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ABSTRACT

Gent et al. have emphasized the role of the eddy-induced transport (or bolus) 
velocity as a mechanism for redistributing tracers in the ocean. By writing the 
momentum equations in terms of the isopycnal flux of potential vorticity, the 
author shows that any parameterization of the eddy-induced transport velocity 
must be consistent with the conservation equation for potential vorticity. This 
places a constraint on possible parameterizations, a constraint that is satisfied 
by the Gent and McWilliams parameterization only if restrictions are placed on 
the diffusivity coefficient. A new parameterization is suggested that is the 
simplest extension of Gent and McWilliams based on the potential vorticity 
formulation. The new parameterization parameterizes part of the time-mean 
flow driven by the Reynolds stress terms in addition to the eddy-induced 
transport velocity. It is also shown that the eddy-induced transport velocity 
can always be written as the Ekman velocity associated with the vertical 
derivative of a horizontally directed eddy stress. The author shows how the 
eddy stress is related to the “inviscid pressure drag”  or “form drag”  associated 
with the eddies, although the correspondence is not exact.

1. Introduction  

Gent and McWilliams (1990, hereafter GM90) have suggested a 
parameterization for mesoscale eddies for use in coarse-resolution ocean models. 
The parameterization is an almost Fickian diffusion of thickness along isopycnal surfaces. Recently, Gent et al. (1995) have 
pointed out that the GM90 parameterization can be interpreted as an eddy-induced transport velocity (sometimes referred to 
as the “bolus”  velocity). The eddy-induced transport velocity is analogous to the Stokes drift in the theory of surface gravity 
waves and can play an important role in redistributing tracers even though it is not part of the time-mean flow. For example, 
Danabasoglu and McWilliams (1995) and Hirst and McDougall (1996) demonstrate that incorporating GM90 in a coarse-
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resolution global model leads to a dramatic improvement in the ability of the model to represent the distribution of water 
masses. Gent et al. (1995) point out that when the momentum equations are cast in terms of the tracer transport velocity 
(the tracer transport velocity is the sum of the time-mean velocity and the eddy-induced transport velocity), the GM90 
parameterization is equivalent to a vertical transfer of (geostrophic) momentum. Given that GM90 is designed to mimic the 
removal of geostrophic shear by baroclinic instability, the correspondence between GM90 and a vertical flux of momentum 
is not surprising. An approach based on the vertical mixing of momentum was adopted independently by Greatbatch and 
Lamb (1990, hereafter GL90). GL90 show that at small Ekman number their parameterization is equivalent to GM90. 

At the time of writing their paper, GL90 did not appreciate the significance of the eddy-induced transport velocity, or that 
their momentum equations are really the equations for the tracer transport velocity, as distinct from the time-mean velocity. 
GL90 were motivated by the correspondence in quasigeostrophic theory between vertical mixing of momentum and 
horizontal mixing of potential vorticity (Rhines and Young 1982). To show the correspondence, it is necessary to assume 
that horizontal length scales are large compared to the internal Rossby radius of deformation. GL90 added a vertical eddy 
viscosity term to the planetary geostrophic momentum equations with the vertical eddy viscosity coefficient assumed to be 

of the form Af2/N2, where f  is the Coriolis parameter and N is the local value of the buoyancy frequency. They show that 
for small Ekman number, and when A satisfies certain conditions, potential vorticity q is homogenized within closed q 
contours. GL90 show that the GM90 parameterization also leads to homogenization of potential vorticity under analogous 
conditions.

Homogenization of potential vorticity is a striking feature of the time-mean fields on the subsurface levels of 
quasigeostrophic models of the wind-driven ocean circulation (see, e.g., Holland et al. 1984). Potential vorticity 
homogenization on subsurface isopycnals is also a feature of maps of potential vorticity derived from observations (e.g., 
McDowell et al. 1982; Keffer 1985; Talley 1988; O’Dywer and Williams 1997), and recent numerical computations using a 
primitive equation model (Greatbatch et al., in preparation). Indeed, the evidence from both eddy-resolving models and 
observations suggests that isopycnal mixing of potential vorticity should be a fundamental feature of any parameterization, a 
point that has also been made by Treguier et al. (1997) and Killworth (1997, submitted to J. Phys. Oceanogr., hereafter 
K97), and supported by the channel model experiments of Lee et al. (1997). Indeed, the parameterizations suggested by 
Treguier et al. (1997) and K97 are actually quite similar to that suggested in section 5 of this paper, although the analysis 
given here is somewhat different and also more general.

