics for a reduced gravity layer of fluid. Section 2a 
derives the basic equations and considers a PG analog to the “dam break”  problem. It is found that a flow that is initially 
consistent with the PG approximation evolves into one that is not. The nature of the collapse of the PG dynamics is 



discussed in section 2b. 

a. Basic equations and steady solution  

Consider a flow over a wide sill in an abyssal layer of uniform density. Overlying this abyssal layer is a thick layer of less 
dense water that is taken to be at rest. Furthermore it is assumed that, at least initially, the horizontal length scale of the flow 
is sufficiently large so that the Rossby number, Ro  U/fL, can be considered small. Here U and L are the horizontal 
velocity and length scales of the flow and f  is the Coriolis parameter. It is also assumed that the flow evolves slowly. That 
is, δ must also be small, where δ  1/fT and T is the timescale of the flow evolution. The horizontal velocity is thus in 
geostrophic balance:

fu = g′k  × η  + O(Ro, δ),(1) 

where g′ is the reduced gravity and η  gives the height of the interface above the deepest point on the sill. The Coriolis 
parameter is taken to be constant and the leading-order flow is thus horizontally nondivergent. If topographic variations were 
also taken to be small, then the leading-order equations would be degenerate. When O(1) variations in topography are 
allowed, however, it is straightforward to close the system without going to higher order. The resulting equation is an f-
plane analog to the PG interface height field equation for a reduced gravity layer of fluid.

The leading-order potential vorticity (or interface height field) equation is formed by substituting (1) into the continuity 
equation

η t + ·[(η  − h)u] = 0(2)
 

to get

 

Here (η  − h) is the thickness of the layer and J(a, b)  axby − bxay. Equation (3) can be thought of as a potential vorticity 

equation in which the layer thickness plays the role of potential vorticity. It can also be written as

η t + c· η  = 0,(4)
 

where

 

Equations (4), (5) describe a system in which information propagates along characteristics, which here are coincident 
with isobaths. The sense of the propagation is such that deeper topography lies to the left for positive f. Note that the 
characteristic velocity, c, is unidirectional in the sense that its direction is uniquely defined at each point for which h is 
nonzero. This distinguishes the dynamics here from those of rotating hydraulics for which gravity waves can potentially 
propagate both upstream and downstream.

For generic sill topographies, there will generally be one or more saddle points in h, and c vanishes at these points. Except 
in special cases, there will be a deepest saddle point lying along the sill. In the interest of simplicity, it is assumed that this is 
the only saddle in the depth range of interest. Also for convenience, the value of h at this point is chosen to be zero, with 
negative values corresponding to deeper topography. Near the saddle point, h is approximated by

h(x, y)  A(x2 − α2y2).(6)

 

Thus, close to the saddle point, topography shoals parabolically with x and deepens parabolically with y. Figure 1  
shows a plan view of the topography in the vicinity of the saddle. Arrows indicate the sense of the characteristic velocity, c. 

We consider a PG analog to the classic “dam break”  problem (Gill 1976). Initial conditions are as follows. Far upstream 
(say for y  y0) the abyssal layer is filled above the level of the sill to an ambient level η  = η0. Far downstream of the sill 

(say for y  −y0) the abyssal layer is filled to an ambient level, η  = η1, where η1 < 0. Between y0 and −y0, η  varies 

smoothly from η0 to η1. The Rossby adjustment is assumed to have already taken place so that the PG approximation is 



valid, at least initially, provided y0  LRo, where LRo is an appropriately defined Rossby radius (e.g., LRo  (g′η0 )½/f). 

