

Abstract View

Volume 13, Issue 3 (March 1983)

Journal of Physical Oceanography Article: pp. 524–530 | <u>Abstract</u> | <u>PDF (538K)</u>

Steady Wind- and Wave-Induced Currents in the Open Ocean

Jan Erik Weber

Institute of Geophysics, University of Oslo, Blindern, Oslo 3, Norway

(Manuscript received May 20, 1982, in final form October 21, 1982) DOI: 10.1175/1520-0485(1983)013<0524:SWAWIC>2.0.CO;2

ABSTRACT

Steady wind-drift currents in a deep viscous rotating ocean are studied theoretically. The analysis is based on the Lagrangian description of motion.

A mean wind-stress at the surface yields the traditional Ekman current. In addition, the wind-stress is assumed to contain a fluctuating part which transfers energy to the surface waves and compensates for loss due to viscous dissipation. The induced drift due to such waves is investigated. The wave-drift depends on the eddy viscosity as well as the earth's rotation.

We assume a fully developed sea, and take the eddy viscosity to be proportional to the friction velocity times a characteristic depth. Hence the total current (Ekman current plus wave-induced current) can be expressed as functions of the wind speed. The results show that the magnitude of the total surface current lies between 3.1 and 3.4% of the wind speed at 10 m height for winds between

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for: • <u>Articles Citing This Article</u>

Search Google Scholar for: • Jan Erik Weber

5 and 30 m s⁻¹. The deflection angle away from the wind direction varies from 23 to 30° in this range of wind speeds.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.