In the present paper, we explore the relationship between eddy-induced transport velocity, the vertical transfer of 
momentum, and isopycnal mixing of potential vorticity. We attempt to link the work of Gent et al. (1995) to the earlier 
quasigeostrophic theories of Rhines and Holland (1979) and Rhines and Young (1982). In so doing, we show how the 
potential vorticity equation places a constraint on possible parameterizations for the eddy-induced transport velocity. The key 
is the link between potential vorticity conservation and the momentum equations, a link that is missing in parameterizations 
such as GM90 that are derived independently of the momentum equations. We then suggest a new parameterization that is 
an extension of GM90 but has the potential vorticity equation at its core. We also show how the eddy-induced transport 
velocity can be related to an “eddy stress,”  once the momentum equations are cast in terms of the tracer transport velocity, 
and show the connection between the eddy stress and the eddy“form drag,”  generalizing a result of Rhines and Holland 
(1979). 

The plan of the paper is as follows. In section 2, we show that the eddy-induced transport velocity can be written as an 
Ekman velocity associated with the vertical derivative of a horizontally directed eddy stress. In the case of the GM90 
parameterization, the horizontal stress is the vertical flux of geostrophic momentum. Section 3 discusses the relationship 
between the eddy stress and the form drag, while section 4 explores the relationship between the eddy stress and the 
isopycnal flux of potential vorticity. In section 5 we illustrate the potential vorticity formulation for the particular example of 
the GM90 parameterization and show how the potential vorticity equation places a constraint on possible parameterizations 
for the eddy-induced transport velocity. The discussion leads naturally to the suggestion of a new parameterization. A 
feature of the potential vorticity approach is that the new parameterization parameterizes part of the mean flow driven by the 
Reynolds stress terms in addition to the eddy-induced transport velocity. Section 6 provides a summary and discussion. 

2. The eddy-induced transport velocity and the eddy stress  

We develop the formalism within the context of a Boussinesq, hydrostatic, incompressible fluid and use plane Cartesian 
geometry. We take as our starting point the equation for a tracer τ. We assume that the effect of turbulent mixing, be this by 
mesoscale eddies or any other process, can be parameterized in terms of the local gradients of the large-scale, averaged 
tracer field, τ, as follows:

 



where D/Dt is the time derivative following the time-mean flow and Ai,j is a general second-order tensor. It should be 

noted that although the analysis in this section is carried out in Cartesian (x, y, z) coordinates, the averaged large-scale 
variable need not be the result of averaging at fixed z. In the interpretation given by Gent et al. (1995), the large-scale tracer 
and velocity fields are unweighted averages on an isopycnal surface. For a detailed analysis of isopycnal averaging (both 
weighted and unweighted), readers are referred to the paper by de Szoeke and Bennett (1993) where discussion can also be 
found on how equations averaged in isopycnal coordinates can be transformed to equations in (x, y, z) coordinates. 

We now split Ai,j into a symmetric and an antisymmetric part. Gent et al. (1995) argue that for mesoscale eddies, the 

symmetric part corresponds to isopycnal diffusion of tracer. Andrews et al. (1987) note that an analysis based on linearized 
displacements shows that, in general, the symmetric part of Ai,j is tracer dependent, whereas the antisymmetric part is 

independent of the tracer (see also Plumb 1979). In the following, we shall concentrate on the antisymmetric part, since this 
is associated with the eddy-induced transport velocity, or Stokes drift (Plumb and Mahlman 1987; Andrews et al. 1987; 
Middleton and Loder 1989). The general form of the antisymmetric part is

 

Substituting the antisymmetric part of A into Eq. (1), we see that the contribution from the antisymmetric part can be 
written as an advection term with eddy-induced transport velocity uI = (uI, I, wI) given by

 

Here uI, I, and wI satisfy the continuity equation

uIx
 + Iy

 + wIz
 = 0.(6)

 

At the surface, z = 0, we have

wI = 0,(7)
 

while at the bottom z = −H(x, y) we have

wI = −(uIHx + IHy).(8)
 

Equations (7) and (8) state that there is no eddy flux of tracer normal to the top and bottom boundaries (the same is also 
true at any side boundaries). For the GM90 parameterization, a = 0, and (b, c) = −κL where L = − ρ/ρz. 

We now define

 

Then

 

Since it is only uI, I, wI that matter, a comparison of (10)–(12) with (3)–(5) shows that we can always take a = 0 by 



redefining b and c. Also, because wI = 0 at the surface, bx + cy is zero there, allowing us to choose o so that at the surface

y + b = 0(13)
 

and

− x + c = 0.(14)
 

It follows that not only can we assume a = 0, we can also assume b = c = 0 at z = 0. It should be noted that for the 
GM90 parameterization, a = 0 everywhere and κ = 0 at z = 0, showing that GM90 already satisfies these conditions. 

We now define the tracer transport velocity (U, V, W) to be the sum of the large-scale (time mean) velocity u and the 
eddy-induced transport velocity uI = (uI, I, wI), that is, (U, V, W) = (u + uI,  + I, w + wI). The tracer equation (1) can 

then be written as

 

where AS
i,j is the symmetric part of A.

