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ABSTRACT

Estimates of the wave directional spectrum of fetch-limited sea states are 
made from measurements made with a heave–pitch–roll buoy at the Maui 
location off the west coast of New Zealand. The fetch-limited sea states have 
significant wave heights between 0.5 and 4.5 m and are observed during 
persistent southeast wind events, which have a well-defined fetch of 200 km. 
The integrated properties of the estimated angular spreading distributions are in 
general agreement with those observed in previous studies. However, the 
angular distributions estimated for the Maui location are bimodal at frequencies 
greater than the spectral peak frequency. This result for deep water ocean 
waves is in contrast to the generally accepted unimodal angular distribution for 
wind seas, but it supports recently reported measurements of the angular 
distribution of fetch-limited waves in Lake George, Australia. Parametric 
relationships that describe the characteristics of the bimodal distributions are 
derived, and the importance of the bimodality for some applications is 
discussed.

1. Introduction  

Many offshore applications require information on the directional characteristics 
of the wave field. These characteristics can be conveniently specified by the 
directional wave spectrum. Like the omnidirectional case, our understanding of 
the nature of the directional wave spectrum is best studied when some of the 
many variables that contribute to the general sea state are constant. Fetch-limited 
sea states provide this situation, and the directional distribution of fetch-limited sea 
states has been the subject of a number of studies. The most significant are those of Mitsuyasu et al. (1975), Hasselmann et 
al. (1980), and Donelan et al. (1985), each providing parameterizations of a unimodal directional distribution. Young et al. 
(1995) report an interesting study of fetch-limited waves in Lake George, Australia, where they observed the directional 
distribution to be bimodal at frequencies greater than twice the spectral peak frequency.
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This paper reports observations of fetch-limited directional spectra, made near to the site of the Maui-A platform off the 
West Coast of New Zealand (Fig. 1 ). An earlier study (Ewans and Kibblewhite 1990) showed that at this location 
southeast winds produce well-defined fetch-limited wind seas at the Maui location. The southeast winds funnel through 
Cook Strait and the Manawatu Gorge and may persist from just a few hours to several days and sometimes reach gale force. 
The study showed that the omnidirectional spectrum associated with these “southeast events”  conformed closely to the 
JONSWAP (Hasselmann et al. 1973) spectral shape, and the fetch dependencies of the parameters of the spectrum were 
quite similar to those observed in the JONSWAP experiment.

Similarly, the southeast winds, which occur approximately 25% of the time at the Maui location, provided a number of 
well-defined fetch-limited conditions during a subsequent wave directional measurement program. The corresponding sea 
states, which were measured with a WAVEC heave–pitch–roll buoy are the basis of this paper. 

A brief review of the mathematical definitions commonly used to describe the directional distribution and its parameters is 
given in section 2. The measurement program, data processing, and the procedure for selecting the fetch-limited sea states 
are described in section 3; the procedures for estimating the directional distributions are given in section 4. Comparisons of 
the Maui directional distributions with previously published distributions are then given in section 5. This is followed by a 
description of the particular properties of the Maui distributions and the development of a parameterization, which describes 
these properties in section 6. A discussion on the importance of the bimodality is given in section 7, followed by the 
conclusions in section 8. 

2. The directional distribution  

The surface wave field can be described by the two-dimensional frequency–direction spectrum S(f, θ), which is often 
expressed as the product of the omnidirectional variance density spectrum S(f), and the directional distribution H(f, θ), as 
follows:

S(f, θ) = S(f)H(f, θ).(2.1) 

The directional distribution has the properties of a probability density function, namely,

H(f, θ)  0(2.2) 

and

 

In turn, H(f, θ) is often expressed as a Fourier series

 

where an, bn are the Fourier coefficients.
 

Measures of the central tendency and variation of H(f, θ) can be defined in terms of the first (n = 1) pair or second (n = 
2) pair of Fourier coefficients. In terms of the first pair of Fourier coefficients,

 

and

σ1(f) = {2[1 − (a2
1(f) + b2

1(f))1/2]}1/2.(2.6)

 

 



Following Kuik et al. (1988), θ1(f) is referred to as the mean wave direction and σ1(f) the circular rms spreading.

The analogous definitions in terms of the second pair of Fourier coefficients are

 

and

 

The angle θ2(f) is referred to as the dominant wave direction (Haring and Heidemann 1980), and the quantity σ2(f) is 

referred to as the directional spreading factor (Forristall and Ewans 1998); σ2(f) corresponds to the square root of the ratio 

of the variance in line with θ2(f) to the total variance. 

3. Measurement program and data processing  

a. The measurement program  

The wave measurements were made with a Datawell WAVEC buoy moored near the Maui-A platform, 32 km off the 
west coast of the North Island of New Zealand, in a water depth of 110 m. Measurements commenced in November 1986 
and concluded in November 1987. Wind measurements were made with a Lambrecht anemometer installed on the Maui-A 
platform at a height of 95 m above sea level.

b. Preliminary processing  

The signals of heave and pitch and roll angles were digitized at 1.28 Hz, and on each half hour, coincident and quadrature 
spectra (co–quad spectra) were computed from the previous 20 minutes of data. Spectral analysis followed the Welch 
(1967) technique with the final spectrum being an average of six subseries of 200-s length and having approximately 12 
degrees of freedom. The co–quad spectra were corrected for the response of the buoy heave filter and then smoothed from 
0.16 to 0.50 Hz, resulting in spectra with 0.005-Hz resolution from 0.03 to 0.155 Hz and 0.010-Hz resolution from 0.16 to 
0.50 Hz.

The first four Fourier coefficients of the directional spectrum were calculated from the co–quad spectra in the standard 
way (e.g., Long 1980), and subsequently spectra for the mean wave direction θ1(f) and the circular rms spreading σ1(f) 

were calculated.

