

Abstract View

Volume 16, Issue 11 (November 1986)

Journal of Physical Oceanography Article: pp. 1799–1813 | Abstract | PDF (1.06M)

Steady, Free Circulation in a Stratified Quasi-Geostrophic Ocean

John Marshall and George Nurser

Atmospheric Physics Group Department of physics, Imperial College London SW7 2BZ United Kingdom

(Manuscript received August 5, 1985, in final form April 10, 1986) DOI: 10.1175/1520-0485(1986)016<1799:SFCIAS>2.0.CO;2

ABSTRACT

Steady solutions in which quasi-geostrophic potential vorticity is constant along a streamline of the flow are derived for a baroclinic ocean. Friction, transfer by geostrophic eddies, and wind forcing are treated as high-order effects that serve only to remove the indeterminacy of completely free flow. Solutions are obtained that are a generalization to a baroclinic ocean of Fofonoff's baratropic calculations. The vortex stretching permitted by stratification is found to allow gyres in which, in an integral sense, lateral down-gradient eddy transfer of potential vorticity, q, balances the wind-stress curl. Beneath the surface layer, the effect of eddies is then to make q uniform if q contours close on themselves

Our simple solutions have many features in common with observations of the subtropical recirculation and with the cream flows obtained from eddy-resolving, quasi-geostrophic numerical models. In particular, the southern margin of the recirculation is found to recede progressively toward the line of zero wind-stress curl with increasing depth, the isopycnals sloping downward toward the northern boundary of the subtropical gyre.

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for: • <u>Articles Citing This Article</u>

Search Google Scholar for:

- John Marshall
- George Nurser

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.