 

We now turn to the momentum equations. We shall assume horizontal scales are large compared to the internal radius of 
deformation, enabling us to make the planetary geostrophic approximation. For convenience, we shall assume the 
momentum equations reduce to the geostrophic balance

 

where p is the pressure, overbar denotes averaged values, and ρo is a representative density for seawater. We now rewrite 

these equations in terms of the tracer transport velocity (U, V, W) = (u + uI,  + I, w + wI). We then get

 

where

X = −ρofc(20)
 

and

Y = ρofb.(21)
 

It follows that the eddy-induced transport velocities uI, I appear as Ekman velocities given by



 

The vector (X, Y) appears as a horizontally directed stress acting on the fluid. We shall refer to (X, Y) as the eddy stress. 
The physical significance of the eddy stress is discussed in section 3 for the case of geostrophic eddies. Equation (23) in 
Gent et al. (1995) corresponds directly to our Eqs. (18) and (19) for the particular case of the GM90 parameterization. In 
fact, for the GM90 parameterization

(X, Y) = −ρofκk  × L,(24)
 

where k  is a unit vector in the upward vertical direction. Use of the thermal wind relation then shows that (X, Y) is 
actually the vertical flux of geostrophic momentum given by

 

where N is the local value of the buoyancy frequency. 

In terms of the eddy stress (X, Y), the boundary conditions (7) and (8) take the form

 

at z = 0 and

 

where (Xb, Yb) is the stress (X, Y) evaluated at z = −H(x, y) [the equivalence of (27) and (8) can be seen by applying the 

chain rule for differentiation to (27)]. Since we have chosen b = 0 and c = 0 at z = 0, we actually have zero eddy stress (X, 
Y) at z = 0 (the surface), as is quite reasonable. On the other hand, there is no guarantee that the bottom eddy stress (Xb, Yb) 

is zero. For example, the “Neptune”  effect described by Holloway (1992) is associated with eddy–topography interaction, 
for which the associated bottom stress need not be zero, an issue to be explored in a later paper.

GL90 applied their parameterization directly to the momentum equations by suggesting a particular form for the eddy 
stress (X, Y) in (18) and (19). As noted in the introduction, their momentum equations should be thought of as the equations 
for the tracer transport velocity, not the large-scale, time-mean velocity, a point that was not appreciated by GL90. It is 
straightforward, however, to show that the Ekman velocity associated with their parameterization has the properties of an 
eddy-induced transport velocity. We can see this by putting a = 0, b = Y/(fρo), and c = X/(fρo) in (3)–(5). Although GL90 

do not explicitly discuss the surface and bottom boundary conditions for their parameterization, a reasonable choice would 
be to require (26) and (27) to be satisfied, therefore ensuring that wI satisfies (7) and (8). In a similar way, instead of writing 

the tracer equation as in Eq. (15), as implied in GL90, it can be written in terms of the large-scale, time-mean flow and an 
antisymmetric tensor, as in Eq. (1). 

3. Connecting the eddy stress and the form drag  

We have shown that the horizontal component of the eddy-induced transport velocity can be expressed in the same form 
as the Ekman velocity associated the vertical derivative of a horizontally directed stress, as in Eqs. (22) and (23). We next 
explore the relationship between the eddy stress (X, Y) and the eddy form drag. 

We begin by turning to section 1 of Gent et al. (1995). We assume adiabatic flow of a Boussinesq, incompressible fluid 
and work in isopycnal coordinates. The continuity and density equations can then be combined to give the following 
equation expressing the conservation of volume

 

where z(x, y, ρ, t) is the physical height of a density surface, z
ρ
 can be interpreted as the thickness, and 

ρ
 is the 



horizontal gradient operator applied at constant ρ. It should be noted that in (28) (and also in what follows), u is the 
horizontal component of the velocity (the vertical component is obtained by integrating the continuity equation in z-
coordinates with w = 0 at the surface). The equation for the conservation of a tracer τ is

 

Following Gent et al. (1995) the variables are decomposed into large-scale components denoted by an overbar and eddy 
components denoted by primes. The large-scale components can be regarded as a time average at fixed (x, y, ρ) (although 
slow time variations associated with the large-scale flow will be retained). We then obtain

 

and

 

where û is the thickness-weighted, isopycnal-averaged velocity given by

 

and u is the large-scale (time averaged) velocity. Gent et al. (1995) assume that the eddy components of thickness and 
tracer are uncorrelated so that the second term in Eq. (31) can be neglected. They also assume that the right-hand side of 
Eq. (31) can be parameterized as a Fickian diffusion along mean isopycnals with coefficient μ so that (31) can be written

 

Gent et al. (1995) identify û with the tracer transport velocity and u* with the eddy-induced transport velocity, an 
identification that may not be appropriate, as discussed later in this section [Smith and Dukowicz (1997)]. Despite this word 
of caution, we shall begin by assuming that the identification made by Gent et al. (1995) is correct and then discuss how the 
identification might be modified.

