

Abstract View

Volume 27, Issue 5 (May 1997)

Journal of Physical Oceanography Article: pp. 597–614 | <u>Full Text</u> | <u>PDF (366K)</u>

Toward a Physical Explanation of the Seasonal Dynamics and Thermodynamicsof the Gulf of California

P. Ripa

Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico

(Manuscript received January 29, 1996, in final form June 3, 1996) DOI: 10.1175/1520-0485(1997)027<0597:TAPEOT>2.0.CO;2

ABSTRACT

The annual component of the horizontal heat flux \mathcal{F}^x is calculated from the temperature advection by the geostrophic velocity. This estimate of \mathcal{F}^x is in good agreement, in amplitude and phase and as a function of the distance *x* to the head, with that calculated from the difference between the surface heat flux \mathcal{Q} and the local heating, that is, from $\partial \mathcal{F}^x/\partial x = \mathcal{Q} - \partial \mathcal{H}/\partial t$, where \mathcal{H} denotes the heat content.

Sea level η variations are well correlated with those of \mathcal{H} , while the surface velocity u_{surf} (which can be calculated from the difference of η between both

coasts) is well correlated with \mathcal{F}^x . The proportionality coefficients between (η, \mathcal{H}) and between $(u_{surf}, \mathcal{F}^x)$ correspond to what is expected for a dominance of the first baroclinic mode, in spite of the inhomogeneity of the gulf's topography.

Options:

- Create Reference
- Email this Article
- <u>Add to MyArchive</u>
- <u>Search AMS Glossary</u>

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for: • <u>P. Ripa</u>

A linear one-dimensional two-layer model is enough to reproduce the observations of the transversely averaged (η , \mathcal{H} , u_{surf} , \mathcal{F}^x) fields at the annual frequency. Most of the dynamics and thermodynamics are controlled by the Pacific Ocean, which excites a baroclinic Kelvin wave at the mouth of the gulf. Wind drag produces a slight slope in η , whereas Q causes a local heating of the upper layer; both surface forcings have a small effect on u_{surf} and \mathcal{F}^x .

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.