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ABSTRACT

New analytical, circular eddy solutions of the nonlinear, reduced-gravity, 
shallow-water equations in a rotating system are presented. While previous 
analytical solutions were limited to the description of pulsons, which are 
oscillating, frontal, warm-core eddies with paraboloidic shape and linear velocity 
components, the new solutions describe more general radial structures of eddy 
shape and azimuthal velocity. In particular, the new solutions, which contain as 
a subset the circular pulson solution, also allow for the description of circular, 
frontal, warm-core eddies with small azimuthal velocities at their periphery 
and/or with motionless cores, which are frequently observed characteristics of 
warm-core eddies in the World Ocean. 

1. Introduction  

Frontal, warm-core eddies are mesoscale flow features associated with isolated 
water masses of anomalous water. Thus their properties differ significantly from 
those of the surrounding ambient water, from which they are separated by a closed 
frontal line at the sea surface. Such eddies are observed very frequently in the 
world ocean, the most famous example being perhaps the warm-core rings released 
by the meanders of the Gulf Stream (Cheney et al. 1976; Evans et al. 1984; Joyce 
1984). The influence of frontal, warm-core eddies on the larger-scale ocean 
circulation involves the transfer of energy and physical, chemical, and biological 
properties across frontal zones and their impact on mixing (Olson 1991). This 
relevance of frontal, warm-core eddies explain why, in the last two decades, many analytical, numerical, experimental, and 
observational investigations have been carried out to elucidate different aspects of their dynamics (e.g., Saunders 1971; 
Olson et al. 1985; Pavia and Cushman-Roisin 1988; Rogers 1989; Pavia and Lopez 1994; Matsuura 1995; Cushman-Roisin 
and Merchant-Both 1995). 

In the study of frontal, warm-core eddies, the reduced-gravity, shallow-water equations have been widely used (Csanady 
1979; Nof 1983; Killworth 1983; Cushman-Roisin et al. 1985; Cushman-Roisin 1987; Arai et al. 1994). Although these 
equations exclude relevant oceanic processes such as baroclinic instabilities, they represent an efficient tool for the 
description of many characteristics of eddy dynamics. Moreover, an exact analytical solution of these equations has been 
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found, which describes the temporal and spatial evolution of a special class of frontal, warm-core eddies, the so-called 
pulsons, characterized by a paraboloidic shape and by horizontal velocities that are linear functions of the horizontal 
coordinates (Thacker 1981; Cushman-Roisin 1987; Rogers 1989). Actually, observed frontal, warm-core eddies often differ 
remarkably from the pulson either in their velocity field or in their shape (Richardson et al. 1973; Andrews and Scully-Power 
1976; Evans et al. 1985 and references therein). In the present paper we propose an extension of the circular pulson solution 
that can be used to describe more general radial structures of eddy shape and azimuthal velocity. The paper is organized as 
follows: In section 2 the reduction of the problem to a set of series of ordinary differential equations in time is presented. 
The general analytical solutions of the problem are given in section 3, and, in section 4, these solutions are discussed and 
conclusions are presented.

2. Reduction of the problem to a system of ordinary differential equations  

Assuming circular symmetry, the nonlinear, reduced-gravity, shallow-water equations for a rotating system expressed in 
polar coordinates are

 

 

 

Here h is the thickness of the upper layer, f  is the (constant) Coriolis parameter, g′ is the reduced gravity, t is the time, 
and  and r represent the azimuthal and radial velocity components of the upper layer along the  and r coordinates. 

Positive r are directed from the coordinate origin, located at the eddy center, toward the eddy periphery, and positive  

are directed counterclockwise.

Solutions of (1)–(3) are searched that represent circular, frontal, warm-core eddies with the following velocity field and 
shape:

 

where the coefficients Li, K, and Ai are functions of time only and n  1 is the order of the system. Inserting (4)–(6) into 

(1)–(3) yields the following series of ordinary differential and algebraic equations:

 

where δi1 is the Kronecker delta and Li = 0 for i > n.
 

For n = 1, this set of series yields the four ordinary differential equations that describe the circular pulson:



 

From (10)–(13) the coefficients L1, K, A0, and A1 can be determined (Cushman-Roisin 1987). This system of equations 

has four degrees of freedom. Every successive order m introduces in the system three additional ordinary differential 
equations [(7) with i = m and (9) with i = 2m − 2 and i = 2m − 1] and two algebraic equations [(8) with i = 2m − 2 and i = 
2m − 1]. Thus, due to these two algebraic equations, only one degree of freedom is added to the system for every 
successive order. Note that Eq. (8) for i > 1 represent the set of conditions relating Li (1  i  m) and Ai (2  i  2m 

− 1). It can be shown that, if these conditions are satisfied initially, then they will be satisfied for every time.