We now examine u* = z′
ρ
u′/z

ρ
 in detail. If u* is indeed the eddy-induced transport velocity, then it is possible to associate 

u* with an eddy stress, (X, Y), as in Eqs. (22) and (23). The question arises as to what form is taken by (X, Y)? We shall 
assume the eddies are geostrophic; that is,

 

where π is the Montgomery potential. Using the hydrostatic equation π′
ρ
 = gz′, it can be shown, after some manipulation, 

that

 

The first term on the right-hand side corresponds to a vertical flux of momentum. In fact, Rhines and Holland (1979) 
refer to p′

ρ
z′ as the “inviscid pressure drag”  or “form drag.”  Conversion to (x, y, z) coordinates then shows that the form 

drag can be naturally associated with an eddy stress (X, Y), as in Eqs. (22) and (23), by putting



(X, Y) = p′
ρ
z′.(37)

 

The question remains as to the role played by the second term on the right-hand side of equation (36). The second term is 
a eddy-pressure term that is similar to the form drag and corresponds to a lateral flux of momentum along isopycnals, rather 
than a vertical flux of momentum. When the horizontal scale of the large-scale flow is large compared to the eddy-scale, the 
isopycnal flux term can be neglected in comparison with the form drag term, and the assumption expressed by Eq. (37) is 
valid. Since the eddy-scale is typically the same as the internal radius of deformation (at least for eddies generated by a 
baroclinic instability process), the isopycnal flux term should also be negligible when the planetary geostrophic 
approximation is valid for the large-scale flow. Since the GM90 parameterization can be written as a vertical flux of 
(geostrophic) momentum, the GM90 parameterization can then be regarded as a parameterization for the form drag, enabling 
us to write

p′
ρ
z′ = −ρofκk  × L.(38)

 

We now return to the question of whether or not it is appropriate to identify u* with the eddy-induced transport velocity 
uI. Smith and Dukowicz have shown that, in general, the eddy-induced transport velocity need only be a part of u*, the 

remaining part being associated with a purely rotational eddy thickness flux. To see this, we apply a Helmholtz 
decomposition to the thickness flux z

ρ
u*, enabling us to write u* as

u* = u*
D + u*

R,(39)

 

where

ρ
·(z
ρ
u*

R) = 0.(40)

 

(It should be noted that the Helmholtz decomposition is applied to the thickness flux z
ρ
u*, not to u* itself.) Equation (40) 

says that uR makes no contribution to the divergence of the thickness flux, and therefore makes no contribution in Eq. (30). 

Smith and Dukowicz argue that as a consequence, the eddy-induced transport velocity uI may differ from u* by a 

component uR, as in (39) and (40), since then (30) is satisfied by the tracer transport velocity U = u + uI, with û replaced 

by U; that is,

 

and the volume between mean isopycnals is preserved, as would be the case if U = û. [In fact, Eq. (41) is a consequence 
of applying Eq. (15) with τ replaced by ρ and using Ux + Vy + Wz = 0 in (x, y, z) coordinates]. In fact, in a theoretical 

justificiation for the GM90 parameterization given by Smith and Dukowicz, the uI that emerges from the analysis differs 

from u* by a nonzero uR. 

Returning to Eq. (36), we note that the thickness flux associated with geostrophic eddies can be written as

 

On an f  plane, the isopycnal eddy-pressure term 
ρ
(p′z′

ρ
) makes no contribution to the divergence of thickness flux, even 

if the horizontal scale of the large-scale flow is comparable to the eddy scale. It follows from Smith and Dukowicz’s 
argument that the isopycnal eddy-pressure term need not contribute to uI in this case. In general, however, when f  varies 

with latitude, this term will contribute to uI because the associated thickness flux then has nonzero divergence. Also, 

because eddies are not strictly geostrophic, there will be other contributions to z
ρ
u* in addition to those in Eq. (42), although 

like the isopycnal eddy pressure term, these contibutions are likely to be small compared to the form drag term. It follows 
that, in general, it is not possible to completely identify the eddy stress with the form drag, or even with a term that 
physically corresponds to a vertical flux of momentum, as assumed in the parameterizations of GM90 and GL90. As we 
shall see in the next section, a more fruitful approach is to consider the link between eddy-induced transport velocity and the 



isopycnal flux of potential vorticity.