The wind data were recorded on a strip chart, from which the 10-min mean speed and direction were obtained at hourly 
intervals. The wind speeds were reduced to an equivalent wind speed at 10 m above sea level using a neutral wind profile. 

c. Selection and processing of steady sea states  

A population of southeasterly spectra was established by selecting all those spectra for which the wind direction was from 
the southeast and the mean wave direction was within the sector 100°–150°. From this population a subselection of steady 
spectra was made on the basis that

1. the wind speed was steady to within 1 m s−1 for at least 4 hours (based on the last five wind estimates), and

 

2. S(f), σ1(f), and θ1(f) were approximately constant for the last 3 hours (based on the last 7 half-hourly spectra).
 

This selection process resulted in a subpopulation of 77 groups of co–quad spectra, each group containing the half-hourly 
spectra for the last 3 hours. The co–quad spectra in each group were averaged, resulting in 77 average co–quad spectra for 
fetch-limited conditions, with each average spectrum having approximately 72 degrees of freedom. The first four Fourier 
coefficients of the directional spectrum were again calculated from these averages, and in turn spectra for the mean wave 



direction θ1(f), the circular rms spreading σ1(f), and the directional spreading factor σ2(f) were calculated. 

A feature of the wave climate at the Maui location is the presence of a more or less persistent swell from the southwest. 
Fortunately, this component occurs at low-frequency, generally having a peak frequency of around 0.080 Hz (Ewans and 
Kibblewhite 1992), is well separated from the wind sea frequency band, and can easily be removed from the analysis by 
restricting further calculations and analysis to the high-frequency bandwidth corresponding to the local southeast wind sea. 
In a few cases it was not possible to apply this simple filter because the southeast sea bandwidth extended to low-frequency 
into the swell band, but these cases corresponded to large local sea states in which the local wind sea component completely 
swamped the southwest swell component. In these cases, in the frequency region in which the two components overlapped, 
the spectral levels associated with the wind sea were at least an order of magnitude larger than the swell component, and the 
mean wave direction at these frequencies was equal to the wind sea mean direction. Even so, results presented later show 
that the buoy is still able to resolve the directionality of the relatively small swell component in these cases. The selection of 
the low-frequency cutoff of the wind sea component was done by eye, based on plots of the omnidirectional, mean 
direction, and circular rms spreading spectra.

A number of parameters were calculated over the band width of the local southeast wind-sea, including the following:

● The maximum S(fp) of S(f) and the frequency of the maximum fp.
 

● The significant wave height, Hs = 4(m0 )½, and the mean wave period, T2 = (m0/m2 )½, where the mi are the 

moments of the omnidirectional spectrum.

In addition, the vector average wind speed and direction, averaged over the three hours, were stored for each spectrum.

The 77 spectra had significant wave heights ranging between 0.54 and 4.2 m, mean wave periods between 3.3 and 6.9 s, 

and had associated vector average wind speeds ranging from 4.6 to 18.3 m s−1, and inverse wave ages, u10/cp [where u10 is 

the 3-h vector average wind speed reduced to 10 m above sea level and cp = g/(2πf) is the deep water phase speed at the 

spectral peak], ranging from 0.70 to 1.4.

4. Estimation of the directional distribution  

a. Model-independent estimates  

An estimate was made of the directional distribution from the Fourier coefficients at each frequency, using both the 
maximum entropy method (MEM) (Lygre and Krogstad 1986) and the maximum likelihood method (MLM) (Isobe et al. 
1984). Both of these techniques are model independent and allow for the possibility that the distribution may be bimodal. 

The resulting MEM and MLM estimates at each frequency were subjected to further analysis, and the following 
parameters were computed for each:

● The local maxima and minima and their directions. For each estimate there may be either one or two local 
maxima/minima, depending on whether the particular distribution has respectively one or two peaks.

● Three directional distribution shape parameters as defined by Kuik et al. (1988): p, the ratio of the area of the 
distribution from θmax to θmax − π to the area of the distribution from θmax (the angle at which the maximum of the 

distribution occurs) to θmax + π; q, the ratio of the largest minimum to the smallest maximum (if the distribution is 

bimodal); and r, the ratio of the area of the secondary lobe over the area of the main lobe. Kuik et al. (1988) used 
these parameters to evaluate whether directional distributions could be categorized as unimodal and symmetric or 
nearly unimodal and symmetric if either a distribution was unimodal but not exactly symmetric or a distribution was 
strictly bimodal but the secondary lobe was relatively insignificant compared with the main lobe.

● A unimodal/symmetric parameter Upqr, which is set to 1 if the distribution can be categorized as unimodal and 

symmetric or nearly unimodal and symmetric (based on the criteria specified in appendix B of Kuik et al. 1988) and 0 
if not.

b. Symmetric double Gaussian estimates  



An alternative approach to deriving the directional distribution is to assume the true distribution can be described by a 
parametric model. Several unimodal parametric models that have been proposed are given by Borgman (1979). Included are 
the “cosine2s,”  wrapped normal, and von Mises models. An advantage of these models is that the number of parameters 
needed to describe them is less than four, the number of Fourier coefficients available for calculating them. The 
disadvantage of unimodal distributions is that they cannot describe the directional distribution at a given frequency in which 
wave components are arriving from different directions.

Bimodal distributions can, of course, describe up to two components, but in general they require more than four 
parameters to describe them. While four-parameter bimodal models have been proposed, by Hasselmann et al. (1980) and 
Borgman and Yfantis (1978), they are not ideal. The bimodal model proposed by Hasselmann et al. is a double cosine model 
in which both spreading parameters are forced to be equal to obtain a unique solution, and in the case of the Borgman and 
Yfantis model, the parameters cannot be directly related to the properties of the wave field.