Before presenting the general solutions of (7)–(9), we have to note that the description of a circular eddy whose fluid 
circulates inside of a surface frontal line requires that the following conditions are satisfied: (i) h(r) = 0 for r = R, where R > 
0 is the time-dependent eddy surface radius and (ii) h(r) > 0 for r < R. It can be shown that, if conditions (i) and (ii) are 
satisfied initially, then they will be satisfied for every time. Thus the solutions of (10)–(13) are valid at all times for r  R. 

3. General solutions  

The general solutions of (7)–(9) are

 

where γ, , and Ã0 are arbitrary constants of integration. The range of applicability of these parameters is 0  γ < 1, 0 

  < 2π, and Ã0 > 0. The last condition is required for the description of eddies whose fluid circulates inside of a surface 

frontal line. The coefficients Ãi and i are related to each other by

 

with i = 0 for i > n. Together with conditions (17), the solutions of (1)–(3), which describe circular, frontal, warm-core 

eddies, are

 

In analogy to the circular pulson solution (Cushman-Roisin 1987), these solutions describe oscillating, circular eddies that 
alternatively contract and deepen, expand and shoal during an (exact) inertial period T = 2π/f. 



4. Discussion  

The new analytical solutions of the nonlinear, reduced-gravity, shallow-water equations (1)–(3) given by (17)–(20) can be 
used to describe the temporal and spatial evolution of frontal, warm-core eddies. While they represent an extension of the 
circular pulson solution (Cushman-Roisin 1987) to more general radial structures of eddy shape and azimuthal velocity, they 
retain the radial velocity structure of the circular pulson. This implies that the temporal evolution of the eddy center depth 
and radius remains unchanged, independent of the order of the solution. However, frontal, warm-core eddies whose 
azimuthal velocities even largely differ from a linear function of the radius and/or whose shapes even largely differ from a 
paraboloid exist as analytical solutions of (1)–(3). One example is depicted in Fig. 1 . Here, the depth of the interface 
separating the eddy from the ambient water (Fig. 1a ), the azimuthal (Fig. 1b ), and the radial velocity components of 
the eddy (Fig. 1c ) are shown as functions of the radius for four different times of an inertial period. In this case the 
maximum steepness of the interface depth is not located at the eddy periphery as it would be in the case of the pulson. 
Accordingly, the associated azimuthal velocity decreases from its maximum, located inside the eddy, toward the periphery 
where it is almost zero (Fig. 1b ). Thus, due to this characteristic of our solutions, a more realistic description of eddy 
dynamics is possible than is possible using the previous circular pulson solution (Cushman-Roisin 1987), which predicts 
unrealistically large azimuthal velocities at the eddy periphery. Furthermore, a central region (core) of the eddy exists where 
the interface depth is almost constant (Fig. 1a ). Accordingly, the associated azimuthal velocity is, in this region, almost 
zero (Fig. 1b ). This characteristic of our solutions corresponds to a frequently observed characteristic of frontal warm-
core eddies that also cannot be described by the pulson solution. Note, however, that the radial velocity is, as in the case of 
the circular pulson, a linear function of the radius (Fig. 1c ). The temporal evolution of the eddy can be described as 
follows: At t = 0 its radial velocity is divergent and, consequently, the eddy expands and shoals. At t = (¼)T the eddy is 
shallowest. At this time its azimuthal velocity is maximum, while its radial velocity vanishes. At t = (½)T the radial velocity 
of the eddy is convergent and, consequently, the eddy contracts and deepens. At t = (¾)T the eddy is deepest. At this time 
its azimuthal velocity is minimum, while its radial velocity vanishes again.

The presented solutions can also be used to infer the internal structure of frontal, warm-core eddies from surface 
measurements. For example, remote sensing techniques give the possibility to measure the spatial extent as well as the 
velocity structure of frontal eddies at the sea surface. If this information is provided, the coefficient i can be calculated by 

fitting the measured velocity by a polynomial. Thus, using (17), the coefficients Ãi (i  1) can be calculated, which describe 

the spatial structure of the eddy. The center depth Ã0 can thus be obtained by letting the measured and calculated eddy 

surface radius coincide. In this way, the whole stationary structure of the eddy can be determined. A sequence of remote 
sensing measurements could then be used to estimate the eddy pulsation in time.
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Figures  

 
Click on thumbnail for full-sized image. 

Fig. 1. Interface depth h (a), azimuthal velocity component  (b), and radial velocity component r (c) of a circular, frontal, 

warm-core eddy for the times t = 0, t = (¼)T, t = (½)T, and t = (¾)T (T = 2π/f) as function of the radius r. The following values for 

the parameters of (17)–(20) have been used: n = 4, f = 7 × 10−5 s−1, g′ = 10−2 m s−2, Ã0 = 500 m, γ = 0.04,  = 0, 1 = −1.492 × 10−6 

s−1, 2 = 9.169 × 10−15 m−2 s−1, 3 = −1.088 × 10−24 m−4 s−1, and 4 = 3.177 × 10−35 m−6 s−1. 
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