

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home Journa

Journals Home

Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 18, Issue 11 (November 1988)

Journal of Physical Oceanography

Article: pp. 1627–1640 | Abstract | PDF (1.10M)

Meandering and Eddy Detachment According to a Simple (Looking) Path Equation

L.J. Pratt

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

(Manuscript received July 7, 1987, in final form May 17, 1988) DOI: 10.1175/1520-0485(1988)018<1627:MAEDAT>2.0.CO;2

ABSTRACT

Nonlinear meandering and "pinching off" process are investigated by solving the path equation As shown by Pratt and Stern, this dimensioned equation determines the center line latitude l of a slowly-varying, equivalent barotropic, quasi-geostrophic, f-plane jet with cusped velocity profile and center line curvature $\kappa = l_{xx}/(1 + l_x^2)^l$. A class of exact solutions consisting of steadily propagating meanders is found having wavelength $2\pi/k$ and amplitude a. The meanders form a wave train which can be single-valued (for ak < 2.61) or multivalued (for 2.61 < ak < 8.30) with respect to the x (eastward) coordinate. For ak = 8.30 grazing contact occurs between neighboring meanders and a type of vortex street is formed. The amplitude-dependent dispersion relation for the meanders shows that phase propagation is eastward with speed that increases with decreasing wavelength and/or amplitude, trends observed for Gulf Stream meanders near 72 W by Vazquez and Watts.

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

• L.J. Pratt

Numerical solutions are presented for isolated, single-valued initial disturbances having a characteristic wavenumber k_0 and amplitude a_0 . When a_0k_0 is less than a critical value between 1.5 and 2.0, the disturbance disperses. For larger values of a_0k_0 , the evolution leads to a "pinching off" phenomenon in which meanders begin to detach from the main portion of the jet and form roughly elliptical eddies.

© 2008 American Meteorological Society Privacy Policy and Disclaimer

Headquarters: 45 Beacon Street Boston, MA 02108-3693

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.