

Abstract View

Volume 18, Issue 11 (November 1988)

Journal of Physical Oceanography Article: pp. 1658–1669 | <u>Abstract</u> | <u>PDF (944K)</u>

Depth Dependence of Bottom Stress and Quadratic Drag Coefficient for Barotropic Pressure-Driven Currents

H.O. Mofjeld

NOAA/ERL/Pacific Marine Environmental Laboratory, Seattle, Washington

(Manuscript received February 12, 1988, in final form May 19, 1988) DOI: 10.1175/1520-0485(1988)018<1658:DDOBSA>2.0.CO;2

ABSTRACT

A level 2½ turbulence closure model is used to investigate the dependence on water depth *H* of bottom stress τ_b and quadratic drag coefficient C_d for a steady barotropic pressure-driven current in unstratified water when the current is the primary source of turbulence. For spatially uniform pressure gradient and bottom roughness z_0 the magnitude $|\tau_b|$ increases from small values in shallow water to a maximum (at a depth ~ 0.004 U_0/f where U_0 is the geostrophic current speed derived from the pressure gradient and *f* is the Coriolis parameter) at which the dynamics changes from being depth-limited to being controlled by similarity scales. As the depth increases further, $|\tau_b|$ decreases to its deep-water value that is 15% to 19% less than the maximum. The angle θ of the bottom stress relative to the geostrophic direction decreases rapidly from 90° in very shallow water, reaching its deep-water value (~ 11°-21°) at a somewhat shallower depth than does $|\tau_b|$. At the maximum stress θ is 8° larger than the

Options:

- <u>Create Reference</u>
- Email this Article
- <u>Add to MyArchive</u>
- <u>Search AMS Glossary</u>

Search CrossRef for:

<u>Articles Citing This Article</u>

Search Google Scholar for: • <u>H.O. Mofjeld</u>

deep-water angle. A set of computationally efficient formulas matched to the model results gives $|\tau_b|$ and θ for all combinations of U_0 , H, f and bottom roughness z_0 . Comparison with a variety of other models satisfying Rossby similarity over oceanographic ranges of parameters shows agreement of ~ 10% for $|\tau_b|$ and ~ 5° for θ .

The coefficient C_d of the quadratic drag law relating $|\tau_b|$ to the vertically averaged velocity is found to be approximated reasonably well by a formula from nonrotating channel theory in which the coefficient depends only on the ratio H/z_0 . The direction of the bottom stress relative to the vertically averaged velocity is equal to the geostrophic veering angle (~11°-21°) in deep water and decreases to ~5° for a range of intermediate depths (~0.004-0.01 U_0/f) where it is relatively independent of external Rossby number U_0/fz_0 ; the angle becomes less in shallower water.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals. top 🔺