The long time solution shows that the PG approximation must eventually break down. From (4), (5), the long time 
solution at a particular point is given by the initial value of η  far “upstream”  in the characteristic velocity sense. Referring to 
Fig. 1 , points such that αy > x (i.e., the upper left-hand half of the figure) lie on characteristics that extend back to large 
positive y. Hence, the long time solution in this region is given by the initial condition far upstream. Thus, η  takes on a value 
of η0 in this region. Conversely, points on the lower right-hand side of Fig. 1  all lie on characteristics that extend back to 

y < −y0. In this region the steady solution is such that the abyssal layer is filled to a level z = η1. On isobaths lying above the 

horizontal surface, z = η1, the abyssal layer is empty at t = ∞. 

Thus, the solution becomes discontinuous. To see how the discontinuity develops, note first from (4), (5) that c = 0 at the 
saddle so that η  remains constant. However, at a point just upstream of the saddle [e.g., (x, y) = (0, y1), where 0 < y1 < y0], 

η  eventually takes on the value η0. The time necessary for η  to take on its steady-state value at this point is the travel time t 

from y = y0 to y = y1, moving at the characteristic velocity, c. For example, if point B in Fig. 1  corresponds to (0, y1), 

then t is the travel time from A to B, moving at speed |c|. Solving for t then amounts to doing a line integral along the isobath 
connecting A to B:

 

where λ is the distance from A. Using (4)–(6), one gets, after a bit of algebra, that

 

Inverting for y1 then gives a characteristic length scale of the solution as a function of time:

 

where σ  2g′Aα/f. With increasing time, y1  0 and the PG approximation breaks down.
 

The discontinuity is not limited to the saddle point but extends outward from the saddle along that branch of the seperatrix 
for which c is directed away from the saddle (i.e., along the line αy = x). To see this, consider the long time solution on 
either side of the seperatrix near points C and D in Fig. 1 . Near C, a point lying on an isobath slightly shallower than the 
seperatrix is on a characteristic that extends back to y = −∞. Hence, the long time solution at this point will correspond to 
the initial condition at y = −∞ on this isobath. Assuming the isobath to lie above the ambient level to which the downstream 
basin is filled (i.e., above z = η1), the abyssal layer becomes empty here. Conversely, just to the left of C, topography is 

slightly deeper than the seperatrix isobath and characteristics extend back to y = +∞. Hence, on this side of the seperatrix, 
the long time solution is given by η  = η0. Therefore, the solution becomes discontinuous at C. Similar arguments show that 

the same is true at point D. Thus, the PG solution collapses to a narrow jet lying along the line αy = x. The transport carried 
by the jet is

 

and the sense of the flow is from C to D.

A similar narrowing of a current with time (until nonlinear or diffusive effects become important) is described in the 
related problem of Rossby adjustment over a step (e.g., Gill et al. 1986; Johnson 1985). Differences are that here 
topographic Rossby waves play the role of the double Kelvin waves in the step problem and also the interface height field 
grounds.

Assuming that the discontinuity can be mended either by friction or by nonlinearities, we interpret the PG solution as 



suggesting that the overflow current will have the two following properties:

1. It will be sufficiently narrow such that the PG approximation breaks down.

2. It will be constrained to lie roughly parallel to the seperatrix isobath.

It is interesting to note that the details of how the discontinuity is mended has only a minimal impact on the predicted 
transport across the sill, provided that the alongstream component of flow remains geostrophic. Taking n to be a coordinate 
perpendicular to the axis of the current, the geostrophic transport (directed from C to D) is given by

 

where   h0/η0. Here h0 is the value of h where the interface height field grounds and n0 and n1 are defined such that η  

= η0 at n = n0 and η  = h0 at n = n1. Scaling |ηn| like η0/(n1 − n0) then gives that

 

Near the saddle point, h0 scales like the curvature of the topographic height field multiplied by the square of the current 

width. That is, using (6), h0  O(AL2). Thus, if the transport is assumed to be constrained at the saddle, then any closure 

of the PG problem yielding an L such that AL2  η0 will give essentially the same across sill transport. 

