

Abstract View

Volume 27, Issue 10 (October 1997)

Journal of Physical Oceanography Article: pp. 2169–2186 | Full Text | PDF (292K)

A New Coastal Wave Model. Part V: Five-Wave Interactions

Ray Q. Lin

Hydromechanics Directorate, David Taylor Model Basin, West Bethesda, Maryland

Will Perrie

Ocean Sciences Division, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

(Manuscript received December 2, 1996, in final form March 26, 1997) DOI: 10.1175/1520-0485(1997)027<2169:ANCWMP>2.0.CO;2

ABSTRACT

The authors study the action flux associated with three-dimensional wave–wave interactions of ocean surface waves. Over deep water, two-dimensional wave–wave interactions are dominant: the three-dimensional five-wave interactions are two orders of magnitude smaller than the two-dimensional four-wave interactions. However, the five-wave interactions become increasingly important as the water depth decreases. Because of the effects of finite depth, three-dimensional five-wave interactions, involving steep finite-amplitude waves, dominate over two-dimensional four-wave interactions. Specifically, when the water depth *h* is less than 10 m, or nondimensionalizing with the spectral peak wavenumber K_p when $K_ph \leq 3.6$ and nonlinearity, $\epsilon = Ka(3 + \tanh^2 Kh)/4$ $\tanh^3 Kh \geq 0.3$, the five-wave interactions completely dominate. Results are

consistent with the instability study by McLean.

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Ray Q. Lin
- Will Perrie

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.