

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home Journals Home

Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 14, Issue 11 (November 1984)

Journal of Physical Oceanography

Article: pp. 1703–1711 | Abstract | PDF (630K)

Circulation Induced by River Inflow in Well Mixed Water over a Sloping Continental Shelf

G.T. Csanady

Woods Hole Oceanographic Institution, Woods Hole, MA 02543

(Manuscript received January 23, 1984, in final form August 13, 1984) DOI: 10.1175/1520-0485(1984)014<1703:CIBRII>2.0.CO;2

ABSTRACT

The pressure field over a sloping continental shelf subject to freshwater runoff at the coast can be resolved into a nearly two-dimensional dynamic height field and a residual field, the latter arising from the interaction of baroclinity and topography. The residual field is essentially three-dimensional and so constituted as to supply the fluid for the baroclinic alongshore flow off a coastal source of buoyancy associated with the cross-isobath density gradients. The intensity of the induced residual circulation (its total transport in m³ s⁻¹) varies directly with the buoyancy input and bottom slope, and inversely with the zero-order alongshore flow velocity and Coriolis parameter. Over the Mid-Atlantic Bight continental shelf the runoff-induced residual circulation makes a generally weak contribution to the observed mean flow field. It could, however, be more important over a low-latitude shelf subject to high runoff.

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

G.T. Csanady