It is also of interest to note a qualitative resemblance in the structure of the density field between the PG solution and the 
case of nonrotating hydraulically controlled flow over a sill. A resemblance between the latter of these and observations has 
led to the suspicion that flow across deep ocean sills may be hydraulically controlled (e.g., Whitehead 1995). Figure 2  
compares the long time solution for η  in the PG problem with a schematic depicting the height of an isopycnal surface for 
the case of nonrotating classical control. The behavior is qualitatively similar. That is, in both cases there is a sharp gradient 
in the interface height field across the sill. Of course, in the PG case, this gradient is infinite. Addition of a modest amount of 
bottom friction to the problem, however, would be enough to smooth out this discontinuity. Furthermore, this would allow 
for a bottom Ekman layer to develop, which could prevent the interface from grounding in the PG problem. That is, bottom 
friction would tend to increase the resemblance between, say, the profiles in Figs. 2b and 2c . In this sense, the PG 
dynamics predicts a density field that is at least qualitatively similar to the observations that have led to the supposition that 
flow over deep sills may be hydraulically controlled.

b. Nature of the collapse  

In this subsection, we ask whether the collapsing PG system gives way to SG or to some other balanced regime. To 
answer this question, we must see which of the underlying assumptions of the PG equations gives way first as the width of 
the current decreases. These assumptions are threefold: that δ remain small, that Ro remain small, and that the O(Ro, δ) 
corrections to the geostrophic velocity remain negligible in the mass continuity equation. The steady SG dynamics typically 
used to describe flow over sills assumes that the Rossby number and the ageostrophic terms in the continuity equation are 
both O(1). Below, we find that the latter of these become important while the Rossby number is still a small parameter. That 
is, the PG dynamics gives way to a geostrophic regime that is similar to an intermediate geostrophic regime described 
elsewhere in the literature (e.g., Williams and Yamagata 1984, hereafter WY84; Cushman-Roisin 1986, hereafter C86). The 
regime found here is essentially an f-plane version of the frontal geostrophic dynamics described in those papers. 

To get a clear idea of how the PG system breaks down, it is helpful to nondimensionalize the equations of motion. To do 
this, we use the quantities L and T already introduced and take η0 as a vertical scale—that is, we take (η  − h) to scale like 

η0. Finally, the velocity scale U is taken to obey geostrophic scaling, fUL = g′η0. Then, the nondimensionalized momentum 

equation becomes

δu  + Ro(u· u) + k  × u = − η .(13)
 



t

We proceed by assuming Ro and δ to be small so that u may be replaced by its geostrophic approximation, ug, in the O

(Ro, δ) terms above. That is,

 

Solving for u then gives

u  ug + Rou1 + δu2,(15)
 

where

u1  (k  × ug· ug)(16)
 

and

 

We next substitute the O(Ro) and O(δ) corrections to u back into the mass continuity equation (2). The result is written 
below in nondimensional form:

 

The terms on the lhs of (18) are identical to those kept in the PG system and thus will necessarily be of the same order 
until the PG equations break down. After this, a more careful scaling of the ug· h term (taking into account the developing 

anisotrophy of the flow) would be necessary to describe the subsequent evolution. The question addressed here is which, if 
any, of the terms on the rhs of (18) become O(1) before the flow becomes ageostrophic to leading order. Dividing through 
by fη0 puts (18) into a nicer form:

 

From (19), we see that the terms on the second line are O(Ro) with respect to those on the first line. Thus, as long as the 

Rossby number remains small, terms on the second line of (19) may be neglected. On the other hand, the O(Ro2) terms can 

enter the leading order balance if δ approaches Ro2. 

