

Abstract View

Volume 15, Issue 8 (August 1985)

Journal of Physical Oceanography Article: pp. 1076–1084 | <u>Abstract</u> | <u>PDF (660K)</u>

Inertial Oscillations due to a Moving Front

Pijush K. Kundu

Oceanographic Center, Nova University, Dania, FL 33004

Richard E. Thomson

Institute of Ocean Science, Sidney, B.C. V8L 4B2, Canada

(Manuscript received January 8, 1985, in final form April 8, 1985) DOI: 10.1175/1520-0485(1985)015<1076:IODTAM>2.0.CO;2

ABSTRACT

A solution for a concentrated line front translating at speed U is given. It is shown that the frequency is near-inertial if $U \gg c_1$, where c_1 is the long internal

wave speed of the first baroclinic mode. Each more has a charactristic frequency ω_n associated with it. The spectra contain a near-inertial primary

peak, composed of the higher modes, whose blue shift increases with depth. They also contain secondary peaks at higher internal wave frequencies if U is only slightly larger than c_1 . The flow field is intermittent, and involves a

continuous interchange of energy between the surface layer and the stratified interior. The dominant period of this intermittency is the beating period of the first mode with a purely inertial oscillation. Short periods of apparent subinertial motion are also generated. Several features of the solution are in agreement with observations.

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- <u>Search AMS Glossary</u>

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Pijush K. Kundu
- <u>Richard E. Thomson</u>

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.