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ABSTRACT

The authors study the dynamics of a two-layer approximation to the steadily 
forced baroclinic circulation in a closed ocean basin with the aim of 
understanding its temporal variability and the onset of low-frequency 
variability. It is found that, for a range of dissipation that includes values used 
in a number of ocean modeling studies in the past five years, if one waits a 
sufficient length of time, the asymptotic behavior of the system is 
characterized by only a very small number of degrees of freedom. By varying 
the dissipation as a control parameter, the authors identify abrupt transitions in 
the form of the long-term circulation exhibited by the model. One type of 
transition, from a time-varying circulation dominated by two frequencies to a 
chaotic circulation, is accompanied by the appearance of low-frequency 
variability. This constitutes an internal mechanism for the production of 
variability at climatological timescales. The model used is a two-layer, 
quasigeostrophic model forced by a steady wind stress with a uniform 
cyclonic curl. Dissipation is modeled by a lateral diffusion of momentum with 
a uniform eddy viscosity. In two sets of experiments with two internal 
deformation radii and layer depth ratios, the eddy viscosity is varied and the 
types of circulation that result are reported. The stable steady circulation seen 
in the viscous limit gives way to time-dependent circulations of increasing 
temporal complexity. Spatially, the circulations fall into two types, those 
dominated by large recirculating gyres in the western part of the basin and 
those with a strong (and strongly meandering) peripheral current reminiscent 
of that seen in the Black Sea. From an examination of the linear eigenmodes of 
the steady circulation, the initial transition to time dependence may be 
characterized as a baroclinic instability of the western recirculation gyre.
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1. Introduction  

Linear theory has long been valued for its ability to illuminate the physical mechanisms behind the onset of time 
dependence in physical systems. An example is the use by Bryan (1963) and Ierley and Young (1991) of the notion of the 
shear instability of a long western boundary current to explain the onset of time dependence in barotropic models of the 
wind-driven ocean circulation. In modern eddy-resolving general circulation models of the ocean circulation, the time 
dependence that is observed is complicated, and estimates of the effective Reynolds numbers for such flows indicate that 
they should be strongly nonlinear. It is the nonlinearity of the flow that is responsible for the complicated time dependence. 
In this paper, we explore how the baroclinic circulation in a small closed basin evolves increasingly complicated temporal 
variability as the level of dissipation in the model decreases. Two significant points emerge. The first is that if one waits 
sufficiently long for transients to die away, then for a wide range of parameters, the circulation settles down to a flow with 
only a small number of degrees of freedom. The associated temporal variability is then either periodic, quasiperiodic, or 
characterized by a “strange attractor.”  The second main point is that the transition to chaotic flow is accompanied by the 
introduction of very low frequency variability; the wind driven circulation contains a natural, internal mechanism for 
producing variability at long timescales including climatological timescales. In addition, we note that parameter regimes exist 
in which multiple stable time-dependent circulations can be realized according to the choice of initial conditions.

The complicated time-dependent behavior of a two-layer quasigeostrophic GCM with double-gyre wind stress forcing, a 
free-slip boundary condition on the lateral walls, and both horizontal and bottom friction was studied by Holland (1978), who 
showed the importance of mesoscale eddies in the dynamics of the wind-driven ocean. The model circulation was in 
statistical equilibrium and contained a mesoscale eddy field, interacting with the time-mean flow. The circulation averaged 
over a large time contained an eastward jet separating the northern and southern gyres. The eddies appeared as a result of 
internal instabilities. Due to the high Reynolds numbers of these experiments, the instantaneous eddy fields were too 
complicated to be analyzed, but it was noticed that the eddies transferred energy from the upper layer to the lower. This 
energy transfer limited the amplitude of the upper-layer circulation and established a time-mean circulation in the lower layer. 

Ierley and Sheremet (1995) studied a barotropic circulation in a square basin with single-gyre wind forcing and free-slip 
boundary conditions on the lateral walls and found multiple steady equilibria. One of the steady solutions in that case had 
relatively weak recirculation in the northeastern corner of the basin (anticyclonic wind stress curl was used in that study) 
and a well-developed western boundary intensification. Another solution was a strongly nonlinear basin-filling gyre 
reminiscent of a Fofonoff inertial solution (Fofonoff 1954). 

A linear stability analysis (Sheremet et al. 1997) of the steady, barotropic, single-gyre circulation with no-slip conditions at 
the meridional walls and free-slip conditions at the latitudinal walls showed that the most unstable eigenmode of the more 
realistic, viscous circulation solution with weak recirculation, which appears first as the Reynolds number is increased, is 
trapped at the western wall. Time-dependent solutions of this problem were studied by Kamenkovich et al. (1995) and 
Sheremet et al. (1995). In these works, it was shown that at a critical Reynolds number, Re1, the trapped eigenmode 

becomes a growing mode and the circulation experiences an oscillatory instability that gives rise to stable periodic solutions 
(a Hopf bifurcation: e.g., Drazin 1992). For a range of the Reynolds numbers above this critical value, the flow is periodic, 
but at Re2 > Re1, another frequency appears in the time-dependent solution. At some larger Re the flow became aperiodic. 

Meacham and Berloff (1997, hereafter MB1) examined a similar problem, that of a barotropic circulation in a rectangular 
basin driven by single-gyre wind forcing that differed in the use of no-slip boundary conditions. In that work, only a single 
family of steady states was observed. These resembled the viscous circulation solutions with weak recirculation found by 
Ierley and Sheremet (1995) but with some structural differences. In a linear stability analysis (Meacham and Berloff 1998, 
manuscript submitted to J. Mar. Res.) these solutions were found to have two modes of instability, depending on the basin 
aspect ratio and the strength of the forcing. One mode, prevalent in a basin with a sufficiently large meridional extent, is a 
western boundary current instability of the type discussed by Ierley and Young (1991). The second is a more complicated 
instability involving the inertial recirculation region and the Moore wave (Moore 1963; Pedlosky 1987). Meacham and Berloff 
(1998, manuscript submitted to J. Mar. Res.) also observed resonances between the instabilities of the steady circulation and 
the normal modes of the basin.

Cessi and Ierley (1995) extended the results of Ierley and Sheremet (1995) on barotropic circulation with free-slip 
boundary conditions by considering double-gyre wind forcing. Cessi and Ierley showed that, for some range of parameters, 
the circulation possesses multiple steady states. Some of the steady states are perfectly antisymmetric solutions in which the 
strength of the cyclonic gyre is equal to the strength of the anticyclonic one. Other solutions appear in pairs. Each member 
of the pair may be obtained by applying the quasigeostrophic symmetry y  −y,   −  to the other member of the pair, 
but each solution is not itself invariant under this symmetry. One of the pairs corresponded to strongly nonlinear inertial 
recirculation gyres (one is cyclonic and another is anticyclonic), which filled the whole basin and had unrealistically large 
velocities.



Jiang et al. (1995) and Speich et al. (1995) found multiple steady states and periodic solutions in a double-gyre 1½-layer 
shallow-water model with both free-slip and no-slip boundary conditions on the lateral walls. Periodic solutions in that case 
arose from the steady states by Hopf bifurcations. The periodic oscillation was related to the appearance and nonlinear 
saturation of multipole vortices. These vortices interacted with each other and with the eastward jet that resulted from the 
confluence of the two western boundary currents. When the control parameter was shifted farther from the critical Hopf 
bifurcation value, the periodic solution became unstable and the circulation behaved aperiodically. The power spectrum of 
the aperiodic solution had several low-frequency spikes associated with interannual variability. 

Strongly time-dependent and chaotic circulation was studied by McCalpin and Haidvogel (1996) in an equivalent-
barotropic (reduced-gravity 1½-layer quasigeostrophic) model driven by a double-gyre wind stress (free-slip boundary 
conditions were used on the walls). In that case, the system had several preferred states distinguished by total energy levels 
and circulation patterns. Low-frequency variability in the model was associated with transitions between these preferred 
states. One of the states had relatively high energy with the eastward jet penetrating deeply into the interior of the basin. 
Meanders and rings were weak for that state and the overall circulation was characterized as quasi-stable. The low energy 
state had a jet with a significantly shorter zonal extent and was characterized by strong meandering and eddy formation. The 
state of intermediate energy was associated with a modest generation of meanders and eddies. In that case, the extent of the 
eastward jet was shorter than in the high energy state but longer than in the low energy state.