We can thus sum up the necessary conditions for validity of the PG regime as follows. It is required that

Ro2  δ  1.(20)

 

Thus there are two ways in which the PG dynamics could break down: either the problem develops fast timescales or the 

Rossby number approaches δ1/2. For the problem considered in section 2a, however, the assumption of a small δ improves 
with time. For example, consider Eq. (8). As the current narrows, the relevant y1 becomes small. Assuming y1  y0 then 

gives that t(y1)  ln(2y0/y1). In other words, the timescale of the solution goes to infinity as the log of the inverse current 

width. As this happens, δ decreases toward zero. Therefore, we expect the assumption of small δ to remain valid so that the 
PG approximation breaks down when



Ro2  δ  1.(21)

 

Once this condition is met, it is not clear that the current should continue to narrow with time until the flow eventually 
becomes semigeostrophic or if the flow might approach a steady state in an intermediate regime similar to that described in 
C86 and in WY84. Nevertheless, SG dynamics are often used to describe flow over deep ocean sills. This seems justified for 
narrow elongated sills, but is not obviously appropriate for very wide sills. The next section considers steady SG sills that 
are narrow to moderately wide and that are not necessarily elongated.

3. Steady semigeostrophic solutions  

This section considers steady flow across sills for the case of semigeostrophic dynamics. In section 3a, the basic 
equations of semigeostrophy are reviewed and nondimensionalized. Section 3b then considers how the flux across the sill 
depends on various factors.

a. Basic equations  

Under steady semigeostrophic dynamics, the alongstream (l) momentum equation keeps the advective terms and the 
alongstream velocity is taken to be geostrophic:

 

Here, curvature in the flow path is ignored, n and l are the across- and alongstream coordinates respectively, and μ and ν 
are the corresponding velocities. The coordinates n and l form a right-handed coordinate system with l increasing upstream. 
They are related to x and y by

 

where θ gives the angle between the y axis and the axis of flow (see Fig. 3 ). For a flow path oriented along the 
seperatrix contour and topography described by (6), θ is given by θsep = arccot(α). 

The momentum equations (22), (23) can be rewritten as

(f  + )u = k  × B,(26) 

where B and  are defined by

 

and

  νn.(28)
 

Substituting (26) into the steady-state mass continuity equation, it is straightforward to show that potential vorticity Q is 
conserved along streamlines. Thus, SG steady-state dynamics are described by (26) and by u· Q = 0, where

 

For unidirectional flow it is straightforward to show that Q can be written as a function of B. Here the problem will be 
simplified by considering Q to be constant. At each point, l, along the flow path, Eqs. (22), (28), (29) lead to an equation 
describing the across-stream structure of the interface height field:

g′ηnn − fQη  = −(f2 + fhQ).(30)

 



Given Q and appropriate boundary conditions on η , (30) determines the across-stream structure of the current. 

It is convenient to nondimensionalize the equations. An appropriate nondimensionalization can be found by taking η0 as a 

vertical scale and LRo as a horizontal scale. In nondimensional form, (30) becomes

ηnn = −1 + (η  − h)Q,(31)
 

and Q, B, and h become

 

and

h = a(x2 − α2y2), where a  g′A/f2.(34)

 

Given Q and appropriate boundary conditions (see below), (31) specifies the η  field, provided that the topography is 
known as a function of n and l. In general, however, topography is given as a function of x and y so that the across-stream 
structure of the sill depends on the flow path. For elongated sills, this dependence is minimal; however, here we are 
interested in sills that are not necessarily elongated. Then, the effective topography can be quite different if, for example, the 
flow is assumed to be oriented along the seperatrix, as opposed to the main axis of the sill.

The boundary conditions needed to integrate (31) are specified in one of two ways. The first of these allows for a mass 
of stagnant water (over which η  = 1) to lie adjacent to the overflow current. At the boundary between the stagnant water 
and the overflow current, η  = 1 and ηn = 0, corresponding to the requirements that the interface height field and velocity be 

continuous. This is the boundary condition used in K94. A second and more traditional boundary condition assumes the 
current to ground on both sides. On the left-hand side, where left is defined for an observer facing upstream, B is taken to 
be unity. Then, η |left = h|left and ηn|left is given by (33), with B = 1. For both boundary conditions, the flow is assumed to 

be unidirectional, so profiles for which ηn > 0 over part of the domain were discarded. A shooting method was used to find 

the position of the left edge of the outflow that maximizes the flux.

b. Maximum transport over the sill  

Here, we consider how the maximum flux across the sill depends on sill geometry, potential vorticity, the presence of a 
stagnant water mass, and the orientation of the flow path (e.g., whether the flow is parallel to the y axis or is along the 
seperatrix isobath).