More recently, Benoit (1993) describes an evaluation of a bimodal Gaussian model containing five parameters, which are 
calculated from the co–quad spectra by a least squares method. Benoit concluded that the method gave good estimates, but 
the evaluations were based on simulations of measurement arrays with at least four elements. A heave–pitch–roll buoy is 
effectively a three-element array, for which Benoit’s bimodal Gaussian model contains too many parameters. 

The properties of the MEM and MLM directional distributions of the Maui fetch-limited sea states presented in section 6b, 
suggest that the number of parameters in the bimodal Gaussian model can be reduced for fetch-limited sea states. In 
particular, it is reasonable to assume that the directional distribution is symmetric about the mean, and therefore that each of 
the two components of the bimodal Gaussian distribution can be assumed to have both the same amplitude and the same 
spreading. The proposed bimodal distribution then has the following form:

 

where σ(f) is the angular width and is a measure of the spreading of each component and θm1(f) and θm2(f) are the 

locations of the peaks.

The Fourier coefficients for this function are given by

 

Equation (4.2) is a set of four equations with three unknowns, σ, θm1, and θm2, which can be solved by a least square 

approach. The objective function O to be minimized is

O = (â1 − a1)2 + ( 1 − b1)2 + (â2 − a2)2 + ( 2 − b2)2,(4.3)

 

 



where, for example, â1 is the first Fourier coefficient, estimated from the data.

Equation (4.3) was solved for each frequency of the 77 spectra by a nonlinear optimization with the constraints that 0  
σ(f), θm1, θm2  2π. Initial guesses of the three parameters were obtained from the MEM estimates. The results are 

presented in section 6c. 

5. Comparison with other distributions  

a. Mitsuyasu distribution  

Mitsuyasu et al. (1975) measured directional wave spectra with a cloverleaf buoy, at open sea locations in the Sea of 
Japan and the Pacific Ocean and in a bay on the east coast of Japan. Meteorological data were collected from a tending ship 
near each observation station. They chose five datasets for estimating the directional distribution, with wind speeds ranging 

from 7 to 10 m s−1 and significant wave heights from 0.74 to 2.34 m. The cloverleaf buoy enables the first four pairs of the 
coefficients in Eq. (2.4) to be calculated. However, the higher-order coefficients, which are available from the measurement 
of the wave curvature, were not used because they were thought to be inaccurate. Thus, the data used by Mitsuyasu et al. 
(1975) were the same as if the measurement instrument was a heave–pitch–roll buoy. 

The Mitsuyasu distribution is based on the “cosine2s”  form,

 

where A(s) is a normalization factor to ensure Eq. (2.3) is satisfied. The parameter s is a function of frequency. 

Based on their data, Mitsuyasu et al. (1975) proposed the following parameterization for s:

 

where sp is the value of s at the frequency of the spectral peak fp, given by

 

where u10 is the wind speed at 10 m MSL. The directional distribution defined by Eqs. (5.1), (5.2), and (5.3) will be 

referred to as the Mitsuyasu distribution in the remainder of this paper.

b. Hasselmann distribution  

Hasselmann et al. (1980) report an analysis of data recorded during the JONSWAP experiment. The directional wave data 
were collected with a heave–pitch–roll buoy located in 22 m of water 52 km off the island of Sylt in the North Sea. 
Meteorological data were also collected at this site and a meteorological buoy located 27 km offshore in a water depth of 18 

m. The dataset chosen for analysis ranged in wind speed from 6.8 to 15.0 m s−1 and significant wave heights from 0.55 to 
1.88 m.

The parameterization proposed by Hasselmann et al. (1980) for their directional distributions is also based on the cosine2s 
form with the following parameterization for s:



 

where μ has a dependence on wave age as follows:

 

The directional distribution defined by Eqs. (5.1), (5.4), and (5.5) will be referred to as the Hasselmann distribution in the 
remainder of this paper.

c. Donelan distribution  

Donelan et al. (1985) report an analysis of data recorded with an array of 14 wave staffs in Lake Ontario and a similar, 
scaled down version in a large laboratory tank. The wave staffs were mounted on a tower 1 km offshore in a water depth of 
12 m. Meteorological data were also collected from the tower and with a buoy 11 km from the tower in deeper water. 
Eighty-five field recordings and seven laboratory recordings were used in the analysis. Donelan et al. (1985) do not report 
the absolute range of wind speed and significant wave heights associated with their analysis dataset, but the field data were 
in the range 0.83 < u10/cp < 4.6 and the laboratory data in the range 7.2 < u10/cp < 16.5. 

Based on the theoretical directional characteristics of freely propagating, second-order Stokes wave groups and analysis 
of their data, Donelan et al. (1985) proposed the following directional distribution:

H(f, θ) = 0.5β sech2β(θ − θ1(f)),(5.6)

 

where

 

The Donelan et al. (1985) dataset only extended to f/fp = 1.6. Thus, the constant value of β = 1.24 for frequencies greater 

than 1.6 was assumed.

The directional distribution defined by Eqs. (5.6) and (5.7) will be referred to as the Donelan distribution in the remainder 
of this paper.

d. Donelan–Banner distribution  

Based on high-frequency stereo photography, Banner (1990) concluded that β was not a constant at values of f/fp > 1.6 

as specified by Donelan et al. (1985) and proposed that

β = 10{−0.4+0.8393exp[−0.567ln(f/fp)2]}, f/fp > 1.6.(5.8)

 

Thus, this distribution, referred to as the Donelan–Banner distribution in this paper, consists of the Donelan distribution 
but with the Banner value for β for f/fp > 1.6. 

e. Comparisons with the Maui data  



1) THE S PARAMETER 

The s parameter in the cosine2s distribution can be estimated directly from the circular rms spreading as

 

This parameter was calculated for all 77 Maui spectra and is plotted as a function of f/fp in Fig. 2 . Also plotted in Fig. 