Finally, in this section we note that if the eddy-induced transport velocity uI is not the same as u* as defined by (33), 

then, correspondingly, the tracer transport velocity U = (U, V) is not the same as û. It follows that the simple interpretation 
presented in Eq. (34) is an oversimplification. In particular, the parameterization for the right-hand side of Eq. (31) needs to 
be in terms of a mixing tensor, as in Eq. (1) but for isopycnal coordinates. The antisymmetric part of the tensor is 
associated with an advection by a velocity that is the difference between the tracer transport velocity, (U, V) and û. Detailed 
analysis of output from eddy-resolving models is required for further investigation of the relationship between u* and uI. 

4. The isopycnal flux of potential vorticity  

We now explore the relationship between the eddy-induced transport velocity and the isopycnal flux of potential vorticity. 
We do this by generalizing the argument leading to Eq. (16) of Rhines and Holland (1979). 

As in section 3, we assume adiabatic flow of a Boussinesq, incompressible fluid and work in isopycnal coordinates. The 
momentum equations can be written as

 

where

 

is the material derivative, π is the Montgomery potential, and D(u), D( ) includes all terms arising from turbulent 
microstructure fluxes [the reader is referred to de Szoeke and Bennett (1993) for a detailed derivation—see their equations 
(12) and (13)]. For simplicity, we put D(u) = D( ) = 0 in the subsequent analysis. Equations (43) and (44) can be written as

 

where  = x − uy is the relative vorticity and B is the Bernoulli function. In terms of the potential vorticity, q = (f  + )/z
ρ
, 

(46) and (47) can be written as

 

Averaging these equations now gives



 

Comparison with Eq. (5) of Gent et al. (1995), or Eqs. (31) and (34) in section 3, shows that Gent et al. (1995) identify 
(q′(z

ρ
u)′, q′(z

ρ
)′) with the isopycnal flux of potential vorticity; û = (û, ) is the same as defined by Eq. (32). 

Although Eqs. (50) and (51) already demonstrate a link between the û and the isopycnal flux of potential vorticity, a more 
insightful approach is to use thickness-weighted, isopycnal-averaged variables. Putting  = qz

ρ
/z
ρ
, q =  + q" and u = û + 

u", averaging of (48) and (49) gives

 

Noting that z
ρ
 =  + f  gives

 

Taking (55)/ x −  (54)/ y and using (30) leads to the potential vorticity equation

 

It should be noted that the equation corresponding to (56) for the variable q is complicated by the fact that q  (  + f)/z
ρ
, 

and it is for this reason that Eqs. (52)–(55) are more useful than Eqs. (50)–(51). In Eqs. (52)–(55), the isopycnal flux of 
potential vorticity is given by z

ρ
q"u". An analysis similar to the above, also using the thickness-weighted average of potential 

vorticity, but for the case of zonal averaging, can be found in section 3.9 of Andrews et al. (1987); in particular, compare 
Eqs. (54) and (55) with Eq. (3.9.9) in Andrews et al. (1987) (see also Tung 1986). 

Before proceeding further, we note that the potential vorticity (q-)flux terms on the right-hand side of Eqs. (54) and (55) 
act as forcing terms in the averaged momentum equations that are analogous to the eddy stress terms in Eqs. (18) and (19). 
It should be noted, however, that since Eqs. (54) and (55) have been derived by averaging the primitive equations, the q-flux 
terms include Reynolds stress terms that drive time-mean flow, in addition to the eddy stress terms associated with the 
eddy-induced transport velocity. The remaining part of the Reynolds stress terms is included in the average of the Bernoulli 

function B through the (u2 + 2)/2 term. It follows that a parameterization for the q-flux terms is not simply a 
parameterization for the eddy-induced transport velocity, but also for part of the time-mean flow driven by the Reynolds 
stresses, an important point we shall return to in section 5. 

In order to concentrate attention on the eddy-induced transport velocity, we now simplify the analysis and approximate 
(46) and (47) by the geostrophic balance

 



for which q = f/z
ρ
,  = f/z

ρ
, and B is replaced by π. Averaging (57) as before gives

 

and

 

Since the nonlinear momentum advection terms are not included in (57), there are no Reynolds stress terms contained in 
the q-flux terms on the right-hand side of (58) and (59). In fact, since averaging the geostrophic balance gives

 

and since û = u + u*, it follows that for geostrophic flow

−f * = z
ρ
q" "; fu* = −z

ρ
q"u".(61)

 

Equation (61) shows that for geostrophic flow, u* can be expressed directly in terms of the isopycnal flux of potential 
vorticity. We noted at the end of section 3 that the eddy-induced transport velocity uI may differ from u* by a component 

uR as in Eq. (40) associated with a rotational component of the eddy thickness flux. To take account of this possibility, we 

write

−f I = (z
ρ
q" ")D; fuI = −(z

ρ
q"u")D,(62)

 

where the q-flux has been decomposed as

(z
ρ
q"u") = (z

ρ
q"u")D + (z

ρ
q"u")R(63)

 

in the sense that

 

Equation (64) is required by Eq. (40) (note that we have used  = f/z
ρ
). The tracer transport velocity can then be 

expressed in terms of the q-flux as

 

Equations (65) and (66), together with Eq. (41), then give the potential vorticity equation

 

Equation (67) corresponds to (56), with û replaced by the tracer transport velocity U and the local time derivative dropped 
because we have assumed geostrophicflow.