To begin, consider topography described by (6) with α = 1, for which the length and width of the sill are comparable. 
Take the flow to be oriented along the y axis so that θ = 0 in (24), (25) and (n, l) = (x, y). The maximum allowable flux is 
constrained at y = 0 and is calculated using a shooting method. The results are shown in Fig. 4a  for a range of the 
potential vorticities and sill widths. Also shown (Fig. 4b ) is the difference in the maximum flux calculated by assuming 
each of the two boundary conditions on η . The stagnant water mass boundary condition gives a larger flux for wider sills. 
This occurs because the mean layer thickness in the current is larger in the stagnant water mass case, while the drop in the 
interface height field across the current is comparable to that found using the grounding boundary condition (Fig. 4c ). 
For narrow sills, the grounding boundary condition allows for steeper slopes in the interface height field, as is evident from 
Fig. 4d . This, in turn, leads to larger velocities and higher transports. 

Note also from Fig. 4a  that the flux is relatively insensitive to the value of Q. This can be understood as follows. 
Potential vorticity affects the curvature of the η  field through (31) and, since negative potential vorticities are not considered, 
the minimum value of ηnn is −1. Thus, the increase in current speed (ηn) over its value at the left-hand side is bounded by 

the width of the sill. For narrow sills, if ηn|left is large compared to the nondimensional sill width, then ηn is essentially 

independent of Q. By extension, the velocity and transport have also become effectively independent of Q. For wider sills 
curvature in the η  field affects the width of the current. This, however, does not appreciably affect the transport unless the 
current width becomes comparable to that of the sill. For relatively wide sills, the topography underlying the current is 
essentially flat so that the transport is insensitive to the current width.



The dependence of the across-sill flux T on Q is most pronounced for sills having characteristic widths close to unity. 
This is confirmed by Fig. 5 , which shows  ln(T)/ Q, giving a measure of the fractional change in T for small changes in 
Q. Transport is most sensitive to Q when the sill width Lsill is close to unity, where

Lsill  a−1/2.(35)

 

An exception to this occurs for large potential vorticities, for which T remains sensitive to the choice of Q even for sills 
wide compared to the Rossby radius. The reason for this is that, for large Q, (31) gives that ηnn becomes positive wherever 

the layer thickness is too large. This tends to prohibit large velocities over the deeper portions of the sill, which restricts the 
net transport. Eventually the assumption of a unidirectional flow must be abandoned to get O(1) transports. The role of 
bidirectional flow in obtaining O(1) transports across wide sills when the grounding boundary condition is used was 
discussed by Killworth (Killworth 1992). The point emphasized here is that bidirectional flow is needed only in the limit of 
large potential vorticity, provided the stagnant water mass boundary condition is allowed.

Dependence of the maximum allowable transport on the sill width is most pronounced for narrow sills (see Fig. 4a ). 
This dependence can be substantially weakened, however, when the angle at which the flow crosses the sill is allowed to 
vary. Figure 6  shows T as a function of θ for various choices of Q and for topography corresponding to the narrowest 
sill considered in Fig. 4  (i.e., to Lsill = 0.25). The angle θ is assumed to lie between 0 and θsep. Note that T increases 

with increasing θ and that the dependence of T on θ is much stronger than the dependence of T on Q. The reason for this is 
simply that the topographic cross section, h(n), “seen”  by the overflow is less restrictive with increasing θ. 

