

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home

Journals Home

Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 16, Issue 1 (January 1986)

Journal of Physical Oceanography

Article: pp. 121–131 | Abstract | PDF (691K)

Scattering of Inertial waves by an Ocean Front

David M. Rubenstein

Science Applications International Corporation, McLean, VA 22102

Glyn O. Roberts

Roberts Associates, Incorporated, 1726 Pine Valley Dr., Vienna, VA 22180

(Manuscript received February 4, 1985, in final form July 29, 1985) DOI: 10.1175/1520-0485(1986)016<0121:SOIWBA>2.0.CO;2

ABSTRACT

Recent observations suggest that the space-time spectrum of near-inertial motions is strongly modulated by ocean fronts and geostrophic shear. This paper postulates a mechanism that may be responsible for generating much of this variability in the vicinity of fronts. The effective inertial frequency is variable because of gradients in the mean flow associated with a front. As a result, phase differences accumulate in inertial oscillations over short length scales of order tens of kilometers. Inertial pumping ensures, and near-inertial waves propagate away from the front in various directions. Inertial energy in the mixed layer disperses more rapidly in the vicinity of the front, and the mixed layer depth assumes strong across-front variations. In the thermocline, scattered internal waves develop a modulated pattern of amplitude, within the front and in its vicinity.

In order to investigate this mechanism, a two-dimensional numerical model is developed. The model simulates a mixed layer sitting over a stratified interior,

Options:

- Create Reference
- **Email this Article**
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- David M. Rubenstein
- Glyn O. Roberts

and a barotropic jet. Solutions are suggestive of patterns of variability that have been observed in the ocean.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718 Allen Press, Inc. assists in the online publication of AMS journals.