2  are the s values from the Mitsuyasu and the Hasselmann distributions for u10/cp = 0.7 and 1.4. Figure 2  shows that 

the Maui data are in general agreement with previous observations of this parameter—the spreading is a minimum (s 
maximum) at the spectral peak but increases with increasing and decreasing frequency. With the exception of the Mitsuyasu 
u10/cp = 0.7 distribution, the Maui distributions, with higher s values, show less directional spreading than the other 

distributions in the region of fp and over the high-frequency range of the spectrum. The data also show a more rapid 

increase in spreading with decreasing frequency below fp. 

Hasselmann et al. (1980) argue that, if the directional spreading is controlled predominantly by nonlinear wave–wave 
interactions, then s should depend mainly on f/fp while, if atmospheric input was the controlling process, then s should 

depend mainly on u10/cp. To investigate the behavior of the Maui s values, the spectra were categorized into groups of 

inverse wave age, the frequency normalized by fp and binned, and an average s value calculated for each bin. This resulted in 

average s curves for each category, and these are plotted in Fig. 3 . 

The curves in Fig. 3  are essentially superimposed under the frequency normalization. There is, however, some 
indication of a small systematic difference between the curves over the frequency range 1.5 < f/fp < 3 and, hence, a possible 

weak dependence of s on u10/cp. 

For direct comparison with the Mitsuyasu and Hasselmann functions a parameterization for s was established for the Maui 
data. Following the same approach as Mitsuyasu et al. (1975) and Hasselmann et al. (1980), it was assumed that s could be 
determined by a relation of the form

 

and the constants k and m determined by linear regression analysis of log(s) versus log(f/fp).
 

The linear regression was performed on the data for f/fp < 1 and for f/fp  1. On the basis of the lack of a clear 

dependence of the Maui s parameter on u10/cp, all 77 spectra were included in the regression. 

The analysis resulted in the following s parameterization for the Maui data:

 

2) THE Σ1 PARAMETER
 

Figure 4  gives a comparison of the circular rms spreading calculated from the Maui data with the published 
distributions. The Mitsuyasu and Hasselmann curves have been included by applying Eq. (5.9); while the Donelan and 
Donelan–Banner curves have been determined from Eq. (2.6), where the Fourier coefficients were derived from the 
respective distributions. Again, good general agreement is seen between the Maui and other distributions, but at the peak 
frequency the Maui σ1 values are closer to the Donelan and Donelan–Banner distributions than to the Mitsuyasu (u10/cp = 



1.4) and Hasselmann distributions (both of which suggest more spreading in the region of the peak). The Mitsuyasu (u10/cp 

= 0.7) curve shows the least spreading in the region of the peak. At higher frequencies, f/fp > 1.4, it is clear that the 

spreading is not constant as given by the Donelan distribution.

When the Maui σ1 data are grouped into the same wave age categories as the s data presented in Fig. 3 , no significant 

wave age dependency is apparent (Fig. 5 ); although as for the s parameter curves in Fig. 3 , a small systematic 
difference between the Fig. 5  curves over the frequency range 1.5 < f/fp < 3 indicates the possibility that a weak 

dependency may exist.

3) THE Σ2 PARAMETER
 

A comparison of the directional spreading factor calculated from the Maui data with the published distributions is given in 
Fig. 6 . The curves have been determined from Eq. (2.8), where the Fourier coefficients are derived from the respective 
distributions. Again there is good qualitative agreement between the Maui data and the published distributions. The directional 
spreading factor attains a maximum at the peak frequency and decreases with increasing and decreasing frequency. At 
around f/fp = 2.8 the Maui σ2 values tend to a minimum, but at higher frequencies they increase again. The increase of σ2 

above f/fp = 2.8 results from an increase in the in-line variance that occurs at these frequencies. 

It is clear from the figure that the Maui σ2 values are significantly higher than the Hasselmann and Mitsuyasu (u10/cp = 

1.4) curves in the region of the peak frequency, and over most of the frequency range they are more or less bounded by the 
Donelan–Banner and the Mitsuyasu (u10/cp = 0.7) curves. 

As for the σ1 data, the σ2 values grouped by wave age, presented in Fig. 7 , show some but inconclusive evidence for 

a weak dependence on wave age for f/fp > 1.5. 

6. The Maui directional distribution  

a. Characteristics of the MEM and MLM distributions  

The cosine2s parameterization of the Maui data derived in section 5e(1) permits a directional distribution function to be 
ascribed to the Maui fetch-limited data, which is unimodal, symmetric but based only on the first pair of Fourier coefficients 
in Eq. (2.4). The estimates of the directional distribution, using the maximum entropy and maximum likelihood methods, 
make use of all of the Fourier coefficients available from heave–pitch–roll buoy data. The resulting distributions show that a 
simple cosine2s form is not appropriate for the fetch-limited Maui data. In particular, the estimates show that for frequencies 
above the spectral peak a unimodal, symmetric distribution is not appropriate.

Figure 8  is an example of the MEM and MLM estimates for one of the spectra (Hs = 3.8 m, T2 = 6.4 s), and Fig. 9 

 shows frequency slices through these spectra. Both distributions are unimodal at the peak frequency but become bimodal 
at frequencies above the spectral peak, with the MEM estimate becoming bimodal at around 0.17 Hz ( 1.4fp) and the MLM 

at around 0.25 Hz ( 2fp). 

The observation that fetch-limited sea states have bimodal distributions at frequencies greater than the spectral peak 
frequency has previously been reported by Young et al. (1995), who showed that their directional spectra, which were 
recorded with a wave gauge array, demonstrated bimodality at frequencies greater than 2fp. This provided experimental 

confirmation of earlier work by Banner and Young (1994), who showed that the directional distribution of components in 
the equilibrium range of the spectrum were bimodal when calculations were made using the full solution to the nonlinear 
wave–wave interaction source term. Young et al. (1995) presented a comparison between a directional spectrum calculated 
this way with their spectra and showed that there was good agreement. Accordingly, they concluded that the bimodal effect 
they observed was caused by nonlinear wave–wave interactions. They also speculated why the phenomenon had not been 
previously reported and cited a number of publications in which the effect was visible but apparently given little or no 
attention. They also made the observation that the effect will clearly not be observed in studies based on analyses where the 
directional distribution has been assumed to be unimodal, such as reported by Mitsuyasu et al. (1975). 