An extreme example occurs when θ = π/4, for which T  1/2. This results since, for θ = π/4 and α = 1, n = (x − y)/(2 )
½ and l = (x + y)/(2 )½. Then, h can be written as h = 2anl. Thus, the n derivative of the topography vanishes identically at l 
= 0. In other words, the topography perpendicular to the presumed axis of the current is flat and therefore does not restrict 
the transport. This argument could be extended to an arbitrarily narrow sill. Obviously, however, it must be impossible to get 
an O(1) transport through a very narrow sill. Therefore, one of our assumptions must break down for narrow sills. 
Presumably what happens is that the solutions just upstream and downstream of the sill become disaligned with one another. 
(The upstream and downstream solutions are described in the next section.) For the solutions to match, the current would 
then have to bend sharply in the vicinity of the sill. Once this happens, we are no longer justified in assuming the l and n 
length scales of the flow to be different. That is, the semigeostrophic approximation breaks down and the flow becomes 
fully nonlinear. Put another way, it is not clear that semigeostrophic dynamics can be used to estimate maximal fluxes 
through narrow sills that are not elongated. Given this, the transports calculated above (for θ = θsep) should be considered 

upper limits.

For more elongated sills (smaller α), θsep becomes small and the limit of traditional hydraulics is recovered. For narrow 

sills that are only moderately elongated, however, the maximum flux across the sill might depend significantly on θ. To see 
how elongated the sill must be before dependence on θ can be safely ignored, let us compare the dependence of T on θ to 
the dependence of T on Q. Take a measure of dependence on θ to be the difference in transport calculated assuming first θ 
= θsep and then θ = 0, for a fixed value of Q (say for Q = 0). (As discussed above, this should be considered to be an upper 

bound on the θ dependence.) Similarly, take a measure of dependence on Q to be the difference in transport calculated 
assuming small and large values of Q, for a fixed value of θ. The ratio of these,

 

then gives a measure of the relative importance of Q to that of θ in determining the maximum transport. (The high value 
of Q was chosen to be 0.95 instead of unity for technical reasons; the difference is minimal except for values of α very near 
1.) Figure 7  shows σ plotted as a function of α for a narrow sill. For small values of α, dependence on Q is dominant. 
For sills that are only moderately elongated, however, the dependence of θ can be as or more important than the dependence 
on Q. 

4. Conditions upstream and downstream of the sill  

In this section, the nature of the flow upstream and downstream of the sill is considered. It is well known that the 
upstream solution for a basin filled to an ambient level of η  = 1 corresponds to a flow positioned near the seperatrix isobath. 
Above we have argued that this is imposed by the collapse of the PG problem. An example of the solution in the upstream 
basin is shown in Fig. 8a . Facing upstream, the ambient fluid lies to the left and the current grounds on the right. Fluid 
columns on the left-hand side of the current overlie topography deeper than the seperatrix isobath, whereas columns on the 



right overlie shallower topography. Downstream of the sill, the presence or absence of the stagnant water mass depends on 
the slope of the topography (see Figs. 8b,c ). Also, downstream of the sill, columns on the right-hand side of the current 
overlie deeper topography, whereas columns on the left-hand side overlie shallower topography. Thus, somewhat curiously, 
fluid columns on the left-hand side of the current move uphill as they cross the sill, whereas columns on the right-hand side 
move downhill. This contrasts the traditional (e.g., rectangular cross section) solutions, for which all columns must move 
first uphill and then downhill as they cross the sill.

