

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home J

Journals Home

ome Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 14, Issue 9 (September 1984)

Journal of Physical Oceanography

Article: pp. 1488–1498 | Abstract | PDF (739K)

Mean Flow and Variabilities in the Deep Western Boundary Current

David Y. Lai

Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882

(Manuscript received August 17, 1983, in final form June 11, 1984) DOI: 10.1175/1520-0485(1984)014<1488:MFAVIT>2.0.CO;2

ABSTRACT

The Deep Western Boundary Current (DWBC or Western Boundary Undercurrent) was observed for over 100 days by an L-shaped array of current meters along and across the Blake Escarpment. The measurements show a mean southward flow, which at its core, 10 km east of the break of the escarpment, reaches a maximum of 22 cm s⁻¹ at a depth of 2500 m. The mean flow decreases to zero at the break and 6 cm s⁻¹ 50 km east of the escarpment. The core of the current decreases to 15 cm s⁻¹ near the bottom and to zero at 800 m depth. The mean southward volume transport is estimated to be 24×10^6 m³ s⁻¹ (24 Sy).

Two fluctuations in the southward current with amplitudes of the same order as the mean flow are observed. Below 200 m these events are consistent with the flow patterns of southward-moving anticyclonic features. The much reduced current observed might not reflect actual large reductions in the volume transport of the DWBC.

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

• David Y. Lai

The array measurements, together with a SOFAR float that got caught in the DWBC, document a cyclonic eddy between 1000 and 2000 m during the passage of the two anticyclonic features. There is no clear relationship between this eddy and the two deeper features.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826

<u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.