Recently, the works of MB1 and Berloff and Meacham (1997, hereafter BM1) contributed to the study of the wind-driven 
circulation by finding a variety of the low-dimensional attractors of the flow, that is, stable but, in general, time-dependent 
circulation patterns with a temporal variability that could be characterized by only a few active degrees of freedom. In MB1 
the circulation model was barotropic; in BM1 it was equivalent-barotropic. Both models used single-gyre wind stress forcing 
and no-slip boundary conditions. In BM1 and MB1, the models were thought of as large-dimensional forced and dissipative 
dynamical systems. The attractors of such systems are important in determining the intrinsic timescales and spatial patterns 
of the time-dependent flow. In addition to a single branch of steady-state circulations (fixed points), a rich structure of more 
complicated, low-dimensional, large-time asymptotic attractors was found for a wide range of the control parameters. When 
viewed in phase space, these attractors included limit cycles, tori, and fractal (chaotic) attractors. A limit cycle corresponds 
to a periodic oscillation of the flow. Tori yield either quasiperiodic oscillations with two or three dominant frequencies or 
phase-locked periodic orbits (Drazin 1992). A fractal attractor is associated with deterministically chaotic behavior of the 
flow. For some ranges of the control parameters, multiple stable attractors coexist. The bifurcations leading from one 
attractor to another, as the parameters are varied, were found to be either Hopf or period-doubling bifurcations. In MB1 and 
BM1 it was found that the dimension of the chaotic attractors grows slowly as Re is increased [the way in which the 
structure of the attractors change in the “chaotic regime”  is quite complicated with islands of periodicity, and 
quasiperiodicity reminiscent of the behavior of one-dimensional maps, e.g., Collet and Eckmann (1980)]. Some frequencies 
associated with motion on the low-dimensional attractors corresponded to variability on timescales ranging from centennial 
to interannual. In the chaotic regimes, the power spectrum of variability became increasingly red as the supercriticality was 
increased; thus much of the variability in the most energetic flows was associated with timescales greater than 1 yr.

The results of Jiang et al. (1995), Speich et al. (1995), MB1, and BM1 suggest that for some control parameter ranges, 
including those widely used in modern GCMs, discrete numerical models with a very large number of degrees of freedom 
may behave as relatively simple nonlinear oscillators. Such oscillators are achieved asymptotically in a large-time limit and are 
associated with motion on low-dimensional topological objects in phase space. Convergence to the oscillator physically 
corresponds to a significant self-organization of the flow. The oscillations associated with the motion on the attractors are 
achieved with no variations in the external forcing. This natural variability of the GCMs and, presumably of the real ocean, 
should not be neglected in ocean modeling efforts. The low-frequency part of the natural variability spectrum may be very 
important for climatic studies and long-term predictions. 

In this work we extend the previous results of MB1 and BM1 to a baroclinic model of the wind-driven single-gyre 
circulation and explore how the presence of baroclinicity changes the successive bifurcations and the structure of the low-
dimensional attractors if compared to the barotropic (MB1) and equivalent-barotropic (BM1) models. The simplest baroclinic 
model with two layers is a proper link in a hierarchy of models extending from the simpler two-dimensional (2D) barotropic 
and equivalent-barotropic representations to fully three-dimensional (3D) and, therefore, more realistic models of the wind-
driven circulation in the ocean. We note that Quon and Ghil (1995) found stable nonlinear oscillations and successive 
bifurcations between different attractors in a 2D thermohaline circulation problem. The results of the various works cited, as 
well as our present baroclinic study, suggest that low-dimensional behavior in numerical circulation models is a robust 
feature. We conjecture that the presence of an underlying low-dimensional dynamics in more sophisticated models, which 
include topography, heat and freshwater fluxes, as well as wind stress forcing, is possible and indeed likely, though the 
effective dimension will probably be larger than three or four. It is unclear what the role of semidiscrete processes such as 
“convective adjustment”  will be in such models. 

The results of this paper are relevant to the wind-driven circulation in a midlatitude ocean, but in choosing the size of our 
basin, the stratification, and the specific wind forcing, we were guided by the sizes and hydrology of the Black Sea. A 
discussion of the structure of the Black Sea circulation is contained in Stanev (1990). The Black Sea exhibits a recurrent 



large-scale organization of the flow into two dominant basin filling cyclonic cells, referred to in the literature as the Eastern 
and Western Gyres (Oguz et al. 1993). 

Another organized feature is the cyclonic Rim Current (Oguz et al. 1993) flowing around the periphery of the basin. The 
Rim Current is a relatively narrow jet above the permanent pycnocline. It has a typical width of about 75 km and velocities 

of about 0.2–0.3 m s−1 at the surface and exhibits strong meandering. The Rim Current separates the gyres from a series of 
baroclinic eddies confined near the coast. The eddies are anticyclonic above and cyclonic below the permanent pycnocline. 
At a depth of 500–1000 m, observations (Filippov 1961) helped to identify countercurrents flowing along the shelf break and 
under the surface Rim Current. A mechanism, supporting both the Rim Current and countercurrents, is not known at 
present. Whereas these features may be strongly influenced by the continental slope topography, some insight into the nature 
of the rim current can be gained from the flat-bottom model used in this paper. The large-scale organization of the flow in 
the Black Sea may be an indication of an underlying low-dimensional dynamics guiding the complicated behavior of the flow. 
In this paper, we are interested in identifying the low-dimensional attractors of our simplified model and in characterizing the 
spatial and temporal organization of the flows that are associated with them.

The quasigeostrophic potential vorticity equations for the upper and lower layer, which we solve numerically, are a pair of 
forced and dissipative partial differential equations. The theory of several classes of such systems is discussed in Robinson 
(1995), Temam (1995), and Lions et al. (1992). Also relevant is work demonstrating the existence of inertial manifolds (e.g., 
Constantin et al. 1989). The rather technical mathematical results contained in these works, in effect, say that one should 
expect such systems, which are formally infinite dimensional, to exhibit finite dimensional attractors. Moreover, in 
sufficiently dissipative systems, the dimension of these attractors should be small. In order to model these equations 
numerically, we discretize the PDEs in a standard way (cf. Holland 1978). This produces a system of many discrete 
ordinary differential equations coupled through nonlinearity. We then look for attractors of relatively low dimension (about 
three or less) at sufficiently small Reynolds numbers.

2. Modeling approach and methods  

Our numerical calculations are based on a two-layer, quasigeostrophic β-plane model (Phillips 1954; Pedlosky 1987). 

We modeled the circulation in a rectangular basin with a zonal extent, Lx = 800 km, and meridional extent, Ly = 400 km. 

The Coriolis parameter is f  = f0 + β0y, where f0 = .93 × 10−4 s−1, β0 = 2 × 10−11 m−1 s−1. Vertical stratification was 

modeled by two layers with finite depths, one layer above and another below the permanent thermocline. The depths at rest 
were H1 for the upper and H2 for the lower layer. The total depth H = H1 + H2 = 2 km was fixed in our experiments. The 

densities were ρ1 and ρ2 for the upper and lower layers respectively. The reduced gravitational acceleration was

 

The model did not include explicit vertical friction, and the layers communicated only through pressure forces. Horizontal 

momentum diffusion was parameterized in the vorticity equation in the form of ν 4
1,2 with a uniform eddy diffusivity ν (

1, 2 were the upper and lower layer streamfunctions, respectively). No bottom topography and bottom drag were 

included in the model. The boundary conditions on the lateral walls were no-slip and no-normal flow. On the upper surface 
we used a rigid-lid approximation. The upper layer was forced by a steady wind stress treated as a body force acting on the 

upper layer. The wind stress τ had a uniform, cyclonic curl of τ0/Lx. In all experiments, τ0 was fixed at 0.5 dyn cm−2. All 

the parameters used in this study are listed in Table 1 . 

The choice of basin size, β0, wind forcing, boundary conditions, and momentum diffusion formulation are the same as 

those used in BM1, but instead of the infinitely deep lower layer, as required by the 1½-layer formulation in BM1, we used a 
model with a finite lower-layer depth. This two-layer formulation allows baroclinic instability in the model, while a vertical 
resolution of only two layers allows the extensive computations required in a study of the low-dimensional attractors of the 
system for a wide range of parameters.

We used the following nondimensionalization of the two-layer quasigeostrophic equations: Lx for the length scale, (β0Lx)

−1 for the timescale, τ0 for the wind stress scale, and H1,2 for the depth scales of the layers. The upper-layer Sverdrup 

balance yielded the velocity scale U = τ0(ρH1Lxβ0)−1. One can define several auxiliary horizontal length scales:



 

Here δI and δM are the inertial and viscous length scales, respectively, and Rd is the baroclinic deformation radius. The 

nondimensionalization of the problem yielded five nondimensional parameters:

 

When compared to the 1½-layer formulation of BM1, a new parameter, γ, appears. After invoking the quasigeostrophic 
approximation, the nondimensional potential vorticity equations are

 

where the perturbation potential vorticities of the upper and lower layers 1,2 are connected with the corresponding 

streamfunctions through the coupled elliptic equations:

 

Here, the perturbation potential vorticity is defined as the full, quasigeostrophic layer potential vorticity minus the planetary 
vorticity. Since we will never refer to the full potential vorticity, we shall subsequently refer to the perturbation potential 
vorticity simply as the potential vorticity. Introducing barotropic and baroclinic streamfunctions, BT and BC, defined as

 

the elliptic problem (3) can be diagonalized as

 

The boundary conditions were no-normal flow through the lateral boundaries:

1,2|C = Γ1,2(t),(6)
 

and no-slip at the lateral boundaries:



 

These are supplemented by the mass conservation constraint for each layer:

 

In (7), (8) C is the basin’s bounding contour and A is the basin’s area. 

Equations (2) and (5) in dimensional form were discretized using second-order finite differences on a 129 × 65 equally 
spaced grid (6.25-km resolution) and solved numerically using boundary conditions (6), (7), and the mass conservation law 
(8). Here we followed the procedure outlined in BM1 for the equivalent-barotropic model. Except for the particular method 
used to solve the elliptic problems (5), and the choice of boundary conditions, the method is similar to that used by Holland 
(1978). 