To see the connection between the isopycnal flux of q and the form drag, we now apply thickness-weighted, isopycnal 
averaging to the geostrophic balance. Following de Szoeke and Bennett (1993) we obtain

 

The term on the right-hand side of (68) and (69) is the thickness-pressure gradient covariance term. Using (60) and since 
û = u + u*, we immediately obtain

 

It is then straightforward to decompose the thickness-pressure gradient covariance term to obtain

 

Equation (71) is equivalent to Eq. (36). We now equate (71) and (61) to obtain

 

Equation (72) shows the connection between isopycnal mixing of q and the form drag. In fact, (72) formally generalizes 
the correspondence in quasigeostrophic theory between vertical mixing of momentum and horizontal mixing of potential 
vorticity. As in section 3, where we found that the eddy-induced transport velocity cannot, in general, be identified exactly 
with the form drag, then so here, there is not an exact correspondence between the isopycnal flux of potential vorticity and 

the form drag. Also because z
ρ
, in general, varies along an isopycnal, the 

ρ
(p′z′

ρ
) term in general contributes to the 

divergence of the q-fluxes in Eq. (56). 

Finally in this section we note that (68) and (69) can be written

 

In this form, the terms on the right-hand side of (71) appear as the divergence of the Eliassen–Palm flux [see, in 
particular, Lee and Leach (1996), who use time averaging, as in this paper, but also Andrews et al. (1987) and Tung (1986) 
for the more traditional form of the Eliassen–Palm flux using zonal averaging]. Viewed in this way, the failure to obtain an 
exact identification between the eddy stress and the form drag can be understood by noting that the Eliassen–Palm flux 



involves a component along isopycnals as well as a vertical component. Equation (72) can be viewed as a version of the 
correspondence between the Eliassen–Palm pseudodivergence and the isopycnal flux of Ertel potential vorticity noted by 
Tung (1986). Another version of (72) using an approximation to the Ertel potential vorticity is discussed by Lee and Leach 
(1996). 

5. The potential vorticity constraint and parameterization of the tracer transport velocity  

We now illustrate how the potential vorticity equation [that is, Eq. (56) or (67)] places a constraint on parameterizations 
for the tracer transport velocity (and hence the eddy-induced transport velocity). We begin by showing how the GM90 
parameterization can be written in terms of the isopycnal flux of potential vorticity. Combining Eqs. (18), (19), and (25) 
from section 2, we know that for the planetary geostrophic system, the GM90 parameterization can be written as

 

with

 

where N is the local value of the buoyancy frequency, and (U, V, W) is the tracer transport velocity. In isopycnal 
coordinates, these equations become

 

where (ug, g) is the geostrophic velocity. If κ/ ρ = 0, then (78) and (79) can be written in terms of the potential 

vorticity,  = f/z
ρ
, as

 

Equations (80) and (81) can be identified with equations (65) and (66) by putting

 

The appearance of the κβ on the right-hand side of (82) should be noted. This term ensures that when the isopycnals are 
horizontal, implying no vertical shear of the geostrophic velocity, the eddy-induced transport velocity (U − u, V −  ) is zero, 
as one might expect given that GM90 is designed to mimic the effect of baroclinic instability. For the β-plane geometry we 



are using, and as long as κ is independent of y, κβ plays no role in the potential vorticity equation because it is part of the 
rotational component of the q-flux. We can then obtain the potential vorticity equation

 

It should be noted that to derive (84), it was necessary to assume that both κ/ ρ = 0 and κ/ y = 0. It is not a 
coincidence that GL90 made these same two assumptions in order to obtain homogenization of potential vorticity within 
closed q contours using the GM90 and GL90 parameterizations. That Eq. (84) is satisfied by the GM90 parameterization 
only when restrictions are placed on κ is a weakness of GM90. Indeed, the analysis in section 4 shows that the potential 
vorticity equation [that is, Eqs. (56) or (67) or their equivalent] should be satisfied by any parameterization for (U, V). 

We next note that the simplest parameterization in terms of q-fluxes would be to use (80) and (81) to compute (U, V) 
with a spatially variable, time-dependent κ and the κβ term dropped; that is,

 

Equation (84) is then automatically satisfied irrespective of the form of κ. In the context of geostrophic flow [see the 
discussion following Eq. (57)], the eddy-induced transport velocity is then given by

 

Writing these equations as

 

makes clear the connection with Treguier et al. (1997) and K97 [compare Eq. (88) with Eq. (39) in Treguier et al. (1997) 
and Eq. (35) in K97]. The analysis given in section 4, however, shows that the approach taken here is actually more general 
than that in Treguier et al. (1997) or K97, a point we now explore further. 