The Young et al. (1995) data were collected with a wave gauge array in Lake George, Australia. The lake had a water 
depth of 2 m and the reported waves were in the range 1.7 < u10/cp < 3. The Maui spectra show that the effect is also 

present in open ocean conditions. In addition as the effect has been observed with a heave–pitch–roll buoy, it can be 



concluded that a three-element system, which provides estimates of the first two pairs of Fourier coefficients in Eq. (2.4), is 
capable of resolving the bimodality.

A feature of the estimates was that the MEM estimate always gave an apparent improvement in the resolution of the 
bimodal effect. Previous studies (e.g., Nwogu et al. 1987) have noted the high resolving power of the MEM estimate by 
comparison with the MLM estimate, while others (e.g., Brisette and Tsanis 1994), based on synthetic data, have concluded 
that the MEM estimate may at times provide two peaks when there is actually only one. Krogstad (1991) argues that this 
observation is not necessarily a weakness of the MEM estimate on the grounds that, if the form of the directional distribution 
is already known, then additional information is known and the MEM estimate is no longer an optimal estimate. While such a 
result has not been reported for the MLM estimates, it has been observed to artificially broaden the spectrum (Young 1994). 
Of course, when we are estimating directional spectra from data measured in the open ocean, we do not know the 
directional distribution a priori and therefore we cannot dismiss either of the estimates. However, it should be noted that the 
MEM estimate preserves the Fourier coefficients—that is, the Fourier coefficients calculated from the estimate are identical 
to those used to estimate it; this is not the case for the MLM estimate. In view of these issues, both MEM and MLM 
estimates were made from the Maui data, and both sets investigated in parallel.

The extent of the bimodality in the MEM and MLM estimates was compared by estimating the percentage of 
unimodal/symmetric estimates, as given by the unimodal/symmetric parameter Upqr. This is plotted as a function of f/fp in 

Fig. 10 . The figure shows that in the region of the peak frequency both estimates produce predominantly 
unimodal/symmetric distributions. However, while this occurs through to around f/fp  1.7 in the case of MLM, the 

percentage of MEM unimodal/symmetric distributions quickly diminishes with increasing f/fp, and there are effectively no 

occurrences above f/fp  1.7. The percentage of MLM unimodal/symmetric distributions also decreases above f/fp  1.7, 

but increases again above f/fp  3. It is not clear why this tendency occurs but, whenever the distribution is 

unimodal/symmetric at f/fp > 3, the peak is located at an angle close to that of one of the peaks of a neighboring bimodal 

distribution. The figure also indicates occurrences of distributions that are not unimodal/symmetric below f/fp = 1.0 for both 

MEM and MLM distribution types, indicating the existence of bimodal distributions at frequencies below the peak, something 
which was noted by Young et al. (1995) to occur in the theoretical estimate of the directional spectrum. However, the 
increase in the number of bimodal distributions below f/fp = 1.0 in the Maui data may result from the presence of a swell 

component in some of the spectra.

b. Characteristics of the components of the MEM and MLM distributions  

The results presented in the previous section clearly indicate that at frequencies sufficiently greater than the peak 
frequency a bimodal representation of the directional distribution is more appropriate than a unimodal one; they also indicate 
that this may be the case at frequencies less than the peak frequency. This suggests that fetch-limited sea states have 
bimodal directional distributions.

An ideal fetch-limited event will have a directional distribution symmetric about the mean direction; and, if that distribution 
is indeed bimodal, the two modes will be identical. It is therefore of interest to assess the degree of symmetry that exists in 
the Maui distributions. This can be done by comparing the properties of the two peaks or components identified in the MEM 
and MLM estimates.

In order to quantify the properties of the components that make up the MEM and MLM distributions, the estimates were 
peak fitted with a pseudo–Voigt function. The pseudo–Voigt function is a combination of a Gaussian and Lorentzian (or 
Cauchy) distribution. The combination allows for a flexible fit to a peak—the Lorentzian distribution allowing for a broad 
distribution and the Gaussian distribution accommodating a peaked distribution. Thus, an equation of the following form (the 
pseudo–Voigt function) was fitted to each distribution:

 

where

 



and

 

The values of the parameters of the ith peak—Ai(f) the amplitude, Fi(f) the fraction of Lorentzian to Gaussian function, θi
(f) the direction, and Γi(f) the half-width (or the full width at half height)—quantify the components. 

The summation in Eq. (6.1) allows for the possibility of one (n = 1) or two peaks (n = 2) in the spectrum, and the 
summation over k in the Gaussian and Lorentzian functions ensures the distributions are wrapped over 2π (the range from 
−5 to 5 was found to be sufficient to give a good fit to all the estimates).

Plots of the locations of the peaks of the two component (n = 2) fits to the MEM distributions and of their angular 
separation are given in Fig. 11 . When plotted in this way the angular separation for each spectrum essentially collapse 
onto a single curve, indicating that the angular separation can be considered a function of f/fp only. The continuous lines are 

the locations of the maxima and their angular separation [respectively plots (a) and (b)] of the Exact-NL distribution 
presented in Young et al. (1995). It should be noted here that the Exact-NL lines are derived from the maxima of the Exact-
NL distribution, whereas the Maui points are the maxima of the component peaks. The locations of the maxima of the 
Exact-NL distribution components, which would be directly comparable with the Maui points, are likely to be slightly 
different (larger separation) to those given by the lines. This difference will be small at higher frequencies where the peaks 
are well resolved but larger at lower frequencies where the components of the distribution begin to merge.

