Volume 16, Issue 12 (December 1986)

Sign in

Journal of Physical Oceanography Article: pp. 2061–2070 | Abstract | PDF (644K)

Interannual Baroclinic Rossby Waves in the Midlatitude North Atlantic

James Michael Price

Institut für Meereskunde and der Christian Albrechts Universität Kiel, 2300 Kiel 1, Federal Republic of Germany

Lorenz Magaard

Department of Oceanography, University of Hawaii, Honolulu, HI 96822

(Manuscript received May 10, 1985, in final form June 16, 1986) DOI: 10.1175/1520-0485(1986)016<2061:IBRWIT>2.0.CO;2

ABSTRACT

Twenty-six year time sequences of upper thermocline temperature blockaveraged in 5-degree latitude and longitude squares reveal strong, in-phase vertical coherence and low to moderate horizontal coherence over 550 km.

Least-squares fitting theoretical cross spectra from a stochastic, first baroclinic mode Rossby wave model to cross spectra of the temperature–time sequences yields several best-fit wavenumber vectors that conform to the dispersion relation of first baroclinic mode Rossby waves in a flat bottom ocean with no mean current. The slope of the midocean ridge, which is as important as midlatitude beta, and the mean circulation were ignored. About 25%–55% of the cross-spectral energy can be attributed to the best-fit waves.

A composite spectrum of the baroclinic potential energy of all the demonstrated Rossby waves is qualitatively similar to the spectrum of North Pacific first baroclinic mode Rossby waves, showing a peak around 6–7 years, but is 30

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- James Michael Price
- Lorenz Magaard

times larger in magnitude. The geographic distribution of wave energy is curiously congruent with the shape of the midocean ridge.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.