Downstream of the sill, the presence or absence of the stagnant water mass depends on the steepness of the topographic 
slope in the vicinity of the seperatrix contour. Gentle slopes typically require the stagnant water mass, whereas steep slopes 
require the grounding boundary condition. Further steepening results in the position of the (grounding) solution moving 
downhill (not shown). This dependence of the presence of the stagnant water mass on the steepness of topography suggests 
the possibility of multiple solutions downstream of the sill. For example, when the slope varies strongly with distance from 
the seperatrix isobath, there can be more than one current having the same Q, B, and T. Figure 9  shows a case in which 
the topographic slope is taken to be gentle to the left and steep to the right, corresponding qualitatively to a shelf–slope 
topography. Here T and Q are taken to be 0.5 and 0, respectively. Two solutions exist, one corresponding to each of the 
possible boundary conditions on η . 

Whether or not both solutions exist depends on the position of the break in the topographic slope, n = n0. Referring to Fig. 

9 , moving n0 to the right will obviously not affect the stagnant water mass boundary solution. If n0 is displaced too far 

to the right, however, the grounding solution ceases to exist since it becomes impossible to position a parabolic profile 
(corresponding to a zero potential vorticity current) such that a transport of one-half is obtained and the requirement that B 
= 1 on the left-hand side of the current is respected. Similarly, if n0 is moved significantly to the left, it becomes impossible 

to find a solution corresponding to the stagnant water mass boundary condition that yields the assumed transport. Thus, by 
allowing n0 to vary smoothly between these two extremes, one can construct a situation in which only one of the two 

solutions exists far upstream and only the other exists far downstream. This suggests the possibility that the solution may 
have to “jump”  between two states similar to those shown in Fig. 9 . Depending on the sense in which n0 varies with l, 

situations can be constructed for which either branch is the upstream branch.

The jump hypothesized above is distinct from that found by Pratt (1987). In his paper, the jump was described as being in 
the width of the current, rather than in the vertical position of the interface height field. The jump here, if it exists, would be 
in both the horizontal and vertical position of the current. Assuming the stagnant water solution to be the upstream branch, 
for example, the current would have to take a sharp turn downslope for the two solutions to match. Another difference 
between the situation described above and that described by Pratt is that, in his solutions (see, e.g., his Fig. 4 ), the 
upstream flow is downhill with the interface height field descending with a slope comparable to that of the topography. Here, 
the flow is essentially parallel to isobaths except at the hypothesized jump.

5. Summary  

The focus of this work was on unforced flow over wide sills. The motivation for consideration of wide sills is that many 
deep ocean sills are wide with respect to the typically small abyssal Rossby radius. First, a simple f-plane PG model was 
developed and conditions on its validity were discussed. An initial value problem revealed that a field that initially respects 
these conditions can evolve into one that does not. In this sense, the f-plane PG dynamics are not appropriate for describing 
the steady-state flow. However, assuming that either friction or nonlinearities can arrest the breaking, the PG dynamics do 
predict various characteristics that the steady solution should exhibit. For example, they predict the path and transport of the 
flow and they suggest the presence of strong density gradients (or steep slopes in the interface height field) across the sill. 

Since SG, rather than PG, dynamics are often used to described flow over deep ocean sills, the question of whether the 
collapsing PG problem gives way to SG was discussed. It was found that this is not the case. Instead, the collapsing PG 
dynamics give way to an intermediate regime similar to that described by WY84 and by C86. Once this happens, it is not 
clear that the width of the current will continue to narrow. Thus, it is not obvious that SG dynamics are really appropriate to 
describing flow over wide sills.

It does seem reasonable, however, to expect that SG is appropriate to describing flow over sills that are narrow to 
moderately wide. Constant potential vorticity SG solutions were thus used to explore the dependence of the maximal mass 
transport across the sill on various factors. The most significant of these for sills wider than LRo is whether or not one 

allows for a mass of stagnant water to lie adjacent to the overflow. That there may be such a water mass is suggested by 
analogy with the PG problem. Dependence of the transport on Q was rather weak and dependence on the sill width was only 
substantial for narrow sills. For narrow sills that are not elongated, it appears that curvature in the flow path is likely to 
become important. Once this happens, the semigeostrophic approximation can no longer be trusted. On a cautionary note, 
we should also add that the stability of these solutions was not considered.