We first observe, by analogy with (54) and (55), that we can generalize (85) and (86) to the primitive equations by using 
the following equations to compute the tracer transport velocity (U, V)

 

where  = (  + f)/z
ρ
 is the (unapproximated) thickness-weighted, isopycnal averaged potential vorticity, and the q-flux 

terms on the right-hand side of (89) and (90) are parameterizations for the q-flux terms on the right-hand side of (54) and 
(55). A similar parameterization, but for the case of zonal averaging (rather than the time-averaging used here), has been 



proposed for the stratosphere by Tung (1986) [see his equation (5.10) and note that Tung includes additional terms that arise 
from the effect of diabatic heating, an issue to be explored in a later paper]. Then (90)/ x −  (89)/ y gives the potential 
vorticity equation

 

where use has been made of (41). Equation (91) ensures that potential vorticity is homogenized inside closed  contours 
in the absense of forcing and dissipation of the large-scale -field. It should be noted that in (91), and also (84), the term on 
the right-hand side refers only to mixing along isopycnal surfaces; in particular, diapycnal mixing of potential vorticity is not 
implied (Haynes and McIntyre 1987). 

We next note that in Eqs. (89) and (90) the q-flux terms parameterize not only the eddy-induced transport velocity, but 
also part of the Reynolds stresses that drive time-mean flow [that the q-fluxes include a part of the Reynolds stress terms 
was noted in the discussion following Eq. (56)]. Killworth argues that restrictions are necessary on the diffusion coefficient 
κ in order to ensure that the q-fluxes have the properties of the eddy-induced transport velocity, as would be the case if 
equation (87) were valid [in particular, it would be necessary to satisfy the boundary condition (27) at the ocean bottom, 
together with (X, Y) = 0 at z = 0]. In general, however, these restrictions may not be necessary since Eq. (87) does not 
account for the contribution of the Reynolds stress terms to the q-fluxes, an issue to be discussed further in a later paper. It 
should also be noted that even when the planetary geostrophic approximation is valid for the large-scale flow, in which case 
(89) and (90) can be approximated by (85) and (86), the q-flux terms still contain a contribution from the Reynolds stress 
terms, implying that (87) may still not be valid. The validity of (87) required the assumption of geostrophic flow, as in (57), 
before the application of averaging.

As written, Eqs. (89) and (90) do not provide a complete closure. For example, part of the Reynolds stress terms is 
included in the time-averaged Bernoulli function and requires parameterization. Noting that

 

we see that developing a closure for the missing Reynolds stress term requires parameterizing the eddy kinetic energy. 
One way to do this might be in terms of a Richardson number for the large-scale flow (see, e.g., Treguier et al. 1997; 
Visbeck et al. 1997). Substituting (92) into (89) and (90) shows that for both the mean and eddy kinetic energy terms, it is 
only their gradient that appears in the governing equations, which explains why these terms play no role in the potential 
vorticity equation (91). [It should be noted that a more complete parameterization would likely include a rotational potential 
vorticity flux that would also appear as the gradient of a scalar in (89) and (90) and would need to be included in the 
closure.] Another problem with Eqs. (89), (90), and (92) is that they contain a mixture of the time-mean velocity u and the 
tracer transport velocity U. Since the tracer transport velocity is the fundamental velocity variable, we need to express u in 
terms of U. In general, the difference between u and U is likely to be order the Rossby number (Smith and Dukowicz), so it 
should be possible to simply replace u by U, including for the calculation of . [It should be noted that the terms involving u 
are themselves of order the Rossby number in (89), (90), and (92)]. There is also a need to specify κ. One approach is to 
try and use linear stability theory, along the lines suggested by K97. Another would be to base the coefficient on a 
Richardson number for the large-scale flow, as in Visbeck et al. (1997). 

Finally, we note that as in Eq. (88), the q-flux terms on the right-hand side of (89) and (90) can be written as

 

In a later paper, we shall describe implementation of the new parameterization in a model using the form for the q-fluxes 
given in (93). Detailed discussion of the implementation and, in particular, the top and bottom boundary conditions, is given 
there. For now we note that at the surface and the bottom, the slope 

ρ
z is required to be parallel to the bounding surface; 

that is, zero at the surface and parallel to the bottom slope at the bottom, as required by considering the role in the potential 
vorticity budget played by the top and bottom boundaries in the stretching and squashing of a vertical column of fluid. In 



cases where the isopycnals intersect the top and bottom boundaries without passing through a well-mixed layer (that is, a 
layer, with ρz = 0), these boundary conditions correspond to the delta functions introduced by K97. When there is a mixed 

layer or a well-mixed region due to deep convection, the isopycnal slope is linearly interpolated across the region where ρz = 

0 in a manner analogous to the suggestion of Treguier et al. (1997). Detailed discussion of this and other related issues is 
deferred until a later paper.