The data were also categorized into groups of inverse wave age, binned into f/fp classes, and an average angular 

separation calculated for each bin. The resulting average angular separation curves for each category are plotted in Fig. 12 
. As was found for the other parameters where this type of plot was produced, there is no clear dependence of angular 

separation on wave age, but over the frequency range 1.5 < f/fp < 3, the angular separation tends to be larger for higher 

values of u/cp or equivalently for the “younger”  wind seas. Thus, some weak dependence of the angular separation on wave 

age cannot be entirely discounted over this range of f/fp. 

Figures 11  and 12  show clearly that the Maui distributions are bimodal above the peak frequency. They also 
indicate bimodality for frequencies below the peak frequency, but the spread of some of these locations around the 
southwest and west directions suggest that a number of these points are small swell components. In the analysis, the low-
frequency swell was excluded from further analysis (by excluding the frequency band of the swell) except where the wind 
sea component extended into low frequencies and “swamped”  the swell component. The figures show that the buoy and 
analysis is still able to resolve the small swell component in these cases.

The Phillips turbulent pressure fluctuation theory for wave growth also predicts a bimodal wave direction spectrum. The 
theory predicts that wave growth is largest when the component of wind velocity in the direction of propagation equals the 

wave speed. A “resonance”  angle  = sec−1(U/c) is defined (Longuet-Higgins et al. 1963). The expected angular separation 
of peaks based on  calculated from the Maui data (wind and phase speeds) are plotted in Fig. 12 . Clearly, these 
resonance angle peak separation values do not match the observed Maui curves. This result, together with the fact that the 
resonance angle is only a function of wave age, whereas no clear dependency of any of the directional parameters on wave 
age could be identified in the Maui data, suggests that the Phillips turbulent pressure fluctuation theory for wave growth is 
not responsible for the observed angular separation. On the other hand, the Exact-NL lines on the plots (Fig. 11 ) show 
remarkably good agreement with the Maui data, leading to the conclusion that it is nonlinear wave–wave interactions that are 
primarily responsible for the bimodality.

The properties of the two components were examined by categorizing them as either right or left, depending on whether a 
clockwise or an anticlockwise rotation is required to rotate from the mean direction to the direction of the component’s 
peak. These are plotted in Fig. 13 . Figure 13a  is a plot of the right and left peak location relative to the mean θ1 at 

that frequency, Fig. 13b  is a plot of the respective amplitudes, and Fig. 13c  is that of the half-widths. In the plots, 
points with f/fp < 1.3 are plotted as open circles. 

If the right and left properties were equal, all the points would lie on the straight line. If all points of all the properties lay 
on the straight line, then the distribution would be perfectly symmetrical. This is clearly not the case, but in general, it can be 
seen that it is mostly the higher amplitude (Fig. 3b ) points with f/fp < 1.3 that are farthest from the straight line—the 

points with f/fp  1.3 more or less lie on the straight line. 



Many of the total number of distributions with frequencies in the region of the spectral peak were unimodal and 
symmetric (see Fig. 10 ); those that were not (plotted in Fig. 13 ) were often nearly unimodal, in which the 
distribution comprised one large peak and a secondary smaller one that accounted for a small sidelobe to the main peak. 
These cases account for the majority of the distributions that are not symmetric.

Nevertheless, the asymmetry that is evident to a larger or smaller extent at all frequencies in Fig. 13  should not be 
overlooked. For f/fp < 1.3, the right amplitude is often substantially larger than the left one and closer to the mean direction; 

this is consistent with a nearly unimodal distribution. For f/fp  1.3, the points in Figs. 13a and 13b  appear to follow a 

straight line with a slope slightly different from unity. It is not clear what is responsible for the apparent asymmetry; but 
possible causes might be some residual effect of the low-frequency swell or some asymmetry in the fetch, which would 
account for the increased asymmetry in the low-frequency, older, components and the reduction in the asymmetry at higher 
frequencies (larger f/fp). The measured directional distributions reported by Young et al. (1995) also show some asymmetry, 

but they believed this to be due to sampling variability—something that is also present in the Maui data. 

Comparable plots to those in Figs. 11–13 , made for the MLM data but not given here, showed similar effects. The 
more significant differences were that the MLM plots had fewer points (i.e., fewer bimodal distributions in the MLM), the 
angular separation was slightly smaller, and the half-widths slightly larger than the MEM distribution points. 

c. A proposed parameterization based on the symmetric double Gaussian distribution  

In this section, a new parameterization is developed for the directional distribution of fetch-limited sea states. The 
parameterization defines the bimodality for frequencies above the spectral peak, while maintaining consistency with the 
integrated spreading parameters σ1 and σ2. 

Based on the characteristics demonstrated in the previous section it is assumed that the bimodality displayed by the 
distributions above the peak is symmetric. This is supported by the heuristic argument that, if the bimodality is a robust 
feature of nonlinear wave–wave interactions, the growth of each peak should be equal. 

In addition, while the general shape of the MEM and MLM estimates are similar, it is clear that their differences (e.g., see 
Fig. 9 ), which arise because of the limited number of available Fourier coefficients, suggest that there is a number of 
possible functions that will give the same first four Fourier coefficients of the measured distribution. For convenience then, 
it is assumed that the form of this bimodal, symmetric distribution should be a bimodal wrapped Gaussian function of the 
type defined in Eq. (4.1). This is a relatively convenient function for computer applications, and the parameters can be 
estimated directly from the Fourier coefficients of the measurements by the method of least squares described in section 4. 
The resulting estimates are no less a valid realization as the MEM and MLM estimates.

