Inertial Oscillations due to a Moving Front

Pijush K. Kundu
Oceanographic Center, Nova University, Dania, FL 33004

Richard E. Thomson
Institute of Ocean Science, Sidney, B.C. V8L 4B2, Canada
(Manuscript received January 8, 1985, in final form April 8, 1985)
DOI: 10.1175/1520-0485(1985)015<1076:IODTAM>2.0.CO;2

Abstract

A solution for a concentrated line front translating at speed U is given. It is shown that the frequency is near-inertial if $U \gg c_{1}$, where c_{1} is the long internal wave speed of the first baroclinic mode. Each more has a charactristic frequency ω_{n} associated with it. The spectra contain a near-inertial primary peak, composed of the higher modes, whose blue shift increases with depth. They also contain secondary peaks at higher internal wave frequencies if U is only slightly larger than c_{1}. The flow field is intermittent, and involves a continuous interchange of energy between the surface layer and the stratified interior. The dominant period of this intermittency is the beating period of the first mode with a purely inertial oscillation. Short periods of apparent subinertial motion are also generated. Several features of the solution are in agreement with observations.

\section*{Options:} - Create Reference - Email this Article - Add to MyArchive - Search AMS Glossary

Search CrossRef for: - Articles Citing This Article

Search Google Scholar for: - Pijush K. Kundu - Richard E. Thomson