6. Summary and discussion  

We began in section 2 by showing that the eddy-induced transport velocity can always be written as an Ekman velocity 
associated with a horizontally directed stress term in the momentum equations for the tracer transport velocity. In the case 
of the GM90 parameterization, the stress is provided by the vertical flux of geostrophic momentum. We then went on to 
show that the eddy stress has a natural interpretation as the “inviscid pressure drag”  or “form drag”  associated with the 
eddies, although the correspondence is not exact. We have also shown the link between the eddy-induced transport velocity, 
the eddy form drag, and the isopycnal flux of potential vorticity, generalizing the quasigeostrophic result of Rhines and 
Holland (1979) and Rhines and Young (1982) that equates vertical mixing of momentum with horizontal mixing of potential 
vorticity. The link to the isopycnal flux of potential vorticity provides a basis for developing parameterizations in terms of 
potential vorticity mixing. We noted that the GM90 parameterization is compatible with the potential vorticity equation only 
when restrictions are placed on the diffusivity coefficient. We regard the need for these restrictions to be a weakness of 
GM90 since the potential vorticity equation should be satisfied by any parameterization. We suggest that the development of 
improved parameterizations should be based on specifying forcing terms in the momentum equations for the tracer transport 
velocity and that the forcing terms should be expressed in terms of the isopycnal flux of potential vorticity, as illustrated by 
Eqs. (89) and (90). A new parameterization is suggested that is the simplest parameterization with the required form. We 
have shown that the new parameterization not only parameterizes the eddy-induced transport velocity, but also part of the 
time-mean flow driven by the Reynolds stress terms in the momentum equations. By working with the momentum 
equations, as in this paper, it is the tracer transport velocity that emerges as the fundamental variable. Indeed, the analysis of 
sections 4 and 5 suggests that effort should be directed at parameterizing the tracer transport velocity directly, rather than 
the eddy-induced transport velocity on its own, thereby including the Reynolds stress driven flow directly in the 
parameterization.

The approach taken in this paper has some similarity to that taken by Tung (1986). For the case of zonal averaging applied 
to the atmosphere, Tung relates the isentropic flux of Ertel’s potential vorticity to the Eliassen–Palm pseudodivergence, a 
result analogous to that expressed by Eq. (72). Tung also advocates parameterizing the isentropic flux of Ertel potential 
vorticity as a forcing term in the averaged momentum equations, and in fact proposes a parameterization similar to that 
proposed here. Tung’s parameterization includes additional terms [see his Eq. (5.10)] that arise from considering the effect 
of diabatic heating of the atmosphere, corresponding to diapycnal mixing in the ocean. Future work will address the possible 
role of these extra terms in parameterizations applicable to the ocean, generalizing the parameterization proposed here.

A somewhat different approach to parameterizing the momentum equation can be found in Gent and McWilliams (1996). 
These authors advocate parameterizing the eddy-induced transport velocity separately from the momentum equations and do 
not take advantage, as is done in this paper or in Tung (1986), of the close correspondence between the pseudodivergence 
of the Eliassen–Palm flux and the isopycnal flux of potential vorticity. 

A feature of the proposed parameterization is that for horizontally flat isopycnals, the q-flux terms in (93) are nonzero if κ 
is nonzero, on account of the κβ term. We do not regard this as a weakness of the proposed parameterization. In fact, as 
pointed out by Holloway (1992), although baroclinic instability processes act to remove horizontal density gradients, the 
effect of eddies is to drive the large-scale ocean circulation towards a state of motion, not one of rest. The possibility of a 
connection between the parameterization proposed here and the “Neptune”  effect of Holloway (1992) is discussed in detail in 
a later manuscript. The κβ term also appears in the work of Welander (1973) and Tung (1986). Indeed, Tung (1986) notes 
that without the κβ term the winter stratospheric jet would reach unrealistically large velocities. 

A complication throughout our analysis has been that whereas Gent et al. (1995) assumed the tracer transport velocity and 
the thickness-weighted, isopycnal-averaged velocity to be synonymous, recent theoretical work by Smith and Dukowicz 
(1997) suggests that this may not be true in general. Guidance from eddy-resolving model output is required to clarify this 
issue.

A feature of our analysis, and other related papers, for example, Gent et al. (1995), McDougall et al. (1996, submitted to 
J. Phys. Oceanogr.), and McDougall and McIntosh (1996) is the application of different kinds of averaging to the equations 
of motion. Indeed, our manuscript illustrates the use of both weighted and unweighted averaging on isopycnals. It follows 
that care is required when interpreting the variables carried by models, a particularly important issue when assimilating 
observations into a model.
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