The parameters resulting from the least squares fitting are presented in Fig. 14 . Figure 14a  is a plot of the peak 
locations, θm1, θm2, and Fig. 14b  is a plot of the angular width parameter σ. Figure 14a  also shows the Exact-NL 

curves for comparison. The peak locations of the symmetric double Gaussian are generally the same as those of the MEM 
(Fig. 11 ), but the symmetric double Gaussian does not, however, show as clear a separation of the peaks as the MEM 
estimates for f/fp < 2. The plot of the angular width parameter σ (Fig. 14b ) shows that it has a minimum at fp and 

increases both for f/fp < 1 and for f/fp > 1, but largely levels out for f/fp > 1.7. The few points at f/fp > 2 with values of σ > 

45° corresponded to estimates in which the peak locations were closer together than the majority of neighboring points at 
those values of f/fp—thus, the larger angular width makes up for the smaller angular separation of the peaks for those 

points.

The parameterization is established through two functions of the normalized frequency—one which models the angular 
separation of the peaks and another which models the shape of the angular width parameter. Clearly, there is a significant 
change in the behavior of the data at fp, and to adequately account for this, a pair of functions for f/fp < 1 and another pair 

for f/fp  1 are specified. There are any number of functions that can adequately describe the shape of the angular 

separation and angular width respectively; but this number is substantially reduced if the functions are also required to give a 
distribution that adequately describes the spreading parameters σ1(f) and σ2(f). 

The functions selected, based on curve fits, are as follows:



 

where Δθ is the angular separation, θm2 − θm1, of the peaks, and

 

Thus, the angular separation is nonzero at all frequencies but set equal to the fixed value of 14.93 degrees for f  < fp. 

Functions (6.4) and (6.5) together with Eq. (4.1) constitute the symmetric double Gaussian distribution. In the application of 
this parameterization the peaks are assumed to be at the same but opposite angles from the mean wave direction. The 
distribution parameters and the curves resulting from the parameterization are plotted in Fig. 15 . Figure 15a  is the plot 
of the angular separation of the peaks, Δθ; Fig. 15b  is the Gaussian angular width parameter σ; Fig. 15c  is the 
circular rms σ1; and Fig. 15d  is the directional spreading factor σ2. 

The shape of the symmetric double Gaussian with this parameterization is given in the shaded image plot in Fig. 16  
and the frequency slices in Fig. 17 . The frequency scale is f/fp and the amplitudes have been normalized to one in both 

plots. The figures demonstrate clearly how the distribution is unimodal at low frequency and bimodal at higher frequencies 
having a shape rather like a tuning fork (Fig. 16 ). While the model is made up of two Gaussian components, the plots 
show that the distribution does not become bimodal in shape until f/fp > 2. This is more consistent with the measured 

distributions when they are estimated from the MLM procedure rather than the MEM distribution, in which the bimodality 
becomes apparent at lower values of f/fp, and it is consistent with the observations of Young et al. (1995). 

7. Discussion  

The Maui data suggest that fetch-limited sea states have bimodal directional distributions, but how important is it that this 
bimodality is included in calculations for practical purposes? To investigate this, a model fetch-limited sea state is 

constructed for a fetch of 200 km and a wind speed of 10 m s−1. The omnidirectional spectrum is modeled with a 
JONSWAP spectrum, and a frequency–direction spectrum is computed, each for the Hasselmann, Donelan–Banner, and 
symmetric double Gaussian directional distributions. The resulting distributions are plotted in polar form in Fig. 18 . 
Figure 18a  is a plot of the direction spectrum for each distribution type. The direction spectrum is calculated by 

integrating the frequency–direction spectrum over frequency. The radius at each angle is the spectral level (in m2 deg−1). 
The figure shows that the overall directional distribution of energy of the symmetric double Gaussian remains unimodal; the 
more energetic components in the region of the peak of the spectrum therefore dominate the higher frequency, bimodal 
components.

Figure 18b  is a polar plot of the directional distribution at f  = 0.3 Hz ( 3fp) for each of the three spectra. The radius 

at each angle is the spectral level (in units of m2 Hz−1 deg−1). As expected, this plot shows that at the higher frequencies the 
bimodality is significant.

Banner and Young (1994) conclude that the bimodality is a robust feature of predictions made using the full solution to the 
nonlinear wave–wave interaction source term in the spectral energy balance equation for wave growth. For computational 
efficiency, operational numerical wave models employ various approximations to the source terms. In 1G models the 
nonlinear wave–wave interaction source term is not considered; in 2G models the nonlinear source term is considered 
through a parameterization of the nonlinear spectral energy transfer and by constraining the spectral shape; and in 3G models 
the nonlinear interactions are approximated with a parameterization. Clearly, the 1G and 2G models, which assume a 
unimodal parameterization for the directional spreading, will not predict directional bimodality at f/fp > 1. It is, however, not 

clear how well the 3G models will predict directional bimodality; but the results in Young et al. (1987) casts some doubt on 
this, particularly their Fig. 5 , which shows differences in the directional spectra derived from the Exact-NL model and 
the 3G-WAM models. The Exact-NL spectrum shows bimodality, but the 3G-WAM spectrum does not. 

Figure 18  shows that the prediction of bimodality is not likely to be significant within the active sea state. Thus, 



engineering calculations of, say, the forces acting on a vertical pile in a sea state are unlikely to be compromised by 
assuming the directional distribution is unimodal. On the other hand, one can speculate that due to dispersion the bimodality 
may become more significant in the prediction of swell at a location some distance from the source and at relatively large 
angles from the direction of the wind field of the source. At such a location, the swell could be larger than predicted by 
current numerical models. Even at a location directly in line with the wind field of the source, it might be expected that, 
again due to dispersion, the energy of the swell might attenuate more quickly with time than predicted by current numerical 
models.