Some of the more time-dependent flows that we will examine look quite complicated when viewed in physical space with 
mesoscale eddies and strongly meandering boundary currents. This can obscure the fact that the time dependence is 
relatively straightforward. There are several ways of focusing on the time dependence of the flows. The two main ones that 
we shall use are the examination of power spectra and an approach borrowed from the theory of dynamical systems. The 
equations that we solve may be viewed as an autonomous dynamical system of large dimension p. The states x(t) of the 
system are p-dimensional phase space vectors with coordinates 1,2i

, that is, the values of the streamfunctions at each of 

the nodes of the computational grid (i is the index of a node in the basin). This dynamical system is controlled by the set of 
parameters a = (δ, , μ, S, γ) and can be formally written as

 = F(x; a),(9) 

where F(x; a) is a nonlinear operator acting on the vector x(t). Starting from an arbitrarily chosen initial state, the time-
dependent behavior of the circulation in the basin is uniquely described by the trajectory x(t) in the p-dimensional phase 
space. The dynamical system that we explore is dissipative. For a dissipative system, we expect that the trajectories will 
converge onto sets of dimension lower than p. In physical space, this behavior will correspond to some degree of self-
organization of the flow. As an example, if trajectories in phase space converge to an attractor that is a simple closed curve, 
then, after a sufficient time that initial transients have died away, the circulation will evolve periodically. In particular, a time 
series of  at every grid point will be periodic with the same period. The dimension of the attractor provides an indication of 
the number of degrees of freedom in the flow, though it is not synonymous with the number of degrees of freedom. 
Generally, the temporal behavior on a smooth m-dimensional attractor can be modeled with a set of n ODEs for some n  
2m + 1. We are interested in identifying attractors with dimension a priori less than 4. The main reason for this is that it is 
technically difficult to identify attractors of larger dimension. For example, the amount of data required to reliably estimate 
the dimension of an attractor increases exponentially with the dimension. Empirically, the transition to chaos in ocean models 
of this type appears to occur from attractors with dimensions of either 2 or 3. (This behavior is also to be anticipated on 
theoretical grounds.)

To look at low-dimensional attractors, we do not need to examine the whole p-dimensional phase space; instead low-
dimensional projections of the full phase space will suffice. Imagine bending a wire into a closed, continuous curve but one 
that is warped so that it does not lie in a plane. The wire curve exists in three dimensions, but if it is placed in a beam of light 
and its shadow is projected on a two-dimensional screen, the shadow is, in general, still recognizable as a closed curve 
(though it may intersect itself).

There are a number of ways of constructing low-dimensional projections. The technique used here is a method that has 
been used successfully in several studies of chaotic flows in the laboratory. We first started the model from some initial 
state, advanced it in time, and recorded the time series of the basin integrated total energy of the flow. The nondimensional 
energy density of the the system (Pedlosky 1987) is

 

where the sum is the kinetic energy and the last term is the available potential energy. From the energy time series, we 
constructed low-dimensional phase space projections using the method of delay coordinates (Packard et al. 1980; Takens 



1981; Broomhead and King 1986), in which coordinates x0, x1, . . . , xN in an artificial phase space are generated from 

copies of the original (energy) time series successively delayed by ; that is,

 

For a discussion of this method and the choice of the fixed time delay  and dimension N, see the previous two 
references or MB1 and BM1. Examples of the use of the method of delay coordinates in studies of laboratory experiments 
can be found in Pfister et al. (1992) and Brandstater and Swinney (1987). Applications to numerical wind-driven circulation 
problems may be seen in MB1 and BM1.

Instead of the energy time series, one, in principle, could choose time series of any time-dependent variable of the system. 
The choice of time series changes the choice of projection from the full phase space to the reduced phase space but does 
not change the nature of the underlying attractor; that is a function of the dynamics alone. The shape of the attractor will be 
distorted compared to the energy time series projection, but its topology, in which we are mainly interested, will not change 
except for possible changes in the number of self-intersections. In the example given above of the wire in the projector 
beam, we can imagine rotating the wire curve or warping the screen. The shape of the projected image will change but, in 
general, it will still remain recognizable as a closed curve. This remains true for strange attractors if the chaos in the system 
is only temporal but, if the chaos becomes spatiotemporal, this is not the case. In some preliminary experiments with a 
wind-driven barotropic model, we found that, for the Reynolds numbers significantly higher than those used in this study, 
chaotic behavior remains spatially correlated in the large-time limit. 

We integrated the model in time until the corresponding phase space trajectory converged to some low-dimensional 
attractor. This procedure enabled us to find such attractors as fixed points, limit cycles, tori, and strange attractors. A fixed 
point corresponds to a steady-state circulation; a limit cycle yields an oscillation of the flow with one distinctive frequency. 
Motion on a torus in phase space may correspond either to quasiperiodic oscillations with two distinctive frequencies, or to a 
phase-locked trajectory, which is associated with a purely periodic oscillation (though the trajectory still winds around the 
torus). Since it is difficult to empirically differentiate truly quasiperiodic orbits and phase-locked trajectories of very long 
period, we will refer to either of these types of motion somewhat inaccurately as quasiperiodic. Motion on a strange 
attractor corresponds to chaotic behavior of the flow.

In order to find the most unstable eigenmode of the primary bifurcation we followed the procedure described in BM1. For 
the attractor dimension measurement we used the nearest neighbor algorithm (Badii and Politii 1985) implemented in the 
software of Kostelich (1990). For reasons stated earlier, we did not attempt to apply this algorithm for an attractors with a 
dimension greater than four because this would require an impractical amount of computer resources.

3. Results—The bifurcation sequences  

In this section, we will see how the time-dependence of the flow changes as we increase the Reynolds number (by 
decreasing the viscosity) in two sets of experiments with differing deformation radii. Because of the small meridional extent 
of the basin, the instability that initially gives rise to time dependence will be seen (in section 4) to be an instability of the 
main recirculation gyre rather than a western boundary current instability. Several transitions, relatively closely spaced in ν 
(or μ), will be seen to lead to chaotic flow, but, as the viscosity is decreased further, the chaotic flow will give way to 
quasiperiodic and periodic behavior as a resulting of an increasing barotropization of the flow by eddy processes. For a 

broad range of viscosities (down to approximately 100 m2 s−1 in the case of the smallest deformation radius used), the flow 
will be found to asymptote to a low-dimensional attractor. At small viscosities, the flow once again becomes chaotic. The 
transition to chaos is accompanied by the appearance of low-frequency variability. When the deformation radius is 
sufficiently small and the upper layer is shallow, the strongly nonlinear flow qualitatively resembles the flow seen in the 
Black Sea during the summer months with a strong peripheral current and many mesoscale eddies.

We carried out two sets of experiments. Our parameter choices are motivated by the Black Sea but have been idealized to 
suit the more process-oriented nature of this study. In each set, we kept the total depth H and g′ fixed but changed the depth 
ratio γ = H1/H2. Stanev (1990) showed that the circulation in the Black Sea can be well approximated by a two-layer model 

with the upper layer about 10–20 times thinner than the lower layer one. Therefore, in the first set we fix γ = 1/9, and in the 
second set we fix γ = 1/19. In terms of layer depths we used H1 = 200 m, H2 = 1800 m (in the first set) or H1 = 100 m, H2 

= 1900 m (in the second set). The internal Rossby deformation radius in the Black Sea is estimated to be 20–25 km (Oguz et 
al. 1992). In the first set of experiments we keep the deformation radius in this range, but in the second set, we use a 
slightly shorter Rd = 16.813 km in order to emphasize the dependence of the circulation on Rd. Some Russian colleagues 

have argued that the deformation radius may be less than 20 km in parts of the Black Sea. Of the nondimensional 



parameters, S and  differ between the two sets. In the first set S = 1194.4 (Rd = 23.148 km),  = 1.22 × 10−3; in the 

second set S = 2264.0 (Rd = 16.813 km) and  = 2.44 × 10−3; thus, in the second set of runs, the baroclinic deformation 

radius is smaller by a factor 0.73 and, for a given value of viscosity, the upper-layer flow is more nonlinear. The only 
variable parameter within each set of experiments was the viscosity coefficient ν, or μ in terms of the nondimensional 
parameters.

a. The location of the initial instability  

For sufficiently high ν, we found steady states (or fixed points in phase space) with no flow in the lower layer. Since we 
started the time integration from a state of rest, the circulation experienced an adjustment. During the adjustment, 
perturbations in the lower layer grow initially, then decay, and the system tends toward a steady state. The steady states 
coincide with the steady states of the equivalent-barotropic and barotropic models discussed in BM1 and MB1. The 
sequence of steady states for different ν is shown in Fig. 1  (from BM1). The baroclinic steady solutions, the equivalent-
barotropic and barotropic solutions all differ in their stability properties. For the depth ratio γ = 1/9 and Rd = 23.148 km, the 

baroclinic steady state suffered an oscillatory instability at a critical value of ν, νc, say, lying between 222 and 223 m2 s−1. 

At this value of ν, a periodically oscillating solution (limit cycle) is generated via a Hopf bifurcation. The Hopf bifurcation in 
this case is supercritical so that just below νc we see a family of stable limit cycles with amplitude that increases like (νc − 

ν)1/2. (All Hopf bifurcations found in this study are supercritical to a local accuracy equal to the distance between the 
neighboring values of ν for which the experiments were performed.) For γ = 1/19 and Rd = 16.813 km, the stability 

threshold was higher: 550 m2 s−1 < νc < 560 m2 s−1. In the first set of experiments, the Reynolds number is defined as Re 

= ULx/ν is 56.3 > Recrit > 56.05 at the primary bifurcation, and in the second set 45.45 > Recrit > 44.64. 

