Volume 13, Issue 2 (February 1983)

Sign in

Journal of Physical Oceanography Article: pp. 169–190 | <u>Abstract</u> | <u>PDF (1.26M)</u>

A Two-Level Model of a Thermally Forced Ocean Basin

M.K. Davey

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB39EW England

(Manuscript received April 29, 1982, in final form October 7, 1982) DOI: 10.1175/1520-0485(1983)013<0169:ATLMOA>2.0.CO;2

ABSTRACT

Some simple solutions (mostly analytic) are presented for the large-scale baroclinic response to thermal forcing on a mid-latitude beta-plane. Surface heat flux is parameterized as $(T_A - T_T)/tau$;, with atmospheric temperature T_A

prescribed as a function of latitude, varying ocean surface temperature T_{T} , and

equilibration time τ . For long times (decades) benthic forcing is included, using a similar representation. The model allows horizontal density variations at each level.

When there are no meridional boundaries there is only a local response to the forcing. A geostrophic baroclinic zonal flow is driven by the north–south temperature gradient, but it has no associated advection or divergence effects. This picture is greatly changed when east and/or west coasts are added. Kelvin

waves pass information rapidly (about 200 km day⁻¹) along coasts, and Rossby

waves travel slowly offshore, most effectively from the cut with speed $c \approx 1 \text{ km day}^{-1}$. For spin-up problems (e.g., the response to a change in forcing) the long Rossby waves decay away from the eastern boundary on a scale $T\tau$. With T_A decreasing poleward this creates a broad, relatively warm eastern region with weak downwelling. A steady

state requires weaker vertical motion to balance benthic forcing and a corresponding larger decay scale. The narrow western boundary layer is relatively cold on average, with upwelling. (This two-level model does not adequately describe western boundary dynamical however.)

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for: • <u>Articles Citing This Article</u>

Search Google Scholar for: • <u>M.K. Davey</u>

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.