8. Conclusions  

The integrated properties of the moments of the Maui directional distribution, and in particular the circular rms spreading 
and the directional spreading factor, are consistent with previously published results of Hasselmann et al. (1980) and 
Donelan et al. (1985), but their values are closer to those of the Donelan et al. (1985) distribution, which has a narrower 
spreading than that published in Hasselmann et al. (1980). 

However, unlike the earlier results associated with a unimodal directional distribution at all frequencies, the Maui data 
provide convincing evidence for the presence of bimodal directional distributions at frequencies higher than the peak 
frequency. This supports the work of Young et al. (1995), who observed the same phenomenon but with observed 
bimodality occurring for f/fp > 2. The Young et al. data were recorded in Lake George, a 2-m-deep lake in Australia. The 

Maui data were recorded in an open ocean location, where the water depth is 110 m, and over a large range of wind and 

wave conditions with wind speeds to 20 m s−1 and significant wave heights to 4.1 m. The bimodality remained a dominant 
feature of all of these conditions; thus the observations of the effect are extended to open ocean scales by the Maui data. 

The results support the conclusion that nonlinear wave–wave interactions are responsible for the bimodality. No clear 
dependency of any of the directional parameters on wave age could be identified in the Maui data. Therefore, any 
contribution to the bimodality by the Phillip turbulent pressure fluctuation wave growth mechanism must be weak.

The proposed symmetric double Gaussian parameterization for the Maui directional distributions reproduces the essential 
features of measured directional distributions, giving a consistent circular rms spreading and directional spreading factor 
over frequency, at the same time as reproducing the bimodality at higher frequencies and approximating the peak width of 
the two peaks in the high-frequency directional distribution. This parameterization is useful for evaluating the qualitative 
aspects of the directional spreading and is probably as good as previously proposed distributions for quantitative evaluation, 
but it is expected that datasets acquired with higher-resolution instrumentation, together with more extensive analyses of the 
data than has been possible in this study, will ultimately lead to a more precise parameterization.

The parameterization has shown that, because the bimodality occurs at higher frequency with lower spectral levels, the 
total directional distribution of energy of a sea state remains unimodal. It therefore seems likely that, unless there is a 
particular application that has a strong frequency dependence, engineering calculations that make use of a simple unimodal 
description of the directional distribution are adequate. It is possible, however, that the existence of a bimodal directional 
distribution in real sea states may produce levels of swell at certain locations that are not well predicted by current numerical 
models.
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Fig. 1. The Greater Cook Strait Region of New Zealand. The WAVEC buoy was installed close to the Maui-A platform. The 
sector depicts a southeasterly fetch of 194 km from the measurement location.

 
Click on thumbnail for full-sized image. 

Fig. 2. The s parameter of the “cosine 2s”  distribution, plotted as a function of f/fp for the Maui data and the Mitsuyasu and 

Hasselmann distributions.
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Fig. 3. Maui s parameter curves. Each curve is the average of s as a function of f/fp for the specified range of inverse wave age.
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Fig. 4. Circular rms spreading σ1 plotted as a function of f/fp for the Maui data and the Mitsuyasu, Hasselmann, Donelan, and 

Donelan–Banner distributions. 
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Fig. 5. Maui σ1 curves. Each curve is the average of σ1 as a function of f/fp for the specified range of wave age.
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Fig. 6. Directional spreading factor σ2 plotted as a function of f/fp for the Maui data and the Mitsuyasu, Hasselmann, Donelan, 

and Donelan–Banner distributions. 
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Fig. 7. Maui σ2 curves. Each curve is the average of σ2 as a function of f/fp for the specified range of wave age.

 

 
Click on thumbnail for full-sized image. 

Fig. 8. Shaded image plot of the MEM and MLM estimates for one of the spectra (Hs = 3.8 m, T2 = 6.4 s). Dark corresponds to 

high levels, light to low levels. The spectral levels at each frequency are normalized to have a maximum of one.
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Fig. 9. Frequency slices through the shaded image plots in Fig. 8 . 
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Fig. 10. The percentage of unimodal/symmetric MEM and MLM estimates plotted as a function of f/fp.
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Fig. 11. Peak locations (a) and angular separation of peaks (b) of the pseudo–Voigt function components fitted to the MEM 
distributions.
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Fig. 12. Angular separation of peaks. Each curve is the average separation of the peaks of the pseudo–Voigt function fits to 
the MEM distributions, as a function of f/fp, for the specified range of inverse wave age. The points are the values of the peak 

separation defined by 2sec−1(u/c) for the Maui data. 
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Fig. 13. Properties of the right (clockwise rotated from the mean direction) and left (anticlockwise rotated) components of the 
pseudo–Voigt function fits to the MEM distributions: (a) peak locations, (b) peak amplitudes, and (c) peak half-widths. Points 
with f/fp < 1.3 are plotted as open circles. 
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Fig. 14. Symmetric double Gaussian parameters, from fitting to the Maui data. (a) Peak locations, continuous lines are the 
locations of the Exact-NL data from Young et al. (1995), (b) spreading parameter σ. 
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Fig. 15. Symmetric double Gaussian parameterization (continuous line) and Maui data (dots): (a) peak locations, (b) spreading 
parameter σ, (c) circular rms spreading σ1, and (d) spreading factor σ2. 
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Fig. 16. Shaded image plot of the symmetric double Gaussian spectrum. Dark corresponds to high levels, light to low levels. 
The spectral levels are normalized to have a maximum of one.
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Fig. 17. Frequency slices through the symmetric double Gaussian spectrum presented in Fig. 15 . Thin lines are the separate 
Gaussian components.
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Fig. 18. Polar plots of (a) the direction spectrum and (b) the directional distribution at 0.30 Hz for a fetch-limited sea state with a 

fetch of 200 km and a wind speed of 10 m s−1. Thin lines: the symmetric double Gaussian distribution; medium thick lines: the 
Donelan distribution; and thick lines: the Hasselmann distribution.
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