Finally, several curiosities regarding the flow upstream and downstream of the sill were pointed out. First, it was noted 
that fluid columns crossing the sill typically move uphill on one side of the current and downhill on the other. Also, it was 
pointed out that for a shelf–slope topography there can sometimes be multiple equilibria. That is, there can be two solutions 
having the same potential vorticity, transport, and Bernouilli function.
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Figures  



 
Click on thumbnail for full-sized image. 

Fig. 1. Plan view of topography in the vicinity of the sill. Arrows on the isobaths indicate the sense of the characteristic 
velocity, c. The points A, B, C, and D are referred to in the text. The PG solution collapses into a thin current lying along the line 
containing points C and D.
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Fig. 2. Comparison of the long time PG solution with a schematic depicting the case of controlled flow over a sill for the 
nonrotating case. Shown are y–z sections of the interface height fields and topography. (a) The long time PG solution for a 
section containing the saddle. (b) Similar to (a) except at an x position to the left of the saddle (i.e., x < 0). (c) Schematic depicting 
a nonrotating hydraulically controlled case. Note that the PG solutions and the control case are similar in that they both show 
sharp gradients in the interface height field across the sill. Allowing for bottom friction would have the effect of smoothing out 
the discontinuity in the PG case, which would further increase this resemblance.
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Fig. 3. Relationship of the (n, l) and the (x, y) coordinate systems. 
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Fig. 4. (a) Maximum flux over sill for a range of Q and sill widths. Here the flow is assumed to be oriented along the y axis; Lsill 

is defined as the (nondimensional) half-width of the sill at a height of z = 1. (b) The difference in maximum transport calculated by 
assuming the flow to ground on both sides of the sill versus assuming a stagnant water mass to lie adjacent to the flow. Negative 
values correspond to situations in which the stagnant water mass boundary condition yields higher fluxes. (c) Interface height 
field profiles corresponding to the maximum transport for the two boundary conditions for a relatively wide sill. (d) As in (c), but 
for a narrow sill.
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Fig. 5. Sensitivity of the flux to small changes in Q, calculated as Q ln(T) and plotted against Lsill. The curves correspond to Q 

= 0.1, 0.3, 0.5, 0.7, and 0.9, respectively (bottom to top). Other parameters are as in Fig. 4 . The dependence of the flux over the 
sill on Q is most pronounced for sills having characteristic widths on the order of the Rossby radius. An exception to this is for 
wider sills and large potential vorticities, for which T remains relatively sensitive to the choice of Q. 
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Fig. 6. Plot of T versus θ for Lsill = 0.25 and α = 1. The horizontal (θ) axis is scaled by a factor of π. The top, middle, and bottom 

curves correspond to Q = 0, Q = 0.5, and Q = 0.99, respectively. Note that the dependence of T on θ is much stronger than the 
dependence of T on Q. Note also that T  1/2 as θ  π/2. 
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Fig. 7. Relative dependence of T on Q to that of T on θ for a narrow sill (Lsill = 0.25). Plotted is the ratio σ as a function of α. 

Small values indicate that T depends more strongly on θ than on Q. For small values of α (elongated sills) dependence of 
transport on Q is more important of the two, and the classic limit of rotating hydraulics is recovered. 
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Fig. 8. (a) Typical profile of the solution far upstream. (b) Typical profile of the solution far downstream, for the case of gentle 
topography. (c) Typical profile of the solution far downstream, for the case of steep topography. Note that a streamline for which 
B  1 overlies topography deeper than the sill upstream and more shallow than the sill downstream. 



 

 

 
Click on thumbnail for full-sized image. 

Fig. 9. An example of multiple solutions over a topography for which the slope increases in magnitude with depth. Both η 
profiles correspond to a current having Q = 0 and T = 1/2. The point at which the slope changes corresponds to n = n0. 
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