We compared the critical values of ν corresponding to the primary instability in the two-layer quasigeostrophic and the 
equivalent-barotropic models. In the equivalent-barotropic model studied by BM1, the deformation radius was Rd = 24.4 km. 

To make the comparison, we used the same values of Rd, δ, and  in the two-layer model and chose the depth ratio γ = 1/9. 

In the equivalent-barotropic model, due to the presence of the infinitely deep lower layer, γ = 0. We found that the primary 

Hopf bifurcation in the two-layer model with these parameters occurred at ν  205 m2 s−1 (Recrit  60.98). This value is 

significantly higher than the critical value ν  104 m2 s−1 (Recrit  120.19) reported in BM1 for the equivalent-barotropic 

circulation. This result indicates that the baroclinic flow is less stable than the equivalent-barotropic flow with fixed Rd, δ, 

and . The presence of the active lower layer with finite depth (γ  0) destabilized the flow. 

This difference between stability thresholds of the 1½- and two-layer models comes from the fundamentally different 
physical mechanisms responsible for the primary Hopf bifurcation. In the two-layer model, the primary instability is a 
baroclinic instability of part of the western gyre, whereas in the 1½-layer case (BM1) it was a complex barotropic instability 
involving the western boundary intensification, the western recirculation, and the meander between the western and the 
central gyres, denoted A, B, and C respectively in the last panel of Fig. 1 . An analysis of the instability responsible for 
the transitions from steady to unsteady circulations is contained in section 4. 

In principle, other steady-state branches may exist. Multiple steady states were found by Ierley and Sheremet (1995) and 
Cessi and Ierley (1995) for the case of free-slip boundary conditions with single-gyre and double-gyre wind forcing. For the 
case of no-slip boundary conditions, Speich et al. (1995) showed that multiple steady states exist when a double-gyre wind 
forcing is used. Here we use no-slip boundary conditions and single-gyre wind forcing. We did not discover multiple 
branches of steady solutions, but the search for additional steady-state branches was not exhaustive. 

b. Depth ratio γ = 1/9; Rd = 23.148 km 
 

In this set of experiments, the parameter ν was varied over the range from 140 to 260 m2 s−1.

 

We define the mean energy as an arithmetic mean between the highest and the lowest values of the energy achieved on the 
attractor and the amplitude of a time-dependent solution as the difference between the highest and lowest values of energy. 
An empirical bifurcation diagram, which helps to locate transitions in solution structure in parameter space, is shown in Fig. 
2 . In this figure, we plotted the total energy amplitude as a percentage of the mean energy. In Fig. 3 , we show a 
bifurcation diagram in terms of the mean energy. The notion that the mean energy of the circulation decreases with 
increasing Reynolds number over a sizable range of Reynolds numbers at first may seem counterintuitive. The kinetic and 
potential parts of the total energy are shown in Fig. 4 , and it is clear that the decrease of the total energy with decreasing 



ν that is seen for values of ν less than 170 m2 s−1 is mainly associated with the decrease of potential energy. Potential 
energy decreases because the flow becomes more barotropic for the lower values of ν. This is consistent with the energy 
cascade ideas of Rhines (1977) since as ν decreases we see a considerable amount of mesoscale variability produced by 
baroclinic instability.

The primary Hopf bifurcation occurs for a value of the viscosity coefficient ν between 222 and 223 m2 s−1. A limit cycle 
arises as a result of this bifurcation and grows in amplitude as ν is reduced further. Let us define the time-averaged 
streamfunctions as

 

where T is the limit cycle period, if the formula is applied to a limit cycle; for other attractors, T is a large value chosen 
empirically. The perturbation streamfunctions are defined as

′
i(x, y, t) = i(x, y, t) − ‹ i›(x, y), i = 1, 2.(12)

 

The spatiotemporal structure of the perturbation streamfunctions on the limit cycle at ν = 220 m2 s−1 (not shown) is 

similar to the structure of the most unstable eigenmode of the unstable steady circulation at ν = 220 m2 s−1 (see Figs. 16a 

,b  and the discussion of the eigenmode energetics in section 4). The period of the limit cycle at ν = 220 m2 s−1 was 
119 days; the period of the eigenmode was 118.7 days. These similarities suggest that the oscillation on the limit cycle is a 
nonlinearly saturated modification of the eigenmode. The period of the limit cycle changes gradually from 119.5 to 112.5 
days as ν is reduced. 

The limit cycle loses stability as a result of a secondary Hopf bifurcation at ν between 185 and 187 m2 s−1, and the 
system yields a stable toroidal attractoraround which trajectories wind, giving rise to quasiperiodic motion or a phase-locked 
periodic trajectory. Since our techniques fail to distinguish between a truly quasiperiodic trajectory and a trajectory with 
period longer than the time series record, we use the term quasiperiodic for both truly quasiperiodic and long-period 
trajectories on a torus. This quasiperiodic motion contains two dominant frequencies; the new frequency associated with the 
secondary bifurcation is ω1 = 0.006 . . . rad/day (1050 days). The toroidal attractor appears to lose stability and give way 

to a chaotic attractor at a value of ν between 171 and 172 m2 s−1. 

Motion on chaotic attractors can be recognized and distinguished from trajectories on tori by means of power spectra and 
Poincaré sections. The spectrum of a quasiperiodic trajectory typically has 2 (for a 2-torus) or 3 (for a 3-torus) distinctive 
spikes with incommensurate frequencies together with additional spikes corresponding to harmonics and cross-harmonics. 
The spectrum of a chaotic trajectory typically has some broadband structure. The Poincaré section of a quasiperiodic 
trajectory on a 2-torus consists of points lying on a curve (or set of curves). A chaotic trajectory yields a Poincaré section 
with points covering some fractal set on the plane. In Fig. 5 , we show the delay coordinate phase space projection of the 

quasiperiodic trajectory at ν = 178 m2 s−1, its Poincaré section, and its power spectrum. In Fig. 6 , we show the delay 

coordinate phase space projection, Poincaré section, and the spectrum of the chaotic trajectory at ν = 171 m2 s−1. Provided 
that the time series is sufficiently long, one can estimate the information dimension of the attractor. A chaotic attractor will 
normally yield a fractional dimension. This latter technique is computationally expensive and, as will be seen further in the 
text, we applied it only to two chaotic attractors, one for each set of experiments.

The bifurcation associated with the transition between the attractors at ν = 172 and ν = 171 m2 s−1 appears to involve a 

Hopf bifurcation because the spectrum of the chaotic attractor at ν = 171 m2 s−1 has a new spike with ω = 0.013. . . 

rad/day (a period of 480 days) as shown in Fig. 6 . The toroidal attractor reappears at ν = 170 m2 s−1 as a result of a 

phase locking between the 0.0065. . . and 0.013. . . rad/day components, but at ν = 169 m2 s−1 the attractor is again 
chaotic. The is typical behavior in a regime characterized by low-dimensional behavior. 

According to the results of Newhouse et al. (1978), which are based, in turn, on the results of Ruelle and Takens (1971), 
the 3-torus (torus with three incommensurate frequencies) that appears after three successive Hopf bifurcations in a system 
is structurally unstable. A stable chaotic (or strange) attractor lying on a 3-torus may appear in that case. A transition to 
chaos in systems with three incommensurate frequencies has been found repeatedly (cf. Gollub and Benson 1980), but it is 
still not clear if a typical chaotic attractor appearing at the onset of chaos lies on the 3-torus or not. Battelino et al. (1989) 
and Giberti and Zanasi (1993) explored systems in which transition from a 3-torus to chaos was associated with the breakup 
of a 3-torus. The resulting chaotic attractor did not lie on the torus in that case. Transitions on and from a 2-torus can also 



lead to chaotic motion. One possible route to chaos on a 2-torus comes from the overlapping of the resonance bands 
associated with mode-locking on the torus (Bak et al. 1985). There are several physical examples of this behavior including 
laboratory results from a Rayleigh–Benard convection experiment (Fein et al. 1985). The breakup and disappearance of a 2-
torus is also a possible scenario for the transition to chaos and was studied by Franceschini and Tebaldi (1984), but we have 
not found evidence of a similar transition in our ocean model. Franceschini and Tebaldi showed that the collision of a torus 
with an unstable periodic orbit may destroy the torus in a global bifurcation. The appearance of a strange attractor in that 
case occurs when the torus is in the vicinity of the unstable orbit. The breakup of the torus is associated with the formation 
of folds on its surface. It is hard to describe properly the nature of the transition from motion on tori to chaos in our present 
study because this would require very extensive computations at the parameter values in the vicinity of the onset of chaos 
for which we do not have the computational resources. Also, we are not able to distinguish homoclinic bifurcations, which 
involve collision of a torus with an unstable invariant set such as a fixed point, limit cycle, or another torus. Our techniques 
are not designed to find unstable invariant sets with the exception of unstable fixed points.

The power spectrum of the chaotic attractor at ν = 167 m2 s−1 is shown in Fig. 7 . This spectrum shows a 
concentration of power at low frequencies that is typical for the chaotic attractors of the present problem. Note that 
significant power is present at a decadal timescale. The red character of the power spectrum increases still further for 
chaotic motion at lower values of ν. Chaotic attractors found in MB1 and BM1 also exhibited high power at low frequencies 
and, therefore, low-frequency variability. In the barotropic case, for which very long runs could be made, significant 
variability was found at centennial timescales. The present baroclinic study suggests that this variability may be a robust 
feature of the wind-driven circulation in a chaotic regime. While there are many other potential sources of variability at 
climatological timescales, it is interesting that the nonlinearity in the dynamics of the wind-driven circulation is sufficient to 
generate such variability.

As the bifurcation diagram in Fig. 2  shows, in the range of ν below the critical secondary Hopf bifurcation value, the 
only stable attractors that we found were tori and strange attractors. In Fig. 3 , we plot the mean energies of the 
attractors versus ν. The tori with quasiperiodic motion on them are organized in four branches, denoted in Figs. 2  and 3 

 by I, Ia, II, and III. Each torus has two distinctive frequencies associated with motion on it. One of those frequencies is 
a continuation of the original limit cycle frequency, and we traced its presence through all successive attractors. We denote 
this frequency by ω0. The value of ω0 gradually decreases from 0.053. . . rad/day (a period of 119.5 days) at the primary 

bifurcation down to 0.063. . . rad/day (a period of 100 days) at ν = 140 m2 s−1. The values of the second dominant 
frequency are different on all branches. Along branch I, the second frequency is about ω1 = 0.006. . . rad/day (a period of 

1050 days). A similar value of the second frequency characterizes branch Ia: ωIa = 0.0065. . . rad/day (a period of 970 

days). It is possible that branch Ia is a continuation of branch I and that there is a family of unstable tori connecting the 
stable fragments I and Ia. The second frequency at branch II is ω2 = 0.004. . . rad/day (a period of 1570 days), and at 

branch III it is ω3 = 0.013. . . rad/day (a period of 480 days). 

At ν = 148 m2 s−1 we found two attractors. The attractor with the higher amplitude was chaotic and the attractor with 
the lower amplitude belonged to branch III of tori. When we used a point on a trajectory on the chaotic attractor of case ν = 

148 m2 s−1 as an initial condition for a run with ν = 147 m2 s−1, the trajectory was attracted to a torus on branch III, which 

suggests that branch Ia became unstable. When we used the trajectory on the toroidal attractor at ν = 148 m2 s−1 (branch 

III) as an initial condition and fixed ν at 149 m2 s−1 the trajectory converged to a torus on branch Ia. This suggests that 

branch III became unstable at a value of ν between 148 and 149 m2 s−1. That the second frequencies on branches Ia and III 
are rather different suggests that the branches may not be continuations of each other. Given the finite length of these runs it 
is not possible to unambiguously identify the point at which the solutions on branch Ia lose stability. It is possible that the 

solution seen at ν = 148 m2 s−1 that appears to continue branch Ia may be a chaotic transient of very long duration. 

We have estimated the information dimension (see discussion of this dimension in Farmer et al. 1983) of the chaotic 

attractor at ν = 145 m2 s−1. For this purpose we computed a total energy time series of 105 points (each one is one day 

apart), estimated the dimension, then extended the record up to 1.5 × 105 points and obtained a second estimate. Both 
estimates lay between 3.45 and 3.49.

In this set of experiments, the circulation contained a distinctive pair of recirculation gyres for all values of ν. For the 
time-dependent regimes, we always observed gyres in both the time-averaged and the instantaneous patterns of the flow, 
although the gyres in the instantaneous streamfunction fields are always distorted by the fluctuations of the flow. In Fig. 8 

, we show snapshots of 1 and 2 on the chaotic attractor at ν = 140 m2 s−1. The two main upper-layer recirculation 

gyres are well developed. A third, eastern recirculation has a rather small amplitude, although it exists in the time-mean for 
the lowest values of ν in this set of experiments. It is possible that the pair of gyres in the upper layer is analogous to the 



Western and Eastern Gyres of the Black Sea (Oguz et al. 1993). A similar pair of strong gyres was observed in the 
barotropic model of MB1 and in the EB circulation of BM1 in both the steady and time-dependent regimes. These gyres are a 
robust feature of the model in the parameter ranges explored.

c. Depth ratio γ = 1/19; Rd = 16.813 km 
 

In this second set of experiments, the viscosity coefficient ν was varied from 100 to 580 m2 s−1 and the resulting 
bifurcation sequence is shown in Figs. 9  and 10 . The steady circulation lost stability at a critical value of ν between 

550 and 555 m2 s−1 as a result of a Hopf bifurcation. The period of the most unstable eigenmode at ν = 550 m2 s−1 was 
about 92 days. The limit cycle appearing at the supercritical values of ν increases in amplitude as ν is decreased. The 
frequency that appeared at the primary bifurcation gradually decreases from 0.068 . . . to 0.057 . . . rad/day (the period 

increases from 92 to 110 days) as ν changes from 555 to 112 m2 s−1. 

At a value of ν between 495 and 500 m2 s−1, the limit cycle experienced a subharmonic bifurcation, corresponding to a 
period-doubling instability (Drazin 1992). Period doubling in the wind-driven circulation was also observed in the models of 
MB1 and BM1.

The period-doubled limit cycle experienced a secondary Hopf bifurcation at a value of ν between 465 and 470 m2 s−1. 
The new frequency that appeared in the system due to the Hopf bifurcation was about 0.007 . . . rad/day (a period of 

roughly 900 days). We made this estimate from a quasiperiodic trajectory on the torus at 465 m2 s−1. We computed another 

stable torus with quasiperiodic motion on it at ν = 460 m2 s−1. 

We found chaotic attractors at ν = 450 and 430 m2 s−1. It is not clear whether the chaotic attractor was preceded by a 
third Hopf bifurcation. The low-frequency end of the spectrum is very noisy, and we were not able to distinguish a leading 

spike, which might be associated with a third Hopf bifurcation. The branch of chaotic attractors exists down to ν = 340 m2 

s−1. When we used a point on a trajectory on the chaotic attractor at ν = 340 m2 s−1 as the initial condition for the time 

integration at ν = 339 m2 s−1, the resulting trajectory converged to a limit cycle (see the bifurcation diagram in Fig. 9 ). 

When we used a point on a trajectory on the limit cycle at ν = 339 m2 s−1 as the initial condition for a run at ν = 340 m2 

s−1, the trajectory returned to the chaotic attractor. One possible explanation of such behavior may be the following. In the 

interval 339 m2 s−1 < ν < 340 m2 s−1, the system experienced a pair of successive reverse Hopf bifurcations leading from 
the chaotic attractor to a torus and from the torus to a limit cycle. Either the range of ν for which the stable torus exists is 

very narrow or the torus may be unstable. The trajectory converged very slowly to a limit cycle at ν = 339 m2 s−1. When 

we used a point on a trajectory on this limit cycle as the initial condition at ν = 340 m2 s−1, for a long period of time the 
trajectory very slowly diverged from the unstable limit cycle as a tight spiral on the Poincaré section. This slow convergence 
and divergence at values of ν slightly lower and higher than the critical value supports the hypothesis of an intermediate 
reverse Hopf bifurcation from the limit cycle to a torus rather than the occurrence of phase locking.

The information dimension of the chaotic attractor at ν = 450 m2 s−1 was estimated to be between 3.14 and 3.16. In 

order to estimate it, a time series of total energy of 105 points (each one is one day apart) was computed first and then 

extended up to 1.5 × 105 points. Both time series yielded the same estimate. 

On the branch of predominantly chaotic attractors, we found four examples of phase locking (Arnold 1965; Drazin 1992). 

At ν = 440 m2 s−1, phase locking between ω1 = 0.068 . . . rad/day and ω2 = 0.0068 . . . rad/day with ratio ω2/ω1 = 1/10 

yielded a stable torus with quasiperiodic motion upon it. At ν = 420 m2 s−1, phase locking between all frequencies led to a 
limit cycle with a period of 943 days and an amplitude somewhat less than the amplitudes of the neighboring chaotic 

attractors. At ν = 370 m2 s−1, we found a torus with three dominant spectral spikes at 0.064 . . . , 0.0089 . . . , and 
0.0039 . . . rad/day (periods are about 98, 710, and 1600 days, respectively). It is hard to say which of these three spikes 
correspond to the phase-locked frequencies. When we used a point on a trajectory belonging to the torus as an initial 

condition at ν = 375 m2 s−1, the trajectory returned to the chaotic attractor. At ν = 365 m2 s−1, phase locking between all 
frequencies led to a limit cycle with a period of 2060.5 days. In general, we expect this “chaotic region”  of parameter space 
to have a very complicated structure. A complicated sequence of a chaotic attractors with embedded phase-locked tori and 
limit cycles was found in BM1, when Rd was used as the control parameter. 

In the range of ν between 112 and 339 m2 s−1, the only stable attractors we found were tori and limit cycles. The 



disappearance of the chaotic attractors suggests that the flow became “better”  organized and contains a smaller number of 
active independent degrees of freedom. In the first set of experiments, we also encountered a similar organization of the 
flow expressed by the presence of the quasiperiodic branches surrounded by chaotic attractors. Note from Fig. 10  that, 
as ν is diminished, the mean energy of the attractors decreases more rapidly in this set of experiments than in the first set of 
experiments with less nonlinear circulation and larger Rd. In Fig. 11 , we plotted the mean potential and kinetic energies 

of the attractors. The decrease of the total flow energy is due mainly to the decrease in the potential energy, which is 
associated with the time-dependent flow becoming more barotropic. The flow in the first set of experiments exhibited a 
similar decrease in the potential energy for diminishing ν. 

What happens to the circulation? In Fig. 12  we show the time averages ‹ 1,2›  of the limit cycles at ν = 338 and 215 

(the lower energy branch) and 115 m2 s−1. As viscosity decreases, the time-averaged circulation of the upper layer develops 
a peripheral jet flowing along the walls in the western half of the basin. In the eastern half of the basin, the northern and 
southern parts of the jet are connected by a slow and wide current. In contrast to the second set of experiments, the upper-
layer circulation in the first set had well-observed inertial recirculation gyres both in the time-averaged and instantaneous 
flows. The lower layer in the second set is dominated by a cyclonic circulation (similar to the lower-layer circulation in the 
first set of experiments) with one or two recirculation gyres in the western part of the basin outside a western boundary 
current. A weaker, anticyclonic recirculation in the lower layer occupies the northern part of the basin. The strength of the 
circulation in the lower layer increases as ν is reduced. This barotropization of the flow reduces the potential energy as was 
shown in Fig. 11 . 

A branch of simple attractors continued from ν = 339 down to ν = 213 m2 s−1. At the highest values of ν, these were 

limit cycles. For some value of ν between 300 and 310 m2 s−1, the limit cycle lost stability via a Hopf bifurcation and the 

attractor became toroidal. The system returned to a limit cycle at a value of ν between 270 and 275 m2 s−1, probably as a 
result of a supercritical reverse Hopf bifurcation. The second frequency on this branch of tori was about 0.018 . . . rad/day 
(a period of 350 days). The branch of limit cycles became unstable and could not be followed by our methods below ν = 

213 m2 s−1. Another branch of stable limit cycles with smaller amplitude appeared at a value of ν slightly above 220 m2 s−1. 
The spatial structures and frequencies of the flow on both limit cycles are similar. It is possible that his branch is a 
continuation of the higher amplitude branch and that there is an unstable branch connecting both stable branches, though we 

have not looked for unstable limit cycles. Multiple stable limit cycles coexist for ν between 213 and 220 m2 s−1. 

The new branch of limit cycles continued to lower ν. A Hopf bifurcation of the 1imit cycle occurred at ν between 182 

and 185 m2 s−1. The second frequency of motion on the torus generated was about 0.009 . . . rad/day (a period of about 

700 days). A reverse Hopf bifurcation at ν between 162 and 165 m2 s−1 again yielded a limit cycle. The limit cycles either 

became unstable or ceased to exist at ν = 150 m2 s−1. At ν = 150 m2 s−1, the trajectory left the main branch of attractors 
and converged to a torus on a new branch of attractors denoted A on the bifurcation diagram. 

Branch A overlaps with the main branch at ν = 151 m2 s−1. Thus, there are two attractors at this value of viscosity: one 

is a limit cycle on the main branch and the other is a torus on branch A. For 100 m2 s−1  ν  135 m2 s−1, there is a 

third branch of attractors, denoted B on the bifurcation diagram. The tori on branch A at ν equal to 150 and 151 m2 s−1 

have a second frequency of about 0.009 . . . rad/day (a period of 700 days). At ν = 152 m2 s−1, branch A either loses 

stability or ceases to exist, and the trajectory returns to a limit cycle on the main branch of stable attractors. At ν = 145 m2 

s−1 on branch A we found a limit cycle, which suggests another reverse Hopf bifurcation at ν between 145 and 150 m2 s−1. 

The stable limit cycles on branch A continue to exist down to ν = 130 m2 s−1. For somewhat lower viscosity, the limit 
cycle lost stability as a result of a Hopf bifurcation, and branch A continued to exist for lower viscosities as a family of tori. 
The second frequency of the tori is about 0.007 . . . rad/day (a period of about 900 days). The tori lose stability at ν slightly 

less than 120 m2 s−1. 

We traced branch B (as it is denoted on the bifurcation diagram) of stable attractors, from ν = 135 down to ν = 100 m2 

s−1. The attractors on this branch have stable neighboring attractors on branch A for values of ν between 120 and 135 m2 

s−1. On branch B we found limit cycles at ν = 115 and 130 m2 s−1. Hopf bifurcations occur at ν slightly less and higher 

than 130 m2 s−1, connecting the limit cycle there with two families of tori. The family with higher ν either becomes unstable 

or ceases to exist at ν = 136 m2 s−1 and the trajectory in that case is attracted to a limit cycle on branch A. The second 
frequency for this branch of tori is about 0.007 . . . rad/day (a period of about 900 days). Another pair of Hopf bifurcations 

occur at ν slightly less and higher than 115 m2 s−1. The family of tori that lies between 115 and 130 m2 s−1 has a second 

frequency associated with motion on them of about 0.013 . . . rad/day (a period of about 480 days). For ν < 115 m2 s−1, 



we computed a torus at 112 m2 s−1 with a second frequency of about 0.009 . . . rad/day (a period of about 700 days). 

This suggests the existence of a Hopf bifurcation at some value of ν between 112 and 115 m2 s−1. For lower values of ν, 

we found only chaotic attractors at ν = 110 and 100 m2 s−1. The power in the low-frequency part of the chaotic spectra 

increases significantly as ν is reduced from 110 to 100 m2 s−1. This result is consistent with the results of MB1 and BM1 
that the low-frequency part of the spectrum dominates as the flow becomes more chaotic. 

What happens to the perturbation fields ′
1,2, which were defined in (11) and (12), when the circulation develops a 

peripheral current? In Figs. 13a,b , we show the full upper- and lower-layer streamfunctions 1 and 2 for the limit 

cycle belonging to branch B at ν = 130 m2 s−1. The period of this limit cycle is 109.6 days, which is much shorter than the 

period of the gravest basin mode. The upper-layer velocity is about 0.30 m s−1 at its maximum and the lower-layer velocity 

is about 0.05 m s−1 at its maximum. The perturbation fields ′
1,2 are shown in Figs. 14a ,b . Note that the peripheral 

current includes a sequence of baroclinic eddies propagating cyclonically along the lateral walls of the basin. The 
quasiperiodic and chaotic behavior of the flow in the first set of experiments also contained baroclinic eddies, propagating 
cyclonically along the walls, but the amplitudes of these eddies were smaller than the amplitude of the time-averaged flow. 
The eddies in that case were weaker, the jet was weaker, and the velocity and pressure gradients near the walls were 
significantly less than in the second set of experiments.

For comparison with the limit cycle in Figs. 13a ,b  and 14a,b , we computed the equivalent-barotropic 

circulation for ν = 130 m2 s−1 with all other parameters, except γ (in the equivalent-barotropic limit γ  0), the same as for 
the baroclinic limit cycle. The resulting circulation is steady and stable. It contains three recirculation gyres of unequal 
strength and is shown in Fig. 15 . The striking difference between Fig. 15  and Figs. 13a  and 14a  emphasizes 
the crucial role of baroclinicity in determining both the mean circulation and the time-dependent dynamics of the flow, even 
when the ratio of layer depths γ is small. 

The sizes and baroclinic structure of the eddies resemble those of the Black Sea eddies associated with the Rim Current 
(Oguz et al. 1993). Since the first baroclinic deformation radius of the Black Sea is similar to the value used here, this is, 
perhaps, not too surprising. The eddies in our simple model propagate freely along the walls, whereas in the Black Sea the 
eddies may be locked to topographic features, which we did not consider.

If the time-averaged circulation patterns at ν = 338 and 215 m2 s−1 (see Fig. 12 ) are compared, one can see that the 

recirculation gyres observed at all values of ν in the first set of experiments and at ν = 338 m2 s−1 in the second set are 

scarcely evident at ν = 215 m2 s−1. The disappearance of the gyres is associated with the development of the peripheral 

current as ν is reduced. In the upper layer the peripheral current, when well developed (as at ν = 215 m2 s−1 and lower), 
flows around a single cyclonic cell occupying the whole basin. It is possible that this regime corresponds to the single- cell 
circulation in the Black Sea, which occurs when the gyres merge (Oguz et al. 1993). 

4. Results: Primary instability  

To investigate the physics behind the primary oscillatory instability, we used an approach based upon the energetics of the 
system. This approach was applied in previous studies (MB1, BM1) of barotropic and equivalent-barotropic wind-driven 
circulation and is as follows. For the most unstable eigenmode of a steady unstable fixed point, we computed the associated 
eddy-mean energy conversion terms, which are functions of the spatial variables. The spatial distributions and the signs of 
these terms allowed us to locate the regions that seem most active in supporting the instability of the circulation.

Because the instability is an oscillatory one, close to the stability threshold there are two distinct timescales, the (short) 
period of the oscillation and the long e-folding time. We can exploit this by integrating quantities over the period of the 
oscillatory instability. The resulting short-term averaged quantities are slowly varying on the long timescale. Denoting the 
slowly varying mean streamfunctions by 1,2, we can then define rapidly varying time-dependent perturbation 

streamfunctions, ′
1,2 = 1,2 −  1,2. By considering the slowly varying mean and perturbation energy equations in the 

usual way, we obtain slowly varying averages of the energy exchange terms between the slowly varying mean flow and the 
perturbation:



 

The first term, P, is the energy exchange between the mean flow and the perturbations due to the rate of working of the 
Reynolds stresses. Positive P is characteristic of horizontal shear-flow instability. The second term, R, represents the energy 
exchange associated with the transport of interface height fluctuations. Positive R is characteristic of baroclinic instability. In 
those regions of the circulation where the sum of the exchange terms, P + R, is positive, perturbations gain energy from the 
basic state. We are interested in localizing these regions in order to identify the cause of the instability.

We computed the exchange terms for the unstable growing eigenmode of the unstable fixed point at ν = 220 m2 s−1 (see 
the perturbation streamfunction plots in Fig. 16 ). The exchange terms are shown in Fig. 17 . First, the maxima and 
minima of P and R are concentrated in the western recirculation gyre; second, whereas the area integral of R over the basin 
has a positive value, the area integral of P is somewhat smaller and has a negative value. From the distribution and the signs 
of the energy conversion and, also, from the spatial structure of the eigenmode we conclude that the primary instability in 
the system is a baroclinic instability of the western gyre. This seems, from the perturbation streamfunction plots, to be 
similar to an azimuthal mode 2 instability of a baroclinic vortex (Flierl 1988) distorted by the basin boundaries and the flow 
beyond the recirculation gyre. The spatial inhomogeneity in the problem is reflected in the persistence of some of the 
wavelike structure in the time-averaged baroclinic conversion term (Fig. 17 ). The energy conversion terms computed for 

the most unstable eigenmode of the unstable fixed point at ν = 550 m2 s−1 and the depth ratio γ = 1/19 are shown in Fig. 18 
. Once again, the area integral of R has a positive value, whereas the area integral of P has a negative value somewhat 

smaller than that of R. This result again suggests that baroclinic instability of the gyre is responsible for the primary 
instability in the system.

5. Discussion and conclusions  

In this study we extended the results of MB1 and BM1 to a two-layer quasigeostrophic model of the wind-driven 
circulation in a closed basin. In analyzing the results of a standard numerical GCM, we treat it as a large-dimensional 
dynamical system with steady forcing and dissipation in the same way as in MB1 and BM1. In this paper, we introduce 
baroclinic physics into the model. The results of MB1 and BM1 suggested that for a wide range of the control parameters, 
the dynamics of the barotropic and the equivalent-barotropic models are strikingly low-dimensional. This means that in the 
large-time asymptotic limit, the phase space trajectory converges to low-dimensional objects such as fixed points, limit 
cycles, tori, and strange attractors. As the control parameters are changed, these simple invariant sets may become unstable 
or disappear as a result of bifurcations in the dynamical system. This low-dimensional dynamics and the corresponding time-
dependent behavior are intrinsic properties of the system based upon the nonlinearity of the equations and internal instabilities 
of the solutions. Theoretical reasons for why low-dimensional attractors should exist in an oceanic primitive-equations model 
are discussed in Lions et al. (1992). Low-dimensional behavior has also been found in oceanic models by Jiang et al. (1995), 
Speich et al. (1995), Kamenkovich et al. (1995), and Sheremet et al. (1995). 

An important question is how robust is this low-dimensionality? How does it depend upon the physics involved in the 
model? Does it exist in modern sophisticated general circulation models? In this study we introduced the simplest two-layer 
baroclinicity in the model, and the results suggested that low-dimensionality was preserved for a wide range of viscosity 
coefficient, which was the main variable control parameter. This is our central result. The complexity and dimensionality of 
the attractors found tend to increase as the dissipation is reduced. Low-dimensional dynamics should be present in any 
dissipative GCM driven by nonstochastic forcing in the absence of discontinuous processes such as “convective 
adjustment.”  In general, the location of these attractors and the nature of the bifurcations in the model will depend on the 
physical processes included in the model.

The types of low-dimensional behavior of the wind-driven circulation seen in this baroclinic study resemble those seen in 
the barotropic study of MB1 and the reduced gravity model of BM1. We anticipate that the sensitivity to discretization will 
also be similar to that seen in MB1 and BM1. The main differences seen as resolution was increased in the latter two works 
were that the bifurcation thresholds shifted slightly while the amplitudes and timescales of the time-dependent solutions 
change by a few percent. This suggests that in the 2LQG case, as in the barotropic and equivalent barotropic cases, the 
details of the bifurcation sequences may change slightly as the resolution is increased, but the wide range of low-
dimensionality will be robust and the route to chaos will not change. (The locations of episodes of phase locking within the 
chaotic regime are likely to change.) However, given the smaller scale of the deformation radius in the second set of 
experiments described in the present paper (Rd = 16.813 km) compared to the deformation radius in the first set (Rd = 

23.148 km) and in the EB case (Rd = 24.4 km), we expect the second set to exhibit larger sensitivity. This is borne out by 

experiments with the 2LQG model at enhanced resolution. As an example, the case γ = 1/9, Rd = 23.148 km, ν = 200 m2 

s−1, at 6.25-km resolution yields a limit cycle with an energy amplitude equal to 2.7% of the mean energy and a period of 



about 115 days. At a resolution of 3.125 km, we again see a limit cycle but the period has shifted to about 112 days, while 
the amplitude is 2.6% of the mean energy. With the shorter deformation radius, larger changes are seen; a run with γ = 1/19, 

Rd = 16.813 km, ν = 520 m2 s−1, and 6.25-km resolution yields a limit cycle with an amplitude equal to 0.6% of the mean 

and a period of 91.5 days, while at 3.125-km resolution, the amplitude increases to 1.2% and the period becomes 93.5 days. 

As the control parameters are varied, the topology of the attractors changes due to successive bifurcations. We found that 
the most common route from a fixed point to a strange attractor in these single-gyre models, whether barotropic, equivalent 
barotropic, or baroclinic, consists of three successive Hopf bifurcations: from a fixed point to a limit cycle, from a limit 
cycle to a torus, and from a torus to a strange attractor. For some values of the control parameters we found an 
intermediate period-doubling bifurcation of a limit cycle. Similar period doublings were found in the oceanic models of MB1 
and BM1. These results suggest that while period doublings may not be uncommon in ocean GCMs, an infinite succession 
of period doublings (cf. Feigenbaum 1978, 1979) is unlikely and the main route to chaos should involve successive Hopf 
bifurcations. This is a Ruelle–Takens route to chaos (suggested by Ruelle and Takens 1971). For discussion of the Ruelle–
Takens scenario see Newhouse et al. (1978) and Eckmann (1981). 

We showed that the low-dimensional dynamics introduces low-frequency variability of the flow. This variability is 
important for long-term predictions or climate studies. In the results reported here, secondary frequencies on some tori 
yielded interannual and decadal variability of the flow. Interdecadal variability was associated with motion on strange 
attractors. As the complexity of strange attractors grows, the spectral power at low frequencies grows disproportionately. 
This behavior was observed in MB1 and BM1 and is, presumably, typical for wind-driven circulation models. This 
climatological variability in the baroclinic model, as well as the variability in the models discussed in MB1 and BM1, arises in 
the flow without any long-term fluctuations in the external forcing. It is due to intrinsic instabilities and the nonlinearity of 
the circulation. At the present time there are several explanations of long-term variability in the midlatitude ocean driven by 
atmospheric forcing. Hasselmann (1976) proposed a model in which stochastic forcing of the ocean by the atmosphere at all 
frequencies drives a low-frequency response. In that case, the spectrum associated with the variability of the ocean has a 
broad band at low frequencies with no spectral peaks. James and James (1989) showed that the atmosphere itself may 
possess low-frequency intrinsic variability when forced only with the annual cycle. This variability may cause the ocean’s 
response on the same timescales. Oscillations of the midlatitude ocean–atmosphere system coupled through wind forcing 
and thermodynamic processes were found in the numerical study of Latif and Barnett (1994). They found a coupled decadal 
oscillatory mode in the North Pacific Ocean. In addition to these scenarios for the low-frequency variability in the 
midlatitude ocean, our present study, as well as the MB1, BM1, Jiang et al. (1995) and Speich et al. (1995) results, adds one 
more scenario. Namely, it suggests that natural variability (i.e., free from variations in external forcing) of the midlatitude 
ocean may occur on climatological timescales.

The question of how natural climatological variability will be affected by temporal variations in the forcing is still open. An 
understanding of low-dimensional dynamics may be important in answering it. We expect that, in some regimes, the flow 
driven by a stochastic time-dependent forcing will have a tendency to stay longer in the vicinity of the attractors of the same 
system driven by a steady forcing “close”  to the time-dependent forcing, for example, a time average of the unsteady 
forcing. In that case the attractors will be associated with the most statistically probable states of the flow. When the forcing 
is simply periodic, the forcing can be incorporated in the framework described above by formally adding a pair of extra 
variables whose evolution equations reproduce the time-dependent component of the forcing, converting the nonautonomous 
problem into an autonomous one. The additional variables are not dissipated in the same way as the original variables. In the 
limit of strong dissipation, these variables continue to oscillate and so the strong dissipation limit is a limit cycle rather than a 
fixed point. One advantage of adopting this point of view is that it provides a unifying perspective that can include both the 
work described above and results from models of El Niño of the sort described in Jin et al. (1994) and Tziperman et al. 
(1994). Whether the route to chaos will then be via overlapping resonances on a torus as in the latter two references or one 
of the other routes to chaos from a torus remains to be seen.

A useful comparison can be made between the baroclinic model circulation and the observations of flow patterns in the 
Black Sea. The Black Sea exhibits the interesting phenomenon of large-scale organization. The circulation in the Black Sea is 
predominantly cyclonic. A prominent feature of this circulation is a recurrent appearance of two cyclonic cells (the Western 
and Eastern Gyres)—one in the eastern and the other in the western part of the basin. At other times the upper-layer flow is 
dominated by a basin wide Rim Current, and the gyres are less prominent. The barotropic and equivalent-barotropic models 
used in MB1 and BM1 were able to reproduce two cyclonic recirculations, which are analogous to those observed in the 
Black Sea, for a wide range of ν and Rd. In the baroclinic case, the gyres were observed for all values of ν in the first set of 

experiments, when the layer depths were H1 = 200 m and H2 = 1800 m. In the second set of experiments with H1 = 100 m 

and H2 = 1900 m the gyres disappeared gradually when ν was reduced. This process was associated with the developing of 

a peripheral cyclonic current in the western half of the basin. In the eastern part of the basin the current was rather slow and 
wide. The current was essentially baroclinic. It was filled with a “chain”  of baroclinic eddies associated with vigorous 
meandering of the main jet. The eddies propagated cyclonically along the basin’s walls. We found that this seemingly 
complicated behavior might be achieved on relatively simple dynamical attractors such as limit cycles and tori. The 
observations of the Black Sea circulation (Oguz et al. 1993) showed a cyclonic Rim Current filled with baroclinic eddies. It 



is possible that the peripheral current in the model may be analogous to the Rim Current. No peripheral current was found in 
the barotropic and equivalent-barotropic models of MB1 and BM1. This suggests that the nature of the peripheral current is 
essentially baroclinic, which accords with observations (Filippov 1961; Oguz et al. 1993). In our experiments we obtained a 
transition between gyre-dominated flows and Rim Current–dominated flows by varying the stratification. In the real Black 
Sea, such transitions are likely to depend on seasonal fluctuations in the strength of the wind as well as on the seasonal 
variations in the pycnocline due to surface heat and freshwater fluxes. It would be interesting to continue this work by 
adding a simple seasonal cycle to the wind forcing.

We examined the nature of the primary instability of the flow and found that the onset of oscillatory instability occurs as a 
result of baroclinic instability in the western recirculation gyre. The comparison of this instability with the complicated 
shear-flow instability seen in the equivalent-barotropic model (see BM1) involving the western boundary intensification, the 
western gyre, and the meander between the western and central gyres, and the similarly complicated shear-flow instability of 
the barotropic circulation (Meacham and Berloff 1996b) emphasizes the important role of baroclinicity in time-dependent 
general circulation problems (cf. Holland 1978). 

Last, we note a feature common to barotropic, equivalent-barotropic, and baroclinic models of the wind-driven 
circulation: the existence of parameter regimes in which multiple, stable, time-dependent regimes coexist. 
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Table 1. Model parameters.
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Fig. 1. From Berloff and Meacham (1997). The upper-layer streamfunction plots of six different steady solutions at the values of 

ν = 1000, 500, 300, 200, 105, 60 m2 s−1. The lower layer is at rest and may have any depth. The upper-layer depth of these 
solutions is 200 m. On the last panel the following circulation features are noted: A—the western boundary intensification, which 
contains fluid from the interior of the basin and from the western recirculation gyre; B—the western recirculation gyre; C—the 
meander between the western and the central gyres.
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Fig. 2. Bifurcation diagram for Rd = 23.148 km. The oscillation amplitude as a percentage of mean amplitude versus ν. FP: fixed 

points; LC: limit cycles; QP: quasiperiodic motion on tori. The different branches of stable tori are denoted by I, Ia, II, and III. 
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Fig. 3. The mean nondimensional energies of the attractors versus ν for Rd = 23.148 km, γ = 1/9. Note that, over part of the 

range of ν, the mean energy has a tendency to decrease as ν is reduced. FP: fixed points; LC: limit cycles; QP: quasiperiodic 
motion on tori.
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Fig. 4. (a) The mean potential energies of the attractors in the first set of experiments; (b) The mean kinetic energies of the 
attractors in the first set of experiments.
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Fig. 5. Trajectory on the toroidal attractor at ν = 178 m2 s−1 for Rd = 23.148 km, γ = 1/9. (a: top left) The delay coordinate phase 

space projection of the trajectory; (b: top right) Poincaré section of the trajectory; and (c: lower left) power spectrum of the time 
series corresponding to the trajectory. Note two dominant frequencies at 0.0055 . . . and 0.058 . . . rad/day (periods are near 
1140 and 108 days, respectively).
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Fig. 6. Trajectory on the chaotic attractor at ν = 171 m2 s−1 for Rd = 23.148 km, γ = 1/9. (a) The delay coordinate phase space 

projection of the trajectory; (b) Poincaré section of the trajectory; and (c) power spectrum of the time series corresponding to the 
trajectory. Note the noisy structure of the spectrum. The dominant frequencies are approximately 0.06 . . . , 0.013 . . . , and 
0.0057 . . . rad/day (the periods are about 480, 105, and 1100 days respectively). 
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Fig. 7. Power spectrum of the time series corresponding to the trajectory on the chaotic attractor at ν = 167 m2 s−1. Note that 
the power is concentrated mainly at the low-frequency end of the spectrum. This behavior is typical for the chaotic attractors 
found in the present study and the studies of MB1 and BM1.
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Fig. 8. Snapshots of the chaotic circulation at ν = 140 m2 s−1 for Rd = 23.148 km. The upper layer contains a pair of recirculation 

gyres (there is also a very weak recirculation in the eastern part of the basin), which show some similarity to the Western and 

Eastern Gyres in the Black Sea. (a) 1 (CI = 10), (b) 2 (CI = 2). 
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Fig. 9. (a) Bifurcation diagram for Rd = 16.813 km. The square root of oscillation amplitude as a percentage of mean amplitude 

versus ν. FP: fixed points, LC: limit cycles, QP: quasiperiodic motion on tori. By PD we denoted the period doubling of the limit 
cycle. Two branches of attractors at low ν are denoted by A and B. (b) Enlargement of region in the box in (a). 
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Fig. 10. (a) The mean nondimensional energies of the attractors found in the second set of experiments versus ν for Rd = 16.813 

km. The mean energy decreases significantly as ν is reduced FP: fixed points, LC: limit cycles, QP: quasiperiodic motion on tori, 
PD: period doubling. (b) Enlargement of region in the box in (a).
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Fig. 11. (a) The mean potential energies of the attractors in the second set of experiments; (b) the mean kinetic energies of the 
attractors in the second set of experiments.
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Fig. 12. The time averages ‹ 1,2›  of the limit cycles at ν = 338, 215 (the lower energy branch), and 115 m2 s−1. The upper-layer 

streamfunctions ‹ 1›  are shown on the left panels, and the lower-layer streamfunctions ‹ 2›  are shown on the right panels. Note 

that with decreasing ν, the time-averaged upper-layer circulation develops a peripheral current. 
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Fig. 13. Time-dependent behavior of the streamfunctions 1,2 on the limit cycle at ν = 130 m2 s−1 over one period. Time t is 

measured in days. (a) The upper layer (CI = 15); (b) the lower layer (CI = 5).
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Fig. 13. (Continued) 
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Fig. 14. Time-dependent behavior of the perturbation streamfunctions ′
1,2 on the limit cycle at ν = 130 m2 s over one period. 

Time t is measured in days. Note the sequence of the baroclinic eddies propagating cyclonically along the lateral walls of the 
basin. (a) The upper layer (CI = 15); (b) the lower layer (CI = 5).
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Fig. 14. (Continued) 
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Fig. 15. The equivalent-barotropic streamfunction for ν = 130 m2 s−1, Rd = 16.813 km, and H1 = 100 m. The circulation is steady 

and stable. Note that the peripheral current does not develop in this case and the flow pattern is dominated by the main inertial 
recirculation gyres.

 
Click on thumbnail for full-sized image. 

Fig. 16. Time-dependent behavior of the perturbation streamfunctions of the most unstable eigenmode at ν = 220 m2 s−1 and 
Rd = 23.148 km over one eigenperiod. Time t is measured in days. (a) The upper layer; (b) the lower layer. 
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Fig. 16. (Continued) 
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Fig. 17. Spatial distribution of the energy conversion terms R and P corresponding to the most unstable growing eigenmode at 

ν = 220 m2 s−1 and Rd = 23.148 km. (a) R, (b) P. 
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Fig. 18. Spatial distribution of the energy conversion terms R and P corresponding to the most unstable growing eigenmode at 

ν = 550 m2 s−1 and Rd = 16.813 km. (a) R, (b) P. 

 

 

Corresponding author address: S. P. Meacham, Department of Oceanography, The Florida State University, Tallahassee, FL 32306-3048. 

E-mail: meach@tri.ocean.fsu.edu 

 

© 2008 American Meteorological Society Privacy Policy and Disclaimer 
 Headquarters: 45 Beacon Street Boston, MA 02108-3693  
  DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 
 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718 
Allen Press, Inc. assists in the online publication